The Impact of Wood Moisture Content on the Productivity and Costs of Forest Energy Supply Chains in Southeast Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forestry Operations Chains
2.2. Demand for Solid Wood to Supply the Biomass Power Plant
- Qc—amount of fuel, kg
- Qv—amount of steam, kg
- hv—enthalpy of steam as a function of pressure and temperature, MJ kg−1
- ha—enthalpy of water as a function of temperature, MJ kg−1
- η—boiler yield, decimal
- NHV—net heating value, MJ kg−1.
- da—apparent wood density at a specific moisture content, kg m−3
- wd—wood density at 0% moisture content, g cm−3
- U—moisture content (wet basis), %
- wd—wood density at 0% moisture content, g cm−3
- bd—basic density, g cm−3
- v—solid wood volume demanded by the power plant, m3
- Qc—amount of fuel, kg
- da—apparent wood density at a specific moisture content, kg m−3
- C—specific wood consumption, m3 MWh−1
- v—solid wood volume demanded by the power plant, m3
- H—productive hours in a certain period of time, hours
- P—thermoelectric power, MW
2.3. Estimated Forest Operation Costs
- CT—transport cost, USD m−3
- Ck—cost per distance travelled, USD km−1
- d—distance travelled, km
- n—number of trips per month
- V—monthly wood demand, m3.
- CO—opportunity cost of the land, USD m−3
- Vi—initial value of the land, USD ha−1
- r—interest rate, % month−1
- A—total area used for storing wood, ha.
- V—monthly solid wood demand, m3.
- A—total area used for wood storage, ha
- V—monthly solid wood volume demanded by the power plant, m3
- Fe—stacking factor for logs (Fet) or woodchips (Fec)
- h—pile height, m
- e—storage time, month
- CEn—operational cost of electric power generation, USD MWh−1
- V—monthly solid wood volume to attend the power plant unit, m3
- CCo—harvesting operation cost, USD m−3
- CT—wood transport operation cost, USD m−3
- CCa—chipping operation cost, USD m−3
- CO—opportunity cost of the land, USD ha−1
- A—total area used for storing wood, ha
- P—thermoelectric power, MW
- hm—monthly productive hours, hours
2.4. Wood Moisture Content during Storage
2.5. Data Analysis
3. Results
3.1. Wood Volume Demand
3.2. Forest Operational Costs
4. Discussion
4.1. Wood Volume Demand
4.2. Forest Operational Costs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- REN21. Renewables 2023 Global Status Report Collection, Renewables in Energy Demand. 2023. 126p. Available online: https://www.ren21.net/gsr-2023 (accessed on 16 November 2023).
- IEA. World Energy Outlook 2022; IEA: Paris, France, 2022; 522p, Available online: https://www.iea.org/reports/world-energy-outlook-2022 (accessed on 16 November 2023).
- Perišić, M.; Barceló, E.; Dimic-Misic, K.; Imani, M.; Brkić, V.S. The Role of Bioeconomy in the Future Energy Scenario: A State-of-the-Art Review. Sustainability 2022, 14, 560. [Google Scholar] [CrossRef]
- Antar, M.; Lyu, D.; Nazari, M.; Shah, A.; Zhou, X.; Smith, D.L. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renew. Sustain. Energy Rev. 2021, 139, 110691. [Google Scholar] [CrossRef]
- Velvizhi, G.; Goswami, C.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M. Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel 2022, 313, 122678. [Google Scholar] [CrossRef]
