Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Density
2.4. Dimensional Stability Test
2.4.1. Moisture Sorption and Dimensional Stability Test
2.4.2. Water Absorption and Dimensional Stability Test
2.5. Leachability Test
2.6. Color Changes
2.7. Characterizations and Microscopic Observations
2.7.1. Scanning Electron Microscope (SEM) Analysis
2.7.2. Fourier Transform Infrared (FTIR) Analysis
2.7.3. Thermogravimetric (TG) Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Weight Percent Gain and Density
3.2. Dimensional Stability Analysis
3.2.1. Moisture Sorption and Dimensional Stability
3.2.2. Water Absorption and Dimensional Stability
3.3. Leachability Analysis
3.4. Color Changes
3.5. Morphology and Structure
3.6. FTIR Spectroscopy Analysis
3.7. Thermal Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivaro, S.; Lim, H.; Li, M.; Pasztory, Z. Properties of Mixed Species/Density Cross Laminated Timber Made of Rubberwood and Coconut Wood. Structures 2022, 40, 237–246. [Google Scholar] [CrossRef]
- Meethaworn, B.; Khongtong, S. The Tuneable Rubberwood: Roles of Impregnated Polymer Level. Wood Mater. Sci. Eng. 2020, 16, 397–406. [Google Scholar] [CrossRef]
- Yang, S.; Wu, X.; Liu, L.; Yan, Y.; Qiu, J.; Qin, L. Analysis of Fungal Diversity before and after Discoloration of Rubberwood in Xishuangbanna. Diversity 2023, 15, 471. [Google Scholar] [CrossRef]
- Teoh, Y.P.; Don, M.M.; Ujang, S. Assessment of the Properties, Utilization, and Preservation of Rubberwood (Hevea brasiliensis): A Case Study in Malaysia. J. Wood Sci. 2011, 57, 255–266. [Google Scholar] [CrossRef]
- Chen, C.; Tu, D.; Zhao, X.; Zhou, Q.; Cherdchim, B.; Hu, C. Influence of Cooling Rate on the Physical Properties, Chemical Composition, and Mechanical Properties of Heat-Treated Rubberwood. Holzforschung 2020, 74, 1033–1042. [Google Scholar] [CrossRef]
- de Jesus Eufrade Junior, H.; Ohto, J.M.; da Silva, L.L.; Lara Palma, H.A.; Ballarin, A.W. Potential of Rubberwood (Hevea brasiliensis) for Structural Use after the Period of Latex Extraction: A Case Study in Brazil. J. Wood Sci. 2015, 61, 384–390. [Google Scholar] [CrossRef]
- Long, X.; Fang, Y.; Qin, Y.; Yang, J.; Xiao, X. Latex-Specific Transcriptome Analysis Reveals Mechanisms for Latex Metabolism and Natural Rubber Biosynthesis in Laticifers of Hevea brasiliensis. Ind. Crops Prod. 2021, 171, 113835. [Google Scholar] [CrossRef]
- Umar, I.; Zaidon, A.; Lee, S.; Halis, R. Oil-Heat Treatment of Rubberwood for Optimum Changes in Chemical Constituents and Decay Resistance. J. Trop. For. Sci. 2016, 28, 88–96. [Google Scholar]
- Dong, Y.; Wang, K.; Li, J.; Zhang, S.; Shi, S.Q. Environmentally Benign Wood Modifications: A Review. ACS Sustain. Chem. Eng. 2020, 8, 3532–3540. [Google Scholar] [CrossRef]
- Bryne, L.E.; Wålinder, M.E.P. Ageing of Modified Wood. Part 1: Wetting Properties of Acetylated, Furfurylated, and Thermally Modified Wood. Holzforschung 2010, 64, 295–304. [Google Scholar] [CrossRef]
- Shen, X.; Yang, S.; Li, G.; Liu, S.; Chu, F. The Contribution Mechanism of Furfuryl Alcohol Treatment on the Dimensional Stability of Plantation Wood. Ind. Crops Prod. 2022, 186, 115143. [Google Scholar] [CrossRef]
