A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Baobab and Its Area
2.2. Sampling
2.3. Radiocarbon Dating: Pretreatment, AMS Measurements and Calibration
2.4. Stable Isotope Analysis
2.5. Age Model of the Chapman Baobab
3. Results and Discussion
3.1. Proxy Rainfall Record
3.2. ENSO Influence
3.3. SST Influence
3.4. Comparison with the Paleoclimate Reconstruction of the Limpopo Region, South Africa
3.5. Aridity Trend
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Spinoni, J.; Vogt, J.; Naumann, G.; Carrao, H.; Barbosa, P. Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. Int. J. Climatol. 2015, 35, 2210–2222. [Google Scholar] [CrossRef]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C.; et al. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 085004. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2022: Impacts, Adaptation, and Vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Jones, J.M.; Gille, S.T.; Goosse, H.; Abram, N.J.; Canziani, P.O.; Charman, D.J.; Clem, K.R.; Crosta, X.; de Lavergne, C.; Eisenman, I.; et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Chang. 2016, 6, 917–926. [Google Scholar] [CrossRef]
- Kenabatho, P.K.; Parida, B.P.; Moalafhi, D.B. The value of large-scale climate variables in climate change assessment: The case of Botswana’s rainfall. Phys. Chem. Earth 2012, 50–52, 64–71. [Google Scholar] [CrossRef]
- Gimeno, L.; Drumond, A.; Nieto, R.; Trigo, R.M.; Stohl, A. On the origin of continental precipitation. Geophys. Res. Lett. 2010, 37, L13804. [Google Scholar] [CrossRef]
- Kusangaya, S.; Warburton, M.L.; Van Garderen, E.A.; Jewitt, G.P.W. Impacts of climate change on water resources in southern Africa: A review. Phys. Chem. Earth 2013, 67–69, 47–54. [Google Scholar] [CrossRef]
- Trouet, V.; Esper, J.; Beeckman, H. Climate/growth relationships of Brachystegia spiciformis from the miombo woodland in south central Africa. Dendrochronologia 2010, 28, 161–171. [Google Scholar] [CrossRef]
- Gebrekirstos, A.; Bra, A.; Sass-Klaassen, U.; Mbow, C. Opportunities and applications of dendrochronology in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 48–53. [Google Scholar] [CrossRef]
- Mann, M.; Zhang, Z.; Hughes, M.; Bradley, R.; Miller, S.; Rutherford, S.; Ni, F. Proxy-Based Reconstructions of Hemispheric and Global Surface Temperature Variations over the Past Two Millennia. Proc. Natl. Acad. Sci. USA 2008, 105, 13252–13257. [Google Scholar] [CrossRef]
- Holmgren, K. The Potential of Speleothems in the Reconstruction of Southern African Paleoclimates—An Example from Lobatse II Cave, Botswana, in Climate Change: The Karst Record by Karst Waters Institute Special Publication 2, Extended Abstracts of a Conference Held at the Department of Geology; University of Bergen: Bergen, Norway, 1996. [Google Scholar]
- Gimeno, L.; Stohl, A.; Trigo, R.M.; Dominguez, F.; Yoshimura, K.; Yu, L.; Drumond, A.; Duran-Quesada, A.M.; Nieto, R. Oceanic and terrestrial sources of continental precipitation. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggeman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.; Abdrabo, M.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Hoegh-Guldberg, O.; Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; et al. (Eds.) Impacts of 1.5 °C Global Warming On Natural and Human Systems. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2018; in press. [Google Scholar]
- Wingqvist, G.Ö.; Dahlberg, E. Botswana Environmental and Climate Change Analysis. Sida Helpdesk for Environmental Economics. University of Gothenburg. 2008. Available online: https://sidaenvironmenthelpdesk.se/digitalAssets/1683/1683296_environmental-and-climate-change-policy-brief-botswana-2008.pdf (accessed on 25 May 2023).