- Gil, L.; Bernardo, J. An approach to energy and climate issues aiming at carbon neutrality. Renew. Energy Focus 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Stafford, W.; De Lange, W.; Nahman, A.; Chunilall, V.; Lekha, P.; Andrew, J.; Johakimu, J.; Sithole, B.; Trotter, D. Forestry biorefineries. Renew. Energy 2020, 154, 461–475. [Google Scholar] [CrossRef]
- Nahak, B.K.; Preetam, S.; Sharma, D.; Shukla, S.K.; Syväjärvi, M.; Toncu, D.C.; Tiwari, A. Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production. Renew. Sustain. Energy Rev. 2022, 161, 112393. [Google Scholar] [CrossRef]
- Mujtaba, M.; Fraceto, L.F.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Medeiros, G.A.; Pereira, A.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Saravanakumar, A.; Vijayakumar, P.; Hoang, A.T.; Kwon, E.E.; Chen, W.H. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. Bioresour. Technol. 2023, 370, 128562. [Google Scholar] [CrossRef]
- Hakamada, R.E.; Hubbard, R.M.; Stape, J.L.; Lima, W.P.; Moreira, G.G.; Ferraz, S.F.B. Stocking effects on seasonal tree transpiration and ecosystem water balance in a fast-growing Eucalyptus plantation in Brazil. For. Ecol. Manag. 2020, 466, 118149. [Google Scholar] [CrossRef]
- Resquin, F.; Navarro-Cerrillo, R.M.; Carrasco-Letelier, L.; Casnati, C.R.; Bentancor, L. Evaluation of the nutrient content in biomass of Eucalyptus species from short rotation plantations in Uruguay. Biomass Bioenergy 2020, 134, 105502. [Google Scholar] [CrossRef]
- Binkley, D.; Campo, O.C.; Alvares, C.; Carneiro, R.L.; Cegatta, I.; Stape, J.L. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. For. Ecol. Manag. 2017, 405, 271–283. [Google Scholar] [CrossRef]
- IPCC. 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, A.P., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Elli, E.F.; Sentelhas, P.C.; Bender, F.D. Impacts and uncertainties of climate change projections on Eucalyptus plantations productivity across Brazil. For. Ecol. Manag. 2020, 474, 118365. [Google Scholar] [CrossRef]
- Ryan, M.G.; Stape, J.L.; Binkley, D.; Alvares, C.A. Cross-site patterns in the response of Eucalyptus plantations to irrigation, climate and intra-annual weather variation. For. Ecol. Manag. 2020, 475, 118444. [Google Scholar] [CrossRef]
- Almeida, M.N.F.; Vidaurre, G.B.; Pezzopane, J.E.M.; Louzada, J.L.P.C.; Silva, M.E.C.M.; Câmara, A.P.; Rocha, S.M.G.; Oliveira, J.C.L.; Campoe, O.C.; Carneiro, R.L.; et al. Heartwood variation of Eucalyptus urophylla is influenced by climatic conditions. For. Ecol. Manag. 2020, 458, 117743. [Google Scholar] [CrossRef]
- Almeida, M.N.F.; Vidaurre, G.B.; Louzada, J.L.P.C.; Pezzopane, J.E.M.; Rocha, S.M.G.; Câmara, A.P.; Oliveira, J.C.L.; Alvares, C.A.; Campoe, O.C. Wood density variations of E. urophylla clone among growth sites are related to climate. Can. J. For. Res. 2023, 53, 343–353. [Google Scholar] [CrossRef]
- Souza, A.G.O.; Barbosa, F.S.; Esperancini, M.S.T.; Guerra, S.P.S. Economic Feasibility of Electrical Power Cogeneration from Forestry Biomass in an Engineered Wood Panel Industrial Facility. Croat. J. For. Eng. 2021, 42, 313–320. [Google Scholar] [CrossRef]
- Brazilian Electricity Regulatory Agency (ANEEL). Number of Thermoelectric Plants by Type. SIGA—ANEEL Generation Information System. 2023. Available online: https://dadosabertos.aneel.gov.br/dataset/usinas-termeletricas-por-tipo (accessed on 10 November 2023).
