Trends in Research on Soil Organic Nitrogen over the Past 20 Years
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Data Analysis
3. Results and Discussion
3.1. Overall Status of SON
3.2. Co-Occurrence Analysis of Journals
3.3. Co-Occurrence Analysis of Authors
3.4. Collaboration Network Analysis of Countries and Institutions
3.5. Research Hotspots
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- An, Y.; Gao, Y.; Liu, X.; Tong, S.; Liu, B.; Song, T.; Qi, Q. Soil Organic Carbon and Nitrogen Variations with Vegetation Succession in Passively Restored Freshwater Wetlands. Wetlands 2021, 41, 1–10. [Google Scholar] [CrossRef]
- Al-Kaisi, M.M.; Yin, X.H.; Licht, M.A. Soil carbon and nitrogen changes as affected by tillage system and crop biomass in a corn-soybean rotation. Appl. Soil Ecol. 2005, 30, 174–191. [Google Scholar] [CrossRef]
- Zhang, D.; Cai, X.; Diao, L.; Wang, Y.; Wang, J.; An, S.; Cheng, X.; Yang, W. Changes in soil organic carbon and nitrogen pool sizes, dynamics, and biochemical stability during ~160 years natural vegetation restoration on the Loess Plateau, China. Catena 2022, 211, 106014. [Google Scholar] [CrossRef]
- Dong, S.H.; He, Z.M.; Wang, W.Q.; Zhang, X.-C.; Feng, Z.; He, H.-B.; Zhang, X.-D.; Zhang, W. Interannual variation of soil organic nitrogen fractions and their responses to straw returning. Chin. J. Appl. Ecol. 2022, 33, 2963–2970. [Google Scholar]
- Wang, R.; Li, S.; Zhang, X.; Li, S.; Shao, M. Difference of soil organic nitrogen components and microbial biomass nitrogen under different eco-system in northwestern China. Agric. Res. Arid Areas 2004, 22, 21–27. [Google Scholar]
- Prieto-Fernandez, A.; Carballas, T. Soil organic nitrogen composition in Pinus forest acid soils: Variability and bioavailability. Biol. Fertil. Soils 2000, 32, 177–185. [Google Scholar] [CrossRef]
- Olk, D.C.; Cassman, K.G.; Schmidt-Rohr, K.; Anders, M.M.; Mao, J.-D.; Deenik, J.L. Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol. Biochem. 2006, 38, 3303–3312. [Google Scholar] [CrossRef]
- Ren, J.C.; Zhang, P.J.; Pan, G.X.; Song, L. Indices of eco-geochemical characteristics in a degradation sequence of soils in mountainous Karst area. Adv. Earth Sci. 2006, 21, 504–512. [Google Scholar]
- Zhao, T.; Zhang, J.H.; Wang, F.; Geng, S. Controlling factors and spatial distribution of gross N transformation rate of global forest. Chin. J. Ecol. 2018, 37, 3746–3756. [Google Scholar]
- Sjögersten, S.; Wookey, P.A. The Role of Soil Organic Matter Quality and Physical Environment for Nitrogen Mineralization at the Forest-Tundra Ecotone in Fennoscandia. Arct. Antarct. Alp. Res. 2005, 37, 118–126. [Google Scholar] [CrossRef]
- Hobbie, S.E. Plant species effects on nutrient cycling: Revisiting litter feedbacks. Trends Ecol. Evol. 2015, 30, 357–363. [Google Scholar] [CrossRef]
- Karagatzides, J.D.; Butler, J.L.; Ellison, A.M. The Pitcher Plant Sarracenia purpurea Can Directly Acquire Organic Nitrogen and Short-Circuit the Inorganic Nitrogen Cycle. PLoS ONE 2009, 4, e6164. [Google Scholar] [CrossRef] [PubMed]
- Fine, A.K.; Schmidt, M.P.; Martinez, C.E. Nitrogen-rich compounds constitute an increasing proportion of organic matter with depth in O-i-O-e-O-a-A horizons of temperate forests. Geoderma 2018, 323, 1–12. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Xue, T.; Chen, X.; Fu, Y. Effects of land-use changes on soil organic nitrogen fractions in the black soil region of Northeast China. Soil Use Manag. 2023, 39, 805–816. [Google Scholar] [CrossRef]