- Kane, R.P. Periodicities, ENSO Effects and Trends of Some South African Rainfall Series: An Update. South Afr. J. Sci. 2009, 105, 199–207. [Google Scholar] [CrossRef]
- Kulongoski, J.T.; Hilton, D.R.; Selaolo, E.T. Climate variability in the Botswana Kalahari from the late Pleistocene to the present day. Geophys. Res. Lett. 2004, 31, L10204. [Google Scholar] [CrossRef]
- Macron, C.; Pohl, B.; Richard, Y.; Bessafi, M. How do tropical temperate troughs form and develop over South Africa? J. Clim. 2014, 27, 1633–1647. [Google Scholar] [CrossRef]
- Woodborne, S.; Gandiwa, P.; Hall, G.; Patrut, A.; Finch, J. A Regional Stable Carbon Isotope Dendro-Climatology from the South African Summer Rainfall Area. PLoS ONE 2016, 11, e0159361. [Google Scholar] [CrossRef]
- Funk, C.; Davenport, F.; Harrison, T.M.; Galu, L.G.; Pomposi, C.; Macharia, D.; Husak, G.J.; Faka, D. Anthropogenic enhancement of moderate-to-strong El Niño events likely contributed to drought and poor harvests in Southern Africa during 2016. Bull. Am. Meteorol. Soc. 2018, 99, S91–S96. [Google Scholar] [CrossRef]
- Funk, C.; Harrison, L.; Shukla, S.; Pomposi, C.; Galu, G.; Korecha, D.; Husak, G.; Magadzire, T.; Davenport, F.; Hillbruner, C.; et al. Examining the role of unusually warm indo-pacific sea-surface temperatures in recent African droughts. Q. J. R. Meteorol. Soc. 2018, 144, 360–383. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C.; Magadzire, T.; Zinke, J.; Husak, G. El Niño–Southern Oscillation diversity and Southern Africa teleconnections during austral summer. Clim. Dyn. 2015, 45, 1583–1599. [Google Scholar] [CrossRef]
- Ratnam, J.V.; Behera, S.K.; Masumoto, Y.; Yamagata, T. Remote effects of El Niño and Modoki events on the austral summer precipitation of southern Africa. J. Clim. 2014, 27, 3802–3815. [Google Scholar] [CrossRef]
- Fauchereau, N.; Pohl, B.; Reason, C.J.C.; Rouault, M.; Richard, Y. Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South Africa rainfall and teleconnections. Clim. Dyn. 2009, 32, 575–591. [Google Scholar] [CrossRef]
- Locosselli, G.M.; Brienen, R.J.; de Leite, M.; Gloor, M.; Krottenthaler, S.; Oliveira, A.A.; Barichivich, J.; Anhuf, D.; Ceccantini, G.; Schöngart, J.; et al. Global Tree-Ring Analysis Reveals Rapid Decrease in Tropical Tree Longevity with Temperature. Proc. Natl. Acad. Sci. USA 2020, 117, 33358–33364. [Google Scholar] [CrossRef] [PubMed]
- Détienne, P. Appearance and Periodicity of Growth Rings in some Tropical Woods. IAWA J. 1989, 10, 123–132. [Google Scholar] [CrossRef]
- Patrut, A.; Woodborne, S.; von Reden, K.F.; Hall, G.; Patrut, R.T.; Rakosy, L.; Danthu, P.; Leong Pock-Tsy, J.-M.; Lowy, D.A.; Margineanu, D. The growth stop phenomenon of baobabs (Adansonia spp.) indentified by radiocarbon dating. Radiocarbon 2017, 59, 435–448. [Google Scholar] [CrossRef]