- Mitchell, E.J.S.; Gudka, B.; Whittaker, C.; Shield, I.; Price-Allison, A.; Maxwell, D.; Jones, J.M.; Williams, A. The use of agricultural residues, wood briquettes and logs for small-scale domestic heating. Fuel Process. Technol. 2020, 210, 106552. [Google Scholar] [CrossRef]
- Telmo, C.; Louzada, J.L.P.C. Heating values of wood pellets from different species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Eufrade-Junior, H.J.; Spadim, E.R.; Rodrigues, S.A.; Dal Pai, E.; Ballarin, A.W.; Guerra, S.P.S. Impact of rainy and dry seasons on eucalypt fuelwood quality logs stored in piles: A case study in Brazil. Croat. J. For. Eng. 2021, 42, 291–300. [Google Scholar] [CrossRef]
- Canto, J.L.; Machado, C.C.; Seixas, F.; Souza, A.P.; Santanna, C.M. Evaluation of a wood chipping system for Eucalyptus tops for energy. Braz. J. For. Sci. 2011, 35, 1327–1334. [Google Scholar] [CrossRef]
- Acuna, M.; Anttila, P.; Sikanen, L.; Prinz, R.; Suvinen, A. Predicting and controlling moisture content to optimise forest biomass logistics. Croat. J. For. Eng. 2012, 33, 225–238. [Google Scholar]
- Alves, R.T.; Fiedler, N.C.; Silva, E.N.; Lopes, E.S.; Carmo, F.C.A. Análise técnica e de custos do transporte de madeira com diferentes composições veiculares. Rev. Árvore 2013, 37, 897–904. [Google Scholar] [CrossRef]
- Searcy, E.; Flynn, P.; Ghafoori, E.; Kumar, A. The relative cost of biomass energy transport. Appl. Biochem. Biotechnol. 2007, 137, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Acuna, M.; Sánchez-García, S.; Canga, E. An Optimization Approach to Assess the Impact of Drying and Dry Matter Losses of Eucalyptus globulus Roundwood and Biomass on Supply Chains Costs and GHG Emissions. Forests 2022, 13, 701. [Google Scholar] [CrossRef]
- Lo, S.L.Y.; How, B.S.; Leong, W.D.; Teng, S.Y.; Rhamdhani, M.A.; Sunarso, J. Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 135, 110164. [Google Scholar] [CrossRef]
- Hamelinck, C.; Suurs, R.; Faaij, A. International bioenergy transport costs and energy balance. Biomass Bioenergy 2005, 29, 114–134. [Google Scholar] [CrossRef]
- Silva, M.L.; Oliveira, R.J.; Valverde, S.R.; Machado, C.C.; Pires, V.A.V. Análise do custo e do raio econômico de transporte de madeira de reflorestamentos para diferentes tipos de veículos. Rev. Árvore 2007, 31, 1073–1079. [Google Scholar] [CrossRef]
- Spinelli, R.; Eliasson, L.; Magagnotti, N. Determining the repair and maintenance cost of wood chippers. Biomass Bioenergy 2019, 122, 202–210. [Google Scholar] [CrossRef]
- Silva, J.F.; Ramos, A. Analysis of the truck transportation of eucalyptus logging residues to Portuguese power plants. Int. J. For. Eng. 2019, 30, 35–44. [Google Scholar] [CrossRef]
- Forest Energy Portal Illustrations for Your Presentations and Publications. Available online: https://www.renewablebusiness.eu/en/publications/images/:gallery/null (accessed on 9 February 2021).
- Perea, L.A. Technical and Economic Evaluation of the Cogeneration Process in a Sugar-Alcohol Industry; São Paulo State University (UNESP): Botucatu, São Paulo, Brazil, 2005; 124p. (In Portuguese) [Google Scholar]
- Vallios, I.; Tsoutsos, T.; Papadakis, G. Design of biomass district heating systems. Biomass Bioenergy 2009, 33, 659–678. [Google Scholar] [CrossRef]
- Hugot, E. Manual da Engenharia Açucareira; Editora Mestre Jou: São Paulo, Brazil, 1977; 78p. (In Portuguese) [Google Scholar]
- Nascimento, M.D.; Biaggioni, M.A.M. Avaliação energética do uso de lenha e cavaco de madeira para produção de energia em agroindústria seropédica. Rev. Energ. Agric. 2010, 25, 104–117. (In Portuguese) [Google Scholar]
- Miranda, M.A.S.; Ribeiro, G.B.D.; Valverde, S.R.; Isbaex, C. Eucalyptus sp. woodchip potential for industrial thermal energy production. Rev. Árvore 2017, 41, e410604. [Google Scholar] [CrossRef]
- Ribeiro, G.B.D. Technical and Economic Analysis of Thermoelectric Energy Production from Forest Biomass; Viçosa Federal University (UFV): Viçosa, Minas Gerais State, Brazil, 2018; 106p. (In Portuguese) [Google Scholar]
- CEN/TS 14918:2005; Solid Biofuels—Determination of Calorific Value. CEN. European Committee for Standardisation: Brussels, Belgium, 2009; pp. 1–140.