- Chabert, A.J.; Fredon, E.; Rémond, R. Improving the Stability of Beech Wood with Polyester Treatment Based on Malic Acid. Holzforschung 2022, 76, 268–275. [Google Scholar] [CrossRef]
- Ghorbani, M.; Poorzahed, N.; Amininasab, S.M. Morphological, Physical, and Mechanical Properties of Silanized Wood-Polymer Composite. J. Compos. Mater. 2019, 54, 1403–1412. [Google Scholar] [CrossRef]
- Wang, K.; Dong, Y.; Yan, Y.; Zhang, S.; Li, J. Improving Dimensional Stability and Durability of Wood Polymer Composites by Grafting Polystyrene onto Wood Cell Walls. Polym. Compos. 2016, 39, 119–125. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, Y.; Cao, J.; Mei, C. Improved Hydrophobicity and Dimensional Stability of Wood Treated with Paraffin/Acrylate Compound Emulsion through Response Surface Methodology Optimization. Polymers 2020, 12, 86. [Google Scholar] [CrossRef] [PubMed]
- Schwarzkopf, M. Densified Wood Impregnated with Phenol Resin for Reduced Set-Recovery. Wood Mater. Sci. Eng. 2020, 16, 35–41. [Google Scholar] [CrossRef]
- Shi, J.; Li, J.; Zhou, W.; Zhang, D. Improvement of Wood Properties by Urea-Formaldehyde Resin and Nano-SiO2. Front. For. China 2007, 2, 104–109. [Google Scholar] [CrossRef]
- Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. [Google Scholar] [CrossRef]
- Ditommaso, G.; Gaff, M.; Kačík, F.; Sikora, A.; Sethy, A.; Corleto, R.; Razaei, F.; Kaplan, L.; Kubš, J.; Das, S.; et al. Interaction of Technical and Technological Factors on Qualitative and Energy/Ecological/Economic Indicators in the Production and Processing of Thermally Modified Merbau Wood. J. Clean. Prod. 2019, 252, 119793. [Google Scholar] [CrossRef]
- Candelier, K.; Thevenon, M.-F.; Petrissans, A.; Dumarcay, S.; Gerardin, P.; Petrissans, M. Control of Wood Thermal Treatment and Its Effects on Decay Resistance: A Review. Ann. For. Sci. 2016, 73, 571–583. [Google Scholar] [CrossRef]
- Lee, S.H.; Ashaari, Z.; Lum, W.C.; Abdul Halip, J.; Ang, A.F.; Tan, L.P.; Chin, K.L.; Md Tahir, P. Thermal Treatment of Wood Using Vegetable Oils: A Review. Constr. Build. Mater. 2018, 181, 408–419. [Google Scholar] [CrossRef]
- Allegretti, O.; Cuccui, I.; Terziev, N.; Sorini, L. A Model to Predict the Kinetics of Mass Loss in Wood during Thermo-Vacuum Modification. Holzforschung 2021, 75, 474–479. [Google Scholar] [CrossRef]
- Shukla, S.R.; Sharma, S.K. Effect of High Temperature Processing under Different Environments on Physical and Surface Properties of Rubberwood (Hevea brasiliensis). J. Indian Acad. Wood Sci. 2014, 11, 182–189. [Google Scholar] [CrossRef]
- Kusumah, S.S.; Umemura, K.; Guswenrivo, I.; Yoshimura, T.; Kanayama, K. Utilization of Sweet Sorghum Bagasse and Citric Acid for Manufacturing of Particleboard II: Influences of Pressing Temperature and Time on Particleboard Properties. J. Wood Sci. 2017, 63, 161–172. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green and Sustainable Manufacture of Chemicals from Biomass: State of the Art. Green Chem. 2013, 16, 950–963. [Google Scholar] [CrossRef]
- Kobayashi, H.; Fukuoka, A. Synthesis and Utilisation of Sugar Compounds Derived from Lignocellulosic Biomass. Green Chem. 2013, 15, 1740–1763. [Google Scholar] [CrossRef]