- Dunwiddie, P.W.; LaMarche, V.C., Jr. A climaticaly responsive tree-ring record from Widdrinngtonia cedarbergensis, Cape Province, South Africa. Nature 1980, 286, 796–797. [Google Scholar] [CrossRef]
- Hall, M. Dendroclimatology, rainfall and human adaptation in the later Iron Age of Natal and Zululand. Ann. Natal Mus. 1976, 22, 693–703. [Google Scholar]
- Thackeray, J.F. Ring width variation in a specimen of South African Podocarpus, circa 1350–1937 AD. Palaeoecol. Afr. 1996, 24, 233–240. [Google Scholar]
- Thackeray, J.F.; Potze, S. A sectioned yellowwood tree trunk housed at the Transvaal Museum, Pretoria. Ann. Transvaal Mus. 2000, 37, 131–137. [Google Scholar]
- Therrell, M.D.; Stahle, D.W.; Ries, L.P.; Shugart, H.H. Tree-ring reconstructed rainfall variability in Zimbabwe. Clim. Dyn. 2006, 26, 677–685. [Google Scholar] [CrossRef]
- Fichtler, E.; Trouet, V.; Beeckman, H.; Coppin, P.; Worbes, M. Climatic signals in tree rings of Burkea africana and Pterocarpus angolensis from semiarid forests in Namibia. Trees 2004, 18, 442–451. [Google Scholar] [CrossRef]
- Remane, I.A.D. Analysis of Annual Growth Patterns of Millettia stuhlmannii, in Mozambique. Master’s Thesis, Southern Illinois University Carbondale, Carbondale, IL, USA, 2013. [Google Scholar]
- Gebrekirstos, A.; van Noordwijk, M.; Neufeldt, H.; Mitlöhner, R. Relationships of stable carbon isotopes, plant water potential and growth: An approach to assess water use efficiency and growth strategies of dry land agroforestry species. Trees 2011, 25, 95–102. [Google Scholar] [CrossRef]
- Sass-Klaassen, U.; Couralet, C.; Sahle, Y.; Sterck, F.J. Juniper from Ethiopia contains a large-scale precipitation signal. Int. J. Plant Sci. 2008, 169, 1057–1065. [Google Scholar] [CrossRef]
- Wils, T.H.G.; Sass-Klaassen, U.G.W.; Eshetu, Z.; Bräuning, A.; Gebrekirstos, A.; Couralet, C.; Robertson, I.; Touchan, R.; Koprowski, M.; Conway, D.; et al. Dendrochronology in the dry tropics: The Ethiopian case. Trees 2011, 25, 345–354. [Google Scholar] [CrossRef]
- Schöngart, J.; Orthmann, B.; Hennenberg, K.J.; Porembski, S.; Worbes, M. Climate-growth relationships of tropical tree species in West Africa and their potential for climate reconstruction. Glob. Chang. Biol. 2006, 12, 1139–1150. [Google Scholar] [CrossRef]
- Slotta, F.; Helle, G.; Heussner, K.-U.; Shemang, E.; Riedel, F. Baobabs on Kubu island, Botswana—A dendrochronological parameter study using ring width and stable isotopes. Erdkunde 2017, 71, 23–43. [Google Scholar] [CrossRef]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Hall, G.; Woodborne, S.; Scholes, M. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators. Chem. Geol. 2008, 247, 384–400. [Google Scholar] [CrossRef]
- Hall, G.; Woodborne, S.; Pienaar, M. Rainfall control of the δ13C ratios of Mimusops caffra from KwaZulu-Natal, South Africa. Holocene 2009, 19, 251–260. [Google Scholar] [CrossRef]