- Rezende, M.A.; Escobedo, J.F.; Ferraz, E.S.B. Retratibilidade volumétrica e densidade aparente da madeira em função da umidade. Sci. For. 1988, 39, 33–40. [Google Scholar]
- ASAE D472-3 Standards 2001; Machinery, Equipment, and Buildings: Operating Costs. ASABE. American Society of Agricultural Engineers: Ames, IA, USA, 2001; p. 226.
- Miyajima, R.H. Influence of Relief and Experience of Operators in Yield and Costs of Eucalyptus Wood Harvesting; Sao Paulo State University (UNESP): Botucatu, São Paulo, Brazil, 2015; 70p. (In Portuguese) [Google Scholar]
- Widmer, J.A. Compatibilidade de tráfego de bitrens de 25 m com a infra-estrutura viária brasileira. In Proceedings of the II Colóquio Internacional de Suspensões and I Colóqui de Implementos Rodoviários, Caxias do Sul, Rio Grande do Sul State, Brazil, 16–17 May; 2002; p. 10. (In Portuguese). [Google Scholar]
- Acuna, M.; Sessions, J.; Zamora, R.; Boston, K.; Brown, M.; Ghaffariyan, M. Methods to manage and optimise forest biomass supply chains. Curr. For. Rep. 2019, 5, 124–141. [Google Scholar] [CrossRef]
- IEA. Instituto de Economia Agrícola. Valor de Terra Nua. Available online: http://ciagri.iea.sp.gov.br/nia1/precor_SEFAZ.aspx?cod_tipo=1&cod_sis=8 (accessed on 10 February 2021). (In Portuguese)
- Eufrade-Junior, H.J.E.; Oguri, G.; Melo, R.X.; Ballarin, A.W.; Guerra, S.P.S. Storage of whole-tree chips from high-density energy plantations of Eucalyptus in Brazil. Biomass Bioenergy 2016, 93, 279–283. [Google Scholar] [CrossRef]
- Eufrade-Junior, H.J.; Rodrigues, S.A.; Spadim, E.R.; Guerra, S.P.S.; Ballarin, A.W. Predicting moisture content of long length log piles of Eucalyptus urophylla under outdoor storage. Sci. For. 2021, 49, e3461. [Google Scholar] [CrossRef]
- CCEE. Chamber of Electric Energy Commercialization. Settlement Price of Differences (SPD): Monthly Average. Available online: https://www.ccee.org.br/dados-e-analises/dados-pld (accessed on 15 November 2023).