- Plat, T.; Linhardt, R.J. Syntheses and Applications of Sucrose-Based Esters. J. Surfactants Deterg. 2001, 4, 415–421. [Google Scholar] [CrossRef]
- Morgós, A.; Imazu, S.; Ito, K. Conservation and Digitalization: Conference Proceedings; Piotrowska, K., Konieczny, P., Gdańsku, N.M.M.W., Eds.; National Maritime Museum: Gdańsk, Poland, 2015; ISBN 978-83-64150-10-4. [Google Scholar]
- Parrent, J.M. The Conservation of Waterlogged Wood Using Sucrose. Stud. Conserv. 1985, 30, 63–72. [Google Scholar] [CrossRef]
- Petr, P.; Aleš, D. Moisture Absorption and Dimensional Stability of Poplar Wood Impregnated with Sucrose and Sodium Chloride. Maderas Cienc. Tecnol. 2014, 16, 299–311. [Google Scholar] [CrossRef]
- Ribeiro, B.O.; Valério, V.S.; Gandini, A.; Lacerda, T.M. Copolymers of Xylan-Derived Furfuryl Alcohol and Natural Oligomeric Tung Oil Derivatives. Int. J. Biol. Macromol. 2020, 164, 2497–2511. [Google Scholar] [CrossRef]
- Xiong, X.Z.; Liu, Y.; Huang, X.H.; Wang, X.X.; Chen, Y.; Yin, X.H. Current Situation and Development Prospect of Tung Oil Tree (Vernicia fordii) in Chongqing Three Gorges Reservoir Area. Adv. Mater. Res. 2012, 518–523, 5385–5389. [Google Scholar] [CrossRef]
- Samadzadeh, M.; Boura, S.H.; Peikari, M.; Ashrafi, A.; Kasiriha, M. Tung Oil: An Autonomous Repairing Agent for Self-Healing Epoxy Coatings. Prog. Org. Coat. 2011, 70, 383–387. [Google Scholar] [CrossRef]
- Li, H.; Cui, Y.; Li, Z.; Zhu, Y.; Wang, H. Fabrication of Microcapsules Containing Dual-Functional Tung Oil and Properties Suitable for Self-Healing and Self-Lubricating Coatings. Prog. Org. Coat. 2018, 115, 164–171. [Google Scholar] [CrossRef]
- He, Z.; Qian, J.; Qu, L.; Yan, N.; Yi, S. Effects of Tung Oil Treatment on Wood Hygroscopicity, Dimensional Stability and Thermostability. Ind. Crops Prod. 2019, 140, 111647. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhang, R.; Wang, W.; Cao, J. Improvement of Wood against UV Weathering and Decay by Using Plant Origin Substances: Tannin Acid and Tung Oil. Ind. Crops Prod. 2021, 168, 113606. [Google Scholar] [CrossRef]
- GB/T 1927.2-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 2: Sampling Methods and General Requirements. Standard Press: Beijing, China, 2021.
- Wang, J.P.; Matthews, M.L.; Williams, C.M.; Shi, R.; Yang, C.; Tunlaya-Anukit, S.; Chen, H.-C.; Li, Q.; Liu, J.; Lin, C.-Y.; et al. Improving Wood Properties for Wood Utilization through Multi-Omics Integration in Lignin Biosynthesis. Nat. Commun. 2018, 9, 1579. [Google Scholar] [CrossRef]
- Brocco, V.F.; Paes, J.B.; Costa, L.G. da; Kirker, G.T.; Brazolin, S. Wood Color Changes and Termiticidal Properties of Teak Heartwood Extract Used as a Wood Preservative. Holzforschung 2020, 74, 233–245. [Google Scholar] [CrossRef]
- Arends, T.; Pel, L.; Smeulders, D. Moisture Penetration in Oak during Sinusoidal Humidity Fluctuations Studied by NMR. Constr. Build. Mater. 2018, 166, 196–203. [Google Scholar] [CrossRef]
- Banks, W.B. Water Uptake by Scots Pine Sapwood, and Its Restriction by the Use of Water Repellents. Wood Sci. Technol. 1973, 7, 271–284. [Google Scholar] [CrossRef]