- Woodborne, S.; Hall, G.; Jones, C.W.; Loader, N.J.; Patrut, A.; Patrut, R.T.; Robertson, I.; Winkler, S.R.; Winterbach, C.W. A 250-year isotopic proxy rainfall record from southern Botswana. Stud. UBB Chem. 2018, 63, 109–123. [Google Scholar] [CrossRef]
- Schoeman, M.H.; Aub, B.; Burrows, J.; Hall, G.; Woodborne, S. Past Climatic Conditions for Bokoni at Buffelskloof, Mpumalanga, Using Δ13C Analysis of Prunus Africana and Pittosporum Viridiflorum Tree Rings. J. Afr. Archaeol. 2019, 17, 150–160. [Google Scholar] [CrossRef]
- Razanatsoa, E. Impact of Human Land-Use and Rainfall Variability in Tropical Dry Forests of Southwest Madagascar during the Late Holocene. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- Norström, E.; Holmgren, K.; Mörth, C.M. Rainfall-driven variations in d13C composition and wood anatomy of Breonadia salicina trees from South Africa between AD 1375 and 1995. South Afr. J. Sci. 2005, 101, 162–168. [Google Scholar]
- Norström, E.; Holmgren, K.; Mörth, C. A 600-year-long δ18O record from cellulose of Breonadia salicina trees, South Africa. Dendrochronologia 2008, 26, 21–33. [Google Scholar] [CrossRef]
- Patrut, A.; von Reden, K.F.; Lowy, D.A.; Alberts, A.H.; Pohlman, J.W.; Wittmann, R.; Gerlach, D.; Xu, L.; Mitchell, C.S. Radiocarbon dating of a very large African baobab. Tree Physiol. 2007, 27, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Patrut, A.; Patrut, R.T.; Rakosy, L.; Ratiu, I.A.; Lowy, D.A.; von Reden, K.F. Age, Growth and Architecture of the Historic Big Tree at Victoria Falls, Zimbabwe assessed by Radiocarbon Dating. Dendrochronologia 2021, 70, 125898. [Google Scholar] [CrossRef]
- Patrut, A.; Patrut, R.T.; Rakosy, L.; Ratiu, I.A.; Bodis, J.; Nassor, N.M.; von Reden, K.F. Radiocarbon Investigation of two large Arican Baobabs from Kizimkazi, Zanzibar, Tanzania. Stud. UBB Chem. 2022, LXVII, 143–153. [Google Scholar] [CrossRef]
- Patrut, A.; von Reden, K.F.; Danthu, P.; Leong Pock-Tsy, J.-M.; Rakosy, L.; Patrut, R.T.; Lowy, D.A.; Margineanu, D. AMS radiocarbon dating of very large Grandidier’s baobabs (Adansonia grandidieri). Nucl. Instr. Meth. B 2015, 361, 591–598. [Google Scholar] [CrossRef]
- Patrut, A.; Patrut, R.T.; Danthu, P.; Leong Pock-Tsy, J.-M.; Rakosy, L.; Lowy, D.A.; von Reden, K.F. AMS radiocarbon dating of large za baobabs (Adansonia za) of Madagascar. PLoS ONE 2016, 11, e0146977. [Google Scholar] [CrossRef]
- Patrut, A.; Patrut, R.T.; Leong Pock-Tsy, J.-M.; Danthu, P.; Woodborne, S.; Rakosy, L.; Ratiu, I.A. Investigation of the Architecture and Age of Superlative Adansonia grandidieri from the Andombiry Forest, Madagascar. Forests 2021, 12, 1258. [Google Scholar] [CrossRef]
- Patrut, A.; Garg, A.; Woodborne, S.; Patrut, R.T.; Rakosy, L.; Ratiu, I.A.; Lowy, D.A. Radiocarbon dating of two old African baobabs from India. PLoS ONE 2020, 15, e0227352. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Primers 2021, 1, 62. [Google Scholar] [CrossRef]