- Paillet, Y.; Bergès, L.; Hjältén, J.; Ódor, P.; Avon, C.; Bernhardt-Römermann, M.; Bijlsma, R.; De Bruyn, L.; Fuhr, M.; Grandin, U.; et al. Biodiversity Differences between Managed and Unmanaged Forests: Meta-Analysis of Species Richness in Europe. Conserv. Biol. 2010, 24, 101–112. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, N.; Jing, G.; Wang, S.; Chen, E.; Zhang, Y. Amending biochar affected enzyme activities and nitrogen turnover in Phaeozem and Luvisol. Glob. Change Biol. Bioenergy 2023, 15, 954–968. [Google Scholar] [CrossRef]
- Ju, X.; Liu, X.; Zhang, F. Effects of Long-term Fertilization on Soil Organic Nitrogen Fractions. Sci. Agric. Sin. 2004, 37, 87–91. [Google Scholar]
- Weiwei, X.; Xiaohui, F.A.N.; Linzhang, Y.; Mingde, H.A.O. Response of Soil Organic Nitrogen Forms and Organic Carbon to Long-term Fertilization in Dry Highland of Loess Plateau. J. Agro-Environ. Sci. 2007, 26, 672–675. [Google Scholar]
- Jafarian, Z.; Kavian, A. Effects of Land-Use Change on Soil Organic Carbon and Nitrogen. Commun. Soil Sci. Plant Anal. 2013, 44, 339–346. [Google Scholar] [CrossRef]
- Mulvaney, R.L.; Khan, S.A.; Hoeft, R.G.; Brown, H.M. A soil organic nitrogen fraction that reduces the need for nitrogen fertilization. Soil Sci. Soc. Am. J. 2001, 65, 1164–1172. [Google Scholar] [CrossRef]
- Norby, R.J.; Ogle, K.; Curtis, P.S.; Badeck, F.W.; Huth, A.; Hurtt, G.C.; Kohyama, T.; Peñuelas, J. Aboveground growth and competition in forest gap models: An analysis for studies of climatic change. Clim. Change 2001, 51, 415–447. [Google Scholar] [CrossRef]
- Hong, T.; Feng, X.Z.; Tong, W.W.; Xu, W.D. Bibliometric analysis of research on the trends in autophagy. PeerJ 2019, 7, e7103. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Zhou, M.; Lv, J.; Chen, K. Trends in global research in forest carbon sequestration: A bibliometric analysis. J. Clean. Prod. 2020, 252, 1199008. [Google Scholar] [CrossRef]
- Li, C.; Zong, Z.; Qie, H.; Fang, Y.; Liu, Q. CiteSpace and Bibliometric Analysis of Published Research on Forest Ecosystem Services for the Period 2018–2022. Land 2023, 12, 845. [Google Scholar] [CrossRef]
- Chen, M.; Xu, J.; Li, Z.; Li, D.; Wang, Q.; Zhou, Y.; Guo, W.; Ma, D.; Zhang, J.; Zhao, B. Long-term nitrogen fertilization-induced enhancements of acid hydrolyzable nitrogen are mainly regulated by the most vital microbial taxa of keystone species and enzyme activities. Sci. Total Environ. 2023, 874, 162463. [Google Scholar] [CrossRef] [PubMed]
- Cameron, B.D. Trends in the usage of ISI bibliometric data: Uses, abuses, and implications. Portal Libr. Acad. 2005, 5, 105–125. [Google Scholar] [CrossRef]
- Falagas, M.E.; Papastamataki, P.A.; Bliziotis, I.A. A bibliometric analysis of research productivity in Parasitology by different world regions during a 9-year period (1995-2003). BMC Infect. Dis. 2006, 6, 56. [Google Scholar] [CrossRef]
- Chirici, G. Assessing the scientific productivity of Italian forest researchers using the Web of Science, SCOPUS and SCIMAGO databases. Iforest Biogeosci. For. 2012, 5, 101. [Google Scholar] [CrossRef]
- Li, W.; Zhao, Y. Bibliometric analysis of global environmental assessment research in a 20-year period. Environ. Impact Assess. Rev. 2015, 50, 158–166. [Google Scholar] [CrossRef]