- Tahira, A.; Howard, W.; Pennington, E.R.; Kennedy, A. Mechanical Strength Studies on Degraded Waterlogged Wood Treated with Sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Humar, M.; Lesar, B. Efficacy of Linseed- and Tung-Oil-Treated Wood against Wood-Decay Fungi and Water Uptake. Int. Biodeterior. Biodegrad. 2013, 85, 223–227. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Cao, J.; Wang, W. Improved Water Repellency and Dimensional Stability of Wood via Impregnation with an Epoxidized Linseed Oil and Carnauba Wax Complex Emulsion. Forests 2020, 11, 271. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Wang, K.; Li, J.; Zhang, S.; Xia, C.; Shi, S.Q.; Cai, L. Improvement of Water Resistance, Dimensional Stability, and Mechanical Properties of Poplar Wood by Rosin Impregnation. Eur. J. Wood Wood Prod. 2016, 74, 177–184. [Google Scholar] [CrossRef]
- Liu, M.; Lyu, S.; Peng, L.; Lyu, J.; Huang, Z. Radiata Pine Fretboard Material of String Instruments Treated with Furfuryl Alcohol Followed by Tung Oil. Holzforschung 2021, 75, 480–493. [Google Scholar] [CrossRef]
- Kubovský, I.; Kačíková, D.; Kačík, F. Structural Changes of Oak Wood Main Components Caused by Thermal Modification. Polymers 2020, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Du, G.; Wu, Z.; Xi, X.; Dong, Z. Cross-Linked Soy-Based Wood Adhesives for Plywood. Int. J. Adhes. Adhes. 2014, 50, 199–203. [Google Scholar] [CrossRef]
- Kumar, R.; Mago, G.; Balan, V.; Wyman, C.E. Physical and Chemical Characterizations of Corn Stover and Poplar Solids Resulting from Leading Pretreatment Technologies. Bioresour. Technol. 2009, 100, 3948–3962. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, Y.; Zhang, M.; Li, M.; Li, H. Preparation of Tung Oil-Loaded PU/PANI Microcapsules and Synergetic Anti-Corrosion Properties of Self-Healing Epoxy Coatings. Macromol. Mater. Eng. 2020, 306, 2000581. [Google Scholar] [CrossRef]
- Li, M.-F.; Shen, Y.; Sun, J.-K.; Bian, J.; Chen, C.-Z.; Sun, R.-C. Wet Torrefaction of Bamboo in Hydrochloric Acid Solution by Microwave Heating. ACS Sustain. Chem. Eng. 2015, 3, 2022–2029. [Google Scholar] [CrossRef]
- Guo, J.; Song, K.; Salmén, L.; Yin, Y. Changes of Wood Cell Walls in Response to Hygro-Mechanical Steam Treatment. Carbohydr. Polym. 2014, 115, 207–214. [Google Scholar] [CrossRef]
- Jin, T.; Zeng, H.; Huang, Y.; Liu, L.; Ji, D.; Guo, H.; Shi, S.; Du, G.; Zhang, L. Synthesis of Fully Biomass High-Performance Wood Adhesives from Xylitol and Maleic Anhydride. ACS Sustain. Chem. Eng. 2023, 11, 11781–11789. [Google Scholar] [CrossRef]
- Yin, Y.; Berglund, L.; Salmén, L. Effect of Steam Treatment on the Properties of Wood Cell Walls. Biomacromolecules 2010, 12, 194–202. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. Examination of the Lignin Content in a Softwood and a Hardwood Decayed by a Brown-Rot Fungus with the Acetyl Bromide Method and Fourier Transform Infrared Spectroscopy. J. Polym. Sci. Part Polym. Chem. 2004, 42, 2340–2346. [Google Scholar] [CrossRef]