- Garg, A.; Patrut, R.T.; Patrut, A.; Woodbourne, S.; Rakosy, L. Radiocarbon dating and status of the oldest extant Ceylon iron wood (Manilkara hexandra) in the riverine Ramsar site of India. Curr. Sci. 2021, 120, 562–566. [Google Scholar] [CrossRef]
- Patrut, R.T.; Garg, A.; Patrut, A.; Woodborne, S.; Rakosy, L.; Ratiu, I.-A. Radiocarbon Analysis of the Indian Banyan (Ficus benghalensis L.) at Narora. Curr. Sci. 2023, 124, 1175–1180. [Google Scholar]
- Patrut, A.; Woodborne, S.; Patrut, R.T.; Rakosy, L.; Lowy, D.A.; Hall, G.; von Reden, K.F. The demise of the largest and oldest African baobabs. Nat. Plants 2018, 4, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Robertson, I.; Loader, N.J.; Froyd, C.A.; Zambatis, N.; Whyte, I.; Woodborne, S. The potential of the baobab (Adansonia digitata L.) as a proxy climate archive. Appl. Geochem. 2006, 21, 1674–1680. [Google Scholar] [CrossRef]
- Fenner, M. Some measurements on the water relations of baobab trees. Biotropia 1980, 12, 205. [Google Scholar] [CrossRef]
- Patrut, A.; Woodborne, S.; von Reden, K.F.; Hall, G.; Hofmeyr, M.; Lowy, D.A.; Patrut, R.T. African Baobabs with False Inner Cavities: The Radiocarbon Investigation of the Lebombo Eco Trail Baobab. PLoS ONE 2015, 10, e0117193. [Google Scholar] [CrossRef]
- Patrut, A.; Woodborne, S.; Patrut, R.T.; Hall, G.; Rakosy, L.; Winterbach, C.; von Reden, K.F. Age, growth and death of a national icon: The Historic Chapman Baobab of Botswana. Forests 2019, 10, 983. [Google Scholar] [CrossRef]
- Woodborne, S.; Hall, G.; Robertson, I.; Patrut, A.; Rouault, M.; Loader, N.J.; Hofmeyr, M. A 1000-Year Carbon Isotope Rainfall Proxy Record from South African Baobab Trees (Adansonia digitata L.). PLoS ONE 2015, 10, e0124202. [Google Scholar] [CrossRef]
- Hamilton, T.; Archibald, S.; Woodborne, S. Historic Changes in the Fire-Rainfall Relationship at a Woodland-Savanna Transition Zone in Southern Africa. Afr. J. Range Forage Sci. 2022, 39, 70–81. [Google Scholar] [CrossRef]
- Podgorski, J.E.; Green, A.G.; Kgotlhang, L.; Kinzelbach, W.; Kalscheuer, T.; Auen, E.; Ngwisanyi, T. Paleo-megalake and paleo-megafan in southern Africa. Geology 2013, 41, 1155–1158. [Google Scholar] [CrossRef]
- Burrough, S.L.; Thomas, D.S.G.; Bailey, R.M. Mega-lake in the Kalahari: A Late Pleistocene record of the Palaeolake Makgadikgadi system. Quat. Sci. Rev. 2009, 28, 1392–1411. [Google Scholar] [CrossRef]
- Grey, D.; Cooke, H.J. Some problems in the Quaternary evolution of the landforms of Northern Botswana. Catena 1977, 4, 123–133. [Google Scholar] [CrossRef]
- Thomas, A.D.; Dougil, A.J.; Elliott, D.R.; Mairs, H. Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana. Geoderma 2014, 219–220, 72–81. [Google Scholar] [CrossRef]
- L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.; Gottschalck, J.; Halpert, M.S.; Huang, B.; et al. Observing and Predicting the 2015-16 El Niño. Bull. Amer. Meteor. Soc. 2017, 98, 1363–1382. [Google Scholar] [CrossRef]