- Wu, X.; Shen, Y.-S. The Bibliometric Analysis of Low-Carbon Transition and Public Awareness. Atmosphere 2023, 14, 970. [Google Scholar] [CrossRef]
- Vieira, R.A.; McManus, C. Bibliographic mapping of animal genetic resources and climate change in farm animals. Trop. Anim. Health Prod. 2023, 55, 259. [Google Scholar] [CrossRef] [PubMed]
- Bouyssou, D.; Marchant, T. Consistent bibliometric rankings of authors and of journals. J. Informetr. 2010, 4, 365–378. [Google Scholar] [CrossRef]
- Abramo, G.; D’Angelo, C.A. Assessing national strengths and weaknesses in research fields. J. Informetr. 2014, 8, 766–775. [Google Scholar] [CrossRef]
- Aleixandre-Benavent, R.; Aleixandre-Tudo, J.L.; Castello-Cogollos, L.; Aleixandre, J.L. Trends in scientific research on climate change in agriculture and forestry subject areas(2005–2014). J. Clean. Prod. 2017, 147, 406e418. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Li, C.; Chen, B.; Sun, Y. Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecol. Econ. 2019, 156, 293e305. [Google Scholar] [CrossRef]
- Wang, Z.H.; Zhao, Y.D.; Wang, B. A bibliometric analysis of climate change adaptation based on massive research literature data. J. Clean. Prod. 2018, 199, 1072–1082. [Google Scholar] [CrossRef]
- Ekundayo, T.C.; Okoh, A.I. A global bibliometric analysis of Plesiomonas-relatedresearch (1990–2017). PLoS ONE 2018, 13, e0207655. [Google Scholar] [CrossRef]
- Sharifi, A.; Khavarian-Garmsir, A.R.; Allam, Z.; Asadzadeh, A. Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956-2022. Prog. Plan. 2023, 173, 100740. [Google Scholar] [CrossRef]
- Shiffrin, R.M.; Börner, K. Mapping knowledge domains. Proc. Natl. Acad. Sci. USA 2004, 101, 5183–5185. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.Y.; Chen, J.; Hou, J.H. History and theory of mapping knowl-edge domains. Stud. Sci. Sci. 2008, 26, 449–460. (In Chinese) [Google Scholar]
- Cradock-Henry, N.A.; Kirk, N.; Ricart, S.; Diprose, G.; Kannemeyer, R. Decisions, options, and actions in the face of uncertainty: A systematic bibliometric and thematic review of climate adaptation pathways. Environ. Res. Lett. 2023, 18, 073002. [Google Scholar] [CrossRef]
- Xu, Q.-F.; Xia, Y.; Li, S.-J.; Wang, W.-Z.; Li, Z. Temporal and Spatial Distribution Characteristics and Source Analysis of Nitrate in Surface Water of Wuding River Basin. Huan Jing Ke Xue = Huanjing Kexue 2023, 44, 3174–3183. [Google Scholar]
- Bansal, S.; Yin, X.; Sykes, V.; Lee, J.; Jagadamma, S. Soil aggregate-associated organic carbon and nitrogen response to long-term no-till crop rotation, cover crop, and manure application. Soil Sci. Soc. Am. J. 2021, 85, 2169–2184. [Google Scholar] [CrossRef]
- Barre, P.; Durand, H.; Chenu, C.; Meunier, P.; Montagne, D.; Castel, G.; Billiou, D.; Soucémarianadin, L.; Cécillon, L. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 2017, 285, 50–56. [Google Scholar] [CrossRef]
- Bo, S.U.N.; Ge, S. Review on Soil Organic Nitrogen Transport at Regional Scale. J. Agro-Environ. Sci. 2006, 25, 549–553. [Google Scholar]
- Evrendilek, F.; Berberoglu, S.; Taskinsu-Meydan, S.; Yilmaz, E. Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environ. Monit. Assess. 2006, 119, 527–543. [Google Scholar] [CrossRef]
- Fabrizzi, K.P.; Rice, C.W.; Amado, T.J.C.; Fiorin, J.; Barbagelata , P.; Melchiori, R. Protection of soil organic C and N in temperate and tropical soils: Effect of native and agroecosystems. Biogeochemistry 2009, 92, 129–143. [Google Scholar] [CrossRef]