- Barontini, M.; Scarfone, A.; Spinelli, R.; Gallucci, F.; Santangelo, E.; Acampora, A.; Jirjis, R.; Civitarese, V.; Pari, L. Storage dynamics and fuel quality of poplar chips. Biomass Bioenergy 2014, 93, 17–225. [Google Scholar] [CrossRef]
- Cimdina, G.; Blumberga, D.; Veidenbergs, I. Analysis of wood fuel CHP operational experience. Energy Procedia 2015, 72, 263–269. [Google Scholar] [CrossRef]
- Cimdina, G.; Veidenbergs, I.; Kamenders, A.; Ziemele, J.; Blumberga, A.; Blumberga, D. Modelling of biomass cogeneration plant efficiency. Agron. Res. 2014, 12, 455–468. [Google Scholar]
- Brito, J.O. Expressão da produção florestal em unidades energéticas. In Proceedings of the 7th Brazilian Forestry Congress, SBS/SBEF, Curitiba, Paraná State, Brazil, 19–24 September; 1993; pp. 280–282. (In Portuguese). [Google Scholar]
- Zanuncio, A.J.V.; Carvalho, A.G.; Silva, M.G.; Lima, J.T. Importance of wood drying to the forest transport and pulp mill supply. Cerne 2017, 23, 147–152. [Google Scholar] [CrossRef]
- Diego, R.; Giorgio, M.; Giuseppe, L.; Alessandro, D.R. Wood energy plants and biomass supply chain in Southern Italy. Procedia-Soc. Behav. Sci. 2016, 223, 849–856. [Google Scholar] [CrossRef]
- Kühmaier, M.; Stampfer, K. Development of a multi-criteria decision support tool for energy wood supply management. Croat. J. For. Eng. 2012, 33, 181–198. [Google Scholar]
Characteristics | Unity | |
---|---|---|
Specie | - | Eucalyptus urophylla S.T. Blake |
Clone | - | AEC 0144 |
Age | years | 7 |
Planting Density | trees ha−1 | 1667 |
Average Height | m | 21.7 |
Average DBH | cm | 16.9 |
Mean Annual Increment | m3 ha−1 year−1 | 42.4 |
Wood Basic Density | kg m−3 | 460 |
Higher Heating Value (HHV) | MJ kg−1 | 19.00 |
Distance (km) | Wood LOG Transport Cost | WoodCHIP Transport Cost |
---|---|---|
1–50 | 3.22 | 2.79 |
51–100 | 2.53 | 2.46 |
101–150 | 2.30 | 2.19 |
151–200 | 2.18 | 1.97 |
201–250 | 2.07 | 1.76 |
251–300 | 2.03 | 1.59 |
Moisture Content—MC (Wet Basis) | Operational Cost USD m−3) |
---|---|
≤35% | 3.53 |
36%–50% | 2.27 |
≥50% | 1.86 |
Conversion Parameters and Factors | Abbreviation/Symbol | Value |
---|---|---|
Thermoelectric Plant Related Data | ||
Thermoelectric power | P | 20 MW |
Amount of steam | Qv | 80,000 kg h−1 |
Enthalpy of steam * | hv | 3394 MJ kg−1 |
Enthalpy of water * | ha | 0.439 MJ kg−1 |
Boiler yield | η | 89% |
Wood Pile-Related Data | ||
Logs stacking factor | Fet | 1.79 |
Woodchip stacking factor | Fec | 2.43 |
Storage Time (Months) | Logs Pile | Woodchip Pile |
---|---|---|
0 | 52.4 ± 0.9 | 52.4 ± 5.0 |
1 | 48.9 ± 1.1 | 51.5 ± 3.2 |
2 | 45.4 ± 1.3 | 50.7 ± 3.2 |
3 | 42.0 ± 1.3 | 49.8 ± 7.9 |
4 | 38.5 ± 1.4 | 49.0 ± 3.2 |
5 | 35.0 ± 1.6 | 48.1 ± 3.2 |
6 | 31.5 ± 1.4 | 47.2 ± 3.1 |
Factors | Volume Wood Demand m3 | Wood Consumption per Energy m3 MWh−1 | ||
---|---|---|---|---|
F | p-Value | F | p-Value | |
Supply chain (SC) | 288.77 | 0.00 * | 282.97 | 0.00 * |
Storage time (ST) | 177.00 | 0.00 * | 1026.75 | 0.00 * |
SC × ST | 13.14 | 0.00 * | 73.71 | 0.00 * |
Storage Time (Months) | Supply Chain | ||
---|---|---|---|