- Loader, N.J.; Robertson, I.; Barker, A.C.; Switsur, V.R.; Waterhouse, J.S. An improved technique for the batch processing of small wholewood samples to α-cellulose. Chem. Geol. 1997, 136, 313–317. [Google Scholar] [CrossRef]
- Sofer, Z. Preparation of carbon dioxide for stable carbon isotope analysis of petroleum fractions. Anal. Chem. 1980, 52, 1389–1391. [Google Scholar] [CrossRef]
- Vogel, J.S.; Southon, J.R.; Nelson, D.E.; Brown, T.A. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B 1984, 5, 289–293. [Google Scholar] [CrossRef]
- Povinec, P.P.; Litherland, A.E.; von Reden, K.F. Developments in Radiocarbon Technologies: From the Libby Counter to Compound-Specific AMS Analyses. Radiocarbon 2009, 51, 45–78. [Google Scholar] [CrossRef]
- Roberts, M.L.; Burton, J.R.; Elder, K.L.; Longworth, B.E.; McIntyre, C.P.; von Reden, K.F.; Han, B.X.; Rosenheim, B.E.; Jenkins, W.J.; Galutschek, E.; et al. A high-performance 14C Accelerator Mass Spectrometry system. Radiocarbon 2010, 52, 228–235. [Google Scholar] [CrossRef]
- Mbele Vela, L.; Mullins, S.M.; Winkler, S.R.; Woodborne, S. Acceptance tests for AMS radiocarbon measurements at iThemba LABS, Gauteng, South Africa. Phys. Procedia 2017, 90, 10–16. [Google Scholar] [CrossRef]
- Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 2009, 51, 337–360. [Google Scholar] [CrossRef]
- Hogg, A.; Heaton, T.; Hua, Q.; Palmer, J.; Turney, C.; Southon, J.; Bayliss, A.; Blackwell, P.; Boswijk, G.; Bronk Ramsey, C.; et al. SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 2020, 62, 759–778. [Google Scholar] [CrossRef]
- Rinne, K.T.; Boettger, T.; Loader, N.J.; Robertson, I.; Switsur, V.R.; Waterhouse, J.S. On the purification of α-cellulose from resinous wood for stable isotope (H, C and O) analysis. Chem. Geol. 2005, 222, 75. [Google Scholar] [CrossRef]
- Lanzante, J.R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical Radiosonde Station Data. Int. J. Climatol. 1996, 16, 1197–1226. [Google Scholar] [CrossRef]
- Francey, R.J.; Allison, C.E.; Etheridge, D.M.; Trudinger, C.M.; Enting, I.G.; Leuenberger, M.; Langenfelds, R.L.; Michel, E.; Steele, L.P. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus B 1999, 51, 170–193. [Google Scholar] [CrossRef]
- Wils, T.H.; Robertson, I.; Woodborne, S.; Hall, G.; Koprowski, M.; Eshetu, Z. Anthropogenic Forcing Increases the Water-Use Efficiency of African Trees. J. Quat. Sci. 2016, 31, 386–390. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.P.; Cook, E.R.; Morales, M.S.; Christie, D.A.; Johnson, N.C.; Chen, F.; D’Arrigo, R.D.; Fowler, A.M.; Gou, X.; et al. El Niño Modulations over the Past Seven Centuries. Nat. Clim. Chang. 2013, 3, 822–826. [Google Scholar] [CrossRef]
- Zinke, J.; Loveday, B.R.; Reason, C.; Dullo, W.-C.; Kroon, D. Madagascar corals track sea surface temperature in the Agulhas Current core region over the past 334 years. Sci. Rep. 2014, 4, 4393. [Google Scholar] [CrossRef]