- Gael, M.O.R.; Neil-Yohan, M.; Alexis, N.; Jeremy, S.; Davi-Lin, M.E.; Guirema, A.M.; Aubin, O.J.; Eric, R.; Michel, M.M. Carbon and nitrogen stocks under various land cover in Gabon. Geoderma Reg. 2021, 25, e00363. [Google Scholar] [CrossRef]
- Cui, H.; Liao, S.; Zhang, Y.; Li, X.; Cong, R.; Ren, T.; Lu, J. Effects of nitrogen fertilizer application on the transformation of soil organic nitrogen pool under alternating wet and dry conditions. Soil Fertil. Sci. China 2022, 6, 39–47. [Google Scholar]
- Halvorson, A.D.; Jantalia, C.P. Nitrogen Fertilization Effects on Irrigated No-Till Corn Production and Soil Carbon and Nitrogen. Agron. J. 2011, 103, 1423–1431. [Google Scholar] [CrossRef]
- Geng, S.; Li, L.; Miao, Y.; Tan, J.; Wang, Y. Research advances on the mechanisms of soybean and maize influence nitrogen supply in subsequent crops. J. Plant Nutr. Fertitizer 2022, 28, 919–932. [Google Scholar]
- Zhang, F.; Liu, Y.; Zhang, Y. Bibliometric Analysis of Research Trends in Agricultural Soil Organic Carbon Mineralization from 2000 to 2022. Agriculture 2023, 13, 1248. [Google Scholar] [CrossRef]
- Yin, S.; Wang, J.; Zeng, H. A bibliometric study on carbon cycling in vegetated blue carbon ecosystems. Environ. Sci. Pollut. Res. 2023, 30, 74691–74708. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Kong, J.; Zhang, F.; Zou, Y.; Xie, J.; Wen, C. Study on the Carbon and Nitrogen Isotope Characteristics and Sources and Their Influence on Carbon Sinks in Karst Reservoirs. Land 2023, 12, 429. [Google Scholar] [CrossRef]
- Niu, G.; Liu, L.; Wang, Y.; Guan, H.; Ning, Q.; Liu, T.; Rousk, K.; Zhong, B.; Yang, J.; Lu, X. Effects of decadal nitrogen addition on carbon and nitrogen stocks in different organic matter fractions of typical steppe soils. Ecol. Indic. 2022, 144, 109471. [Google Scholar] [CrossRef]
- Pan, J.; Wang, J.; Zhuang, S. Soil organic nitrogen fraction and sequestration in a buried paddy soil since the Neolithic age. J. Soils Sediments 2023, 23, 2021–2036. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Mary, B.; Vale, M.; Justes, E. The sensitivity of C and N mineralization to soil water potential varies with soil characteristics: Experimental evidences to fine-tune models. Geoderma 2022, 409, 115644. [Google Scholar] [CrossRef]
- Scheer, C.; Rowlings, D.W.; Antille, D.L.; De Antoni Migliorati, M.; Fuchs, K.; Grace, P.R. Improving nitrogen use efficiency in irrigated cotton production. Nutr. Cycl. Agroecosystems 2023, 125, 95–106. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Z.; Xiong, K.; Li, Y.; Lyu, X.; Cai, L. Carbon Nitrogen Isotope Coupling of Soils and Seasonal Variation Characteristics in a Small Karst Watershed in Southern China. Land 2023, 12, 501. [Google Scholar] [CrossRef]
- Meena, A.L.; Pandey, R.N.; Kumar, D.; Sharma, V.K.; Meena, M.D.; Karwal, M.; Dutta, D.; Meena, L.K.; Narwal, E.; Mishra, R.P.; et al. Impacts of long-term rice-based organic farming on fractions and forms of soil organic carbon and nitrogen in the Indo-Gangetic Plain. Soil Res. 2023, 61, 159–175. [Google Scholar] [CrossRef]
- Na, M.; Hicks, L.C.; Zhang, Y.; Shahbaz, M.; Sun, H.; Rousk, J. Semi-continuous C supply reveals that priming due to N-mining is driven by microbial growth demands in temperate forest plantations. Soil Biol. Biochem. 2022, 173, 108802. [Google Scholar] [CrossRef]