I | II | III | |
Volume wood demand (103 × m3) | |||
0 | 33.58 | 33.58 | 33.58 |
1 | 33.37 | 32.78 | 32.78 |
2 | 33.17 | 32.12 | 32.12 |
3 | 32.98 | 31.57 | 31.57 |
4 | 32.79 | 31.09 | 31.09 |
5 | 32.62 | 30.67 | 30.67 |
6 | 32.45 | 30.30 | 30.30 |
Arithmetic mean | 32.99 a | 31.73 b | 31.73 b |
Wood consumption per energy (m3 MWh−1) | |||
0 | 2.47 | 2.47 | 2.47 |
1 | 2.45 | 2.41 | 2.41 |
2 | 2.44 | 2.36 | 2.36 |
3 | 2.42 | 2.32 | 2.32 |
4 | 2.41 | 2.29 | 2.29 |
5 | 2.40 | 2.25 | 2.25 |
6 | 2.39 | 2.23 | 2.23 |
Arithmetic mean | 2.43 a | 2.33 b | 2.33 b |
Storage Time (Months) | Supply Chain | ||
---|---|---|---|
I | II | III | |
Costs per wood volume (USD m−3) | |||
0 | 20.33 | 18.92 | 20.36 |
1 | 20.21 | 18.96 | 20.30 |
2 | 20.09 | 18.63 | 19.89 |
3 | 20.42 | 18.42 | 19.88 |
4 | 20.34 | 18.47 | 19.93 |
5 | 20.27 | 19.78 | 21.23 |
6 | 20.20 | 19.83 | 21.28 |
Arithmetic mean | 20.27 a | 19.00 b | 20.41 a |
Costs per month (mi USD) | |||
0 | 0.68 | 0.64 | 0.68 |
1 | 0.67 | 0.62 | 0.67 |
2 | 0.67 | 0.60 | 0.64 |
3 | 0.67 | 0.58 | 0.63 |
4 | 0.67 | 0.57 | 0.62 |
5 | 0.66 | 0.61 | 0.65 |
6 | 0.66 | 0.60 | 0.64 |
Arithmetic mean | 0.67 a | 0.60 b | 0.65 a |
Costs per energy (USD MWh−1) | |||
0 | 35.18 | 31.72 | 35.26 |
1 | 34.66 | 31.05 | 34.27 |
2 | 34.16 | 29.65 | 32.60 |
3 | 34.76 | 28.66 | 32.03 |
4 | 48.81 | 42.02 | 45.33 |
5 | 34.02 | 30.88 | 34.16 |
6 | 33.68 | 30.62 | 33.85 |
Arithmetic mean | 36.47 a | 32.09 b | 35.36 a |
Month | SPD (USD MWh−1) | Mean Precipitation (mm) |
---|---|---|
Jan | 49.24 | 256.8 |
Feb | 51.62 | 104.2 |
Mar | 59.95 | 229.6 |
Apr | 30.00 | 27.6 |
May | 89.00 | 11.6 |
Jun | 129.31 | 14.8 |
Jul | 138.14 | 23.2 |
Aug | 138.14 | 48.6 |
Sep | 129.27 | 72.8 |
Oct | 74.33 | 120.4 |
Nov | 33.89 | 105.8 |
Dec | 21.59 | 192.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonello, E.C.; Acuna, M.; Brown, M.; Esperancini, M.S.T.; Ballarin, A.W.; Guerra, S.P.S.; Eufrade-Junior, H.d.J. The Impact of Wood Moisture Content on the Productivity and Costs of Forest Energy Supply Chains in Southeast Brazil. Forests 2024, 15, 139. https://doi.org/10.3390/f15010139
Leonello EC, Acuna M, Brown M, Esperancini MST, Ballarin AW, Guerra SPS, Eufrade-Junior HdJ. The Impact of Wood Moisture Content on the Productivity and Costs of Forest Energy Supply Chains in Southeast Brazil. Forests. 2024; 15(1):139. https://doi.org/10.3390/f15010139
Chicago/Turabian StyleLeonello, Elaine Cristina, Mauricio Acuna, Mark Brown, Maura Seiko Tsutsui Esperancini, Adriano Wagner Ballarin, Saulo Philipe Sebastião Guerra, and Humberto de Jesus Eufrade-Junior. 2024. "The Impact of Wood Moisture Content on the Productivity and Costs of Forest Energy Supply Chains in Southeast Brazil" Forests 15, no. 1: 139. https://doi.org/10.3390/f15010139
APA StyleLeonello, E. C., Acuna, M., Brown, M., Esperancini, M. S. T., Ballarin, A. W., Guerra, S. P. S., & Eufrade-Junior, H. d. J. (2024). The Impact of Wood Moisture Content on the Productivity and Costs of Forest Energy Supply Chains in Southeast Brazil. Forests, 15(1), 139. https://doi.org/10.3390/f15010139