- Slotta, F.; Wacker, L.; Riedel, F.; Heußner, K.-U.; Hartmann, K.; Helle, G. High resolution 14C bomb-peak dating and climate response analyses of subseasonal stable isotope signals in wood of the African baobab—A case study from Oman. Biogeosciences 2021, 18, 3539–3564. [Google Scholar] [CrossRef]
- Mphale, K.; Dash, S.K.; Adedoyin, A.; Panda, S.K. Rainfall regime changes and trends in Botswana Kalahari Transect’s late summer precipitation. Theor. Appl. Climatol. 2014, 116, 75–91. [Google Scholar] [CrossRef]
- Zharkova, V.V.; Shepherd, S.J.; Popova, E.; Zharkov, S.I. Reinforcing a Double Dynamo Model with Solar-Terrestrial Activity in the Past Three Millennia. Proc. Int. Astron. Union 2017, 13, 211–215. [Google Scholar] [CrossRef]
- Luening, S.; Galka, M.; Vahrenholt, F. Warming and Cooling: The Medieval Climate Anomaly in Africa and Arabia. Paleoceanography 2017, 32, 1219–1235. [Google Scholar] [CrossRef]
- Hady, A.A. Deep solar minimum and global climate changes. J. Adv. Res. 2013, 4, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Tyson, P.D.; Lindesay, J.A. The climate of the last 2000 years in southern Africa. Holocene 1992, 2, 271–278. [Google Scholar] [CrossRef]
- Tyson, P.D.; Karlen, W.; Holmgren, K.; Heiss, G.A. The little ice and medieval warming in South Africa. S. Afr. J. Sci. 2000, 96, 121–126. [Google Scholar]
- Neukom, R.; Nash, D.J.; Endfield, G.H.; Grab, S.W.; Grove, C.A.; Kelso, C.; Vogel, C.H.; Zinke, J. Multi-proxy summer and winter precipitation reconstruction for southern Africa over the last 200 years. Clim. Dyn. 2014, 42, 2713–2726. [Google Scholar] [CrossRef]
- Jury, M.R. Passive suppression of South African rainfall by the Agulhas Current. Earth Interact. 2015, 19, 150916154153004. [Google Scholar] [CrossRef]
- Wang, S.; Huang, J.; He, Y.; Guan, Y. Combined Effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on Global Land Dry–Wet Changes. Sci. Rep. 2014, 4, 6651. [Google Scholar] [CrossRef] [PubMed]
- Richard, Y.; Traska, S.; Roucou, P.; Rouault, M. Modification of the southern African rainfall variability/ENSO relationship since the late 1960s. Clim. Dyn. 2000, 16, 883–895. [Google Scholar] [CrossRef]
- Mulenga, H.M.; Rouault, M.; Reason, C.J.C. Dry summers over northeastern South Africa and associated circulation anomalies. Clim. Res. 2003, 25, 29–41. [Google Scholar] [CrossRef]
Sample (Segment) Code | Depth into the Wood (10−2 m) | Radiocarbon Date (Error) (14C yr BP) | Cal CE 2σ [Confidence Interval] | Assigned Year (cal CE) | Accession # |
---|---|---|---|---|---|
CH3-160 | 25 | 211 ± 22 | 1662–1699 [22.4%] 1723–1812 [71.5] 1839–1844 [0.6%] 1870–1876 [0.6%] 1932–1936 [0.4%] | 1796 | OS-126074 |
CH3-250 | 30 | 420 ± 44 | 1446–1628 [95.4%] | 1588 | IT-C-1110 |
CH3-304 | 42.9 | 470 ± 34 | 1421–1504 [86.6%] 1594–1616 [8.9%] | 1464 | IT-C-1266 |
CH3-325 | 45 | 630 ± 16 | 1319–1354 [65.1%] 1360–1405 [30.4%] | 1443 | OS-127129 |