- Li, T.; Cui, L.; Liu, L.; Chen, Y.; Liu, H.; Song, X.; Xu, Z. Advances in the study of global forest wildfires. J. Soils Sediments 2023, 23, 2654–2668. [Google Scholar] [CrossRef]
- Liu, J.; Liu, X.; Lyu, M.; Wang, J.; Li, Y.; Guo, J. Changes in soil carbon and nitrogen stocks and microbial community after forest conversion in a subtropical region. Scand. J. For. Res. 2021, 36, 575–584. [Google Scholar] [CrossRef]
- Liu, M.; Han, G. Alterations of ecosystem nitrogen status following agricultural land abandonment in the Karst Critical Zone Observatory (KCZO), Southwest China. PeerJ 2023, 11, e14790. [Google Scholar] [CrossRef]
- Liu, X.; Han, H.; Gu, S.; Gao, R. Effects of Urea Application on Soil Organic Nitrogen Mineralization and Nitrogen Fertilizer Availability in a Rice-Broad Bean Rotation System. Sustainability 2023, 15, 6091. [Google Scholar] [CrossRef]
- Ambrosino, M.L.; Torres, Y.A.; Lucero, C.T.; Lorda, G.S.; Ithurrart, L.S.; Martínez, J.M.; Armando, L.V.; Garayalde, A.; Busso, G.A. Impacts of shrubs on soil quality in the native Monte rangelands of Southwestern Buenos Aires, Argentina. Land Degrad. Dev. 2023, 34, 3406–3417. [Google Scholar] [CrossRef]
- Bao, J.; Wu, X.; Zhang, Q.; Yuan, D.; Guo, F.; Liu, F. Unveiling the nitrogen transport and transformation in different karst aquifers media. J. Hydrol. 2023, 620, 129335. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Mulder, J.; Dörsch, P.; Zhang, G.-L. Seasonal dynamics of soil pH and N transformation as affected by N fertilization in subtropical China: An in situ N-15 labeling study. Sci. Total Environ. 2022, 816, 151596. [Google Scholar] [CrossRef]
- Dou, X.; Lu, M.; Chen, L. Comparison of soil organic carbon and nitrogen dynamics between urban impervious surfaces and vegetation. Land Degrad. Dev. 2021, 32, 5455–5467. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, J.-L.; Zhao, X.-R.; Yang, S.-H.; Mulder, J.; Dörsch, P.; Zhang, G.-L. Nitrate leaching and N accumulation in a typical subtropical red soil with N fertilization. Geoderma 2022, 407, 115559. [Google Scholar] [CrossRef]
- Gao, L.; Smith, A.R.; Jones, D.L.; Guo, Y.; Liu, B.; Guo, Z.; Fan, C.; Zheng, J.; Cui, X.; Hill, P.W. How do tree species with different successional stages affect soil organic nitrogen transformations? Geoderma 2023, 430, 116319. [Google Scholar] [CrossRef]
- Ilampooranan, I.; Van Meter, K.J.; Basu, N.B. Intensive agriculture, nitrogen legacies, and water quality: Intersections and implications. Environ. Res. Lett. 2022, 17, 035006. [Google Scholar] [CrossRef]
- Jensen, J.L.; Beucher, A.M.; Eriksen, J. Soil organic C and N stock changes in grass-clover leys: Effect of grassland proportion and organic fertilizer. Geoderma 2022, 424, 116022. [Google Scholar] [CrossRef]
Journals | Publications | TC/PC | Rate JCR | IF |
---|---|---|---|---|
Science of The Total Environment | 27 | 37.23 | 0.35 Q1 | 10.237 |
Geoderma | 26 | 28.65 | 0.34 Q1 | 7.444 |
Soil Biology Biochemistry | 26 | 23.26. | 0.34 Q1 | 9.956 |
Plant and Soil | 22 | 22.06 | 0.28 Q1 | 5.44 |
Agriculture Ecosystems Environment | 20 | 21.38 | 0.26 Q1 | 7.089 |
The Journal of Applied Ecology | 20 | 19.29 | 0.26 CSCD | * |
Biogeochemistry | 18 | 18.75 | 0.23 Q1 | 5.709 |
Biogeochemistry Dordrecht | 18 | 17.63 | 0.23 CSCD | * |
Catena | 18 | 15.96 | 0.23 Q1 | 6.497 |
Yingyong Shengtai Xuebao | 18 | 12.13 | 0.23 CSCD | * |