- Lin, B.-J.; Colin, B.; Chen, W.-H.; Pétrissans, A.; Rousset, P.; Pétrissans, M. Thermal Degradation and Compositional Changes of Wood Treated in a Semi-Industrial Scale Reactor in Vacuum. J. Anal. Appl. Pyrolysis 2018, 130, 8–18. [Google Scholar] [CrossRef]
- Kesik, H.I.; Korkut, S.; Hiziroglu, S.; Sevik, H. An Evaluation of Properties of Four Heat Treated Wood Species. Ind. Crops Prod. 2014, 60, 60–65. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yang, M.; Peng, Y.; Cao, J. Improvement on Dimensional Stability and Mold Resistance of Wood Modified by Tannin Acid and Tung Oil. Holzforschung 2022, 76, 929–940. [Google Scholar] [CrossRef]
- Yang, J.J.; Guai, W.S.; Che, H.R. Study on Thermogravimetry and Pyrolysis Dynamics of Tung Oil. Adv. Mater. Res. 2012, 524–527, 1719–1722. [Google Scholar] [CrossRef]
- Kim, S. Environment-Friendly Adhesives for Surface Bonding of Wood-Based Flooring Using Natural Tannin to Reduce Formaldehyde and TVOC Emission. Bioresour. Technol. 2008, 100, 744–748. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, B.; Zhou, X.; Li, L.; Yu, L.; Liao, J.; Du, G. Influence of Single/Collective Use of Curing Agents on the Curing Behavior and Bond Strength of Soy Protein-Melamine-Urea-Formaldehyde (SMUF) Resin for Plywood Assembly. Polymers 2019, 11, 1995. [Google Scholar] [CrossRef]
Groups | Treatment | WPG (%) | Density (g/cm3) | |||
---|---|---|---|---|---|---|
1st Step | 2nd Step | WPG1 | WPG2 | WPGT | ||
C | / | / | / | / | / | 0.54 f (0.05) |
S10 | 10%S | / | 7.78 e (0.84) | / | / | 0.59 e (0.02) |
S20 | 20%S | / | 17.98 d (1.99) | / | / | 0.62 e (0.05) |
S30 | 30%S | / | 31.14 c (2.76) | / | / | 0.75 d (0.09) |
S40 | 40%S | / | 44.37 b (2.32) | / | / | 0.76 d (0.04) |
S50 | 50%S | / | 58.13 a (2.11) | / | / | 0.85 b (0.04) |
TO | / | TO | / | 52.72 a (3.45) | / | 0.80 cd (0.06) |
S10-TO | 10%S | TO | 7.78 (0.84) | 50.61 ab (1.57) | 58.39 c (2.05) | 0.84 bc (0.05) |
S20-TO | 20%S | TO | 17.98 (1.99) | 45.77 ab (2.96) | 63.75 b (3.88) | 0.88 ab (0.03) |
S30-TO | 30%S | TO | 31.14 (2.76) | 41.79 b (3.02) | 72.93 ab (2.92) | 0.89 ab (0.03) |
S40-TO | 40%S | TO | 44.37 (2.32) | 32.01 c (3.07) | 76.38 a (5.74) | 0.91 a (0.05) |
S50-TO | 50%S | TO | 58.13 (2.11) | 21.34 d (3.31) | 79.47 a (6.07) | 0.92 a (0.05) |
Samples | Leaching Rate (%) |
---|---|
C | 0.45 a (0.13) |
S30 | 94.32 b (3.37) |
TO | 1.22 c (0.61) |
S30-TO | 17.66 d (2.68) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Yang, S.; Yang, H.; Puangsin, B.; Qiu, J. Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation. Forests 2023, 14, 1831. https://doi.org/10.3390/f14091831
Yang C, Yang S, Yang H, Puangsin B, Qiu J. Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation. Forests. 2023; 14(9):1831. https://doi.org/10.3390/f14091831
Chicago/Turabian StyleYang, Chunwang, Susu Yang, Huanxin Yang, Buapan Puangsin, and Jian Qiu. 2023. "Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation" Forests 14, no. 9: 1831. https://doi.org/10.3390/f14091831
APA StyleYang, C., Yang, S., Yang, H., Puangsin, B., & Qiu, J. (2023). Improvement of the Dimensional Stability of Rubber Wood Based on the Synergies of Sucrose and Tung Oil Impregnation. Forests, 14(9), 1831. https://doi.org/10.3390/f14091831