CH3-398 | 53 | 560 ± 35 | 1327–1340 [4.1%] 1392–1450 [91.3%] | 1406 | IT-C-1095 |
CH3-511 | 65 | 687 ± 21 | 1291–1328 [41.1%] 1339–1393 [54.3%] | 1350 | OS-126075 |
CH3-669 | 85 | 841 ± 22 | 1211–1279 [95.4%] | 1243 | OS-126076 |
CH3-791 | 105 | 985 ± 18 | 1032–1150 [95.4%] | 1111 | OS-125231 |
CH6-100 | 20.8 | 100 ± 36 | 1697–1725 [12.8%] 1809–… [82.6%] | 1914 | IT-C-1096 |
CH6-198 | 25 | 139 ± 22 | 1696–1725 [16.6%] 1809–… [78.9%] | 1810 | OS-127128 |
CH6-284 | 35 | 340 ± 30 | 1497–1653 [95.4%] | 1510 | IT-C-1271 |
CH6-413 | 45 | 347 ± 18 | 1503–1595 [77.5%] 1616–1643 [17.9%] | 1654 | OS-127130 |
CH6-616 | 65 | 367 ± 20 | 1485–1635 [95.4%] | 1507 | OS-127131 |
CH6-740 | 78.3 | 600 ± 33 | 1318–1355 [33.6%] 1385–1436 [61.9%] | 1422 | IT-C-1093 |
CH6-790 | 85 | 617 ± 21 | 1320–1354 [50.5%] 1386–1415 [44.9%] | 1403 | OS-127132 |
CH6–984 | 105 | 648 ± 17 | 1314–1360 [71.8%] 1381–1402 [23.7%] | 1331 | OS-126137 |
CH6-1129 | 115 | 800 ± 30 | 1220–1292 [95.4%] | 1276 | OS-126138 |
CH6-1295 | 127.5 | 930 ± 37 | 1043–1223 [95.4%] | 1214 | IT-C-1592 |
CH6-1420 | 138 | 910 ± 35 | 1046–1088 [12.7%] 1109–1121 [1.2%] 1135–1233 [77.4%] 1246–1269 [4.1%] | 1167 | IT-C-1524 |
Parameter | Data Source | Period | r | p | n |
---|---|---|---|---|---|
Rainfall | Therrell et al. [33] | 1826–1966 | 0.448 | 0.0388 | 135 |
1826–1900 | 0.634 | 0.0062 | 75 | ||
post 1900 | 0.163 | 0.6346 | 61 | ||
SST | Zinke et al. [84] | 1800–1900 | −0.560 | 0.0741 | 101 |
post 1900 | 0.667 | 0.0315 | 61 | ||
ENSO | Li et al. [83] | 1330–1960 | 0.039 | 0.6751 | 631 |
1800–1900 | 0.540 | 0.0014 | 101 | ||
1900–1960 | −0.454 | 0.0609 | 61 | ||
Limpopo province paleoclimate reconstruction (δ13C) | Woodborne et al. [20] | 1600–1750 | −0.544 | 0.0197 | 134 |
1750–1900 | 0.662 | 0.0026 | 143 | ||
1900–1960 | 0.169 | 0.5885 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patrut, R.T.; Patrut, A.; Hall, G.; Winterbach, C.W.; Robertson, I.; Ratiu, I.A.; Bocos-Bintintan, V.; Rakosy, L.; Woodborne, S. A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana. Forests 2023, 14, 1917. https://doi.org/10.3390/f14091917
Patrut RT, Patrut A, Hall G, Winterbach CW, Robertson I, Ratiu IA, Bocos-Bintintan V, Rakosy L, Woodborne S. A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana. Forests. 2023; 14(9):1917. https://doi.org/10.3390/f14091917
Chicago/Turabian StylePatrut, Roxana T., Adrian Patrut, Grant Hall, Christiaan W. Winterbach, Iain Robertson, Ileana Andreea Ratiu, Victor Bocos-Bintintan, Laszlo Rakosy, and Stephan Woodborne. 2023. "A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana" Forests 14, no. 9: 1917. https://doi.org/10.3390/f14091917
APA StylePatrut, R. T., Patrut, A., Hall, G., Winterbach, C. W., Robertson, I., Ratiu, I. A., Bocos-Bintintan, V., Rakosy, L., & Woodborne, S. (2023). A 900-Year Isotopic Proxy Rainfall Record from Northeastern Botswana. Forests, 14(9), 1917. https://doi.org/10.3390/f14091917