Soil Science Society of America Journal | 17 | 10.03 | 0.22 Q3 | 3.564 |
Soil Tillage Research | 17 | 9.45 | 0.22 Q1 | 7.829 |
Huanjing Kexue | 15 | 9.12 | 0.19 CSCD | * |
Environmental Science | 13 | 8.76 | 0.17 CSCD | * |
Nutrient Cycling in Agroecosystems | 13 | 8.29 | 0.17 Q2 | 4.504 |
Scientia Agricultura Sinica | 13 | 7.34 | 0.17 CSCD | * |
Communications In Soil Science and Plant Analysis | 11 | 6.58 | 0.14 Q3 | 1.608 |
Journal Of Plant Nutrition and Fertitizer | 11 | 5.78 | 0.14 CSCD | * |
Archives Of Agronomy and Soil Science | 10 | 4.38 | 0.13 Q2 | 2.157 |
Chinese Journal af Applied Ecology | 10 | 3.54 | 0.13 CSCD | * |
Title | Author | Journal | Year | Citations |
---|---|---|---|---|
Long-term effects of organic amendments on soil fertility. | Diacono, Mariangela; Montemurro, Francesco | Agronomy For Sustainable Development | 2010 | 932 |
Ecosystem carbon loss with woody plant invasion of grasslands | Jackson, RB; Banner, JL; Jobbagy, EG; | Nature | 2002 | 804 |
How does fire affect the nature and stability of soil organic nitrogen and carbon? | Knicker, Heike | Biogeochemistry | 2007 | 607 |
The Ecology of Soil Carbon: Pools, Vulnerabilities, and Biotic and Abiotic Controls | Jackson, Robert B.; Lajtha, Kate; Crow, Susan E.; Hugelius, Gustaf; Kramer, Marc G.; Pineiro, Gervasio | Annual Review Of Ecology, Evolution, And Systematics | 2017 | 441 |
Influences of continuous grazing and livestock exclusion on soil properties in a degraded sandy grassland, Inner Mongolia, northern China | Su, YZ; Li, YL; Cui, HY; Zhao, WZ | Catena | 2005 | 412 |
Pathways of Grazing Effects on Soil Organic Carbon and Nitrogen | Pineiro, Gervasio; Paruelo, Jose M.; Oesterheld, Martin; Jobbagy, Esteban G. | Rangeland Ecology & Management | 2010 | 283 |
Microbially derived inputs to soil organic matter: Are current estimates too low? | Simpson, Andre J.; Simpson, Myrna J.; Smith, Emma; Kelleher, Brian P. | Environmental Science & Technology | 2007 | 233 |
Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China | Wu, Gao-Lin; Liu, Zhen-Heng; Zhang, Lei; Chen, Ji-Min; Hu, Tian-Ming | Plant and Soil | 2010 | 232 |
Intercropping enhances soil carbon and nitrogen | Cong, Wen-Feng; Hoffland, Ellis; Li, Long; Six, Johan; Sun, Jian-Hao; Bao, Xing-Guo; | Global Change Biology | 2015 | 230 |
Changes in Bacterial Community Structure of Agricultural Land Due to Long-Term Organic and Chemical Amendments | Chaudhry, Vasvi; Rehman, Ateequr; Mishra, Aradhana; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar | Microbial Ecology | 2012 | 223 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Jiang, C.; Wang, H.; Bai, Y.; Jiang, C. Trends in Research on Soil Organic Nitrogen over the Past 20 Years. Forests 2023, 14, 1883. https://doi.org/10.3390/f14091883
Chen S, Jiang C, Wang H, Bai Y, Jiang C. Trends in Research on Soil Organic Nitrogen over the Past 20 Years. Forests. 2023; 14(9):1883. https://doi.org/10.3390/f14091883
Chicago/Turabian StyleChen, Shiyou, Chunqian Jiang, Hui Wang, Yanfeng Bai, and Chunwu Jiang. 2023. "Trends in Research on Soil Organic Nitrogen over the Past 20 Years" Forests 14, no. 9: 1883. https://doi.org/10.3390/f14091883
APA StyleChen, S., Jiang, C., Wang, H., Bai, Y., & Jiang, C. (2023). Trends in Research on Soil Organic Nitrogen over the Past 20 Years. Forests, 14(9), 1883. https://doi.org/10.3390/f14091883