Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Material
2.2. Experimental Design
2.3. Multi-View Image Acquisition
3. Methods and Materials
3.1. Image Pre-Processing
3.2. Three-Dimensional Plant Reconstruction Based on SFM-MVS
3.3. Point Cloud Noise Reduction and Calibration Processing
4. Results and Analysis
4.1. The Average Leaf Color Information Is Calculated Based on the Region of Interest
4.2. Variable Feature Selection
4.3. Visualization of 3D Distribution of Poplar Chlorophyll
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilhite, D.A. (Ed.) Drought Assessment, Management, and Planning: Theory and Case Studies; Springer: Boston, MA, USA, 1993; ISBN 978-1-4613-6416-0. [Google Scholar]
- Rosso, L.; Cantamessa, S.; Bergante, S.; Biselli, C.; Fricano, A.; Chiarabaglio, P.M.; Gennaro, M.; Nervo, G.; Secchi, F.; Carra, A. Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life 2023, 13, 533. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Porcar-Castell, A.; Malenovský, Z.; Magney, T.; Van Wittenberghe, S.; Fernández-Marín, B.; Maignan, F.; Zhang, Y.; Maseyk, K.; Atherton, J.; Albert, L.P.; et al. Chlorophyll a Fluorescence Illuminates a Path Connecting Plant Molecular Biology to Earth-System Science. Nat. Plants 2021, 7, 998–1009. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Chen, G.; Xiong, L.; Liu, Q.; Yang, W. Accurate Digitization of the Chlorophyll Distribution of Individual Rice Leaves Using Hyperspectral Imaging and an Integrated Image Analysis Pipeline. Front. Plant Sci. 2017, 8, 1238. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.; Schmidhalter, U. Evaluation of Yield and Drought Using Active and Passive Spectral Sensing Systems at the Reproductive Stage in Wheat. Front. Plant Sci. 2017, 8, 379. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; He, N.; Yu, G. Opposing Shifts in Distributions of Chlorophyll Concentration and Composition in Grassland under Warming. Sci. Rep. 2021, 11, 15736. [Google Scholar] [CrossRef] [PubMed]
- Amutenya, A.; Kwembeya, E.; Shikangalah, R.; Tsvuura, Z. Photosynthesis, Chlorophyll Content and Water Potential of a Mistletoe-Host Pair in a Semi-Arid Savanna. S. Afr. J. Bot. 2023, 163, 311–315. [Google Scholar] [CrossRef]
- Karami, E.; Weaver, J.B. Dry-Matter Production, Yield, Photosynthesis, Chlorophyll Content and Specific Leaf Weight of Cotton in Relation to Leaf Shape and Colour. J. Agric. Sci. 1980, 94, 281–286. [Google Scholar] [CrossRef]
- Zhang, H.; Ge, Y.; Xie, X.; Atefi, A.; Wijewardane, N.K.; Thapa, S. High Throughput Analysis of Leaf Chlorophyll Content in Sorghum Using RGB, Hyperspectral, and Fluorescence Imaging and Sensor Fusion. Plant Methods 2022, 18, 60. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Tomasetto, F.; Yan, W.; Tan, Z.; Liu, J.; Jiang, J. Non-Destructive Measurements of Toona Sinensis Chlorophyll and Nitrogen Content Under Drought Stress Using Near Infrared Spectroscopy. Front. Plant Sci. 2022, 12, 809828. [Google Scholar] [CrossRef]
- Li, Q.; Yan, Y.; Li, W. Coarse-to-Fine Segmentation of Individual Street Trees from Side-View Point Clouds. Urban For. Urban Green. 2023, 89, 128097. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, Y.; Zhang, C.; Yuan, W.; Zhou, H. Evaluation of Dual-Band Near-Infrared Spectroscopy and Chemometric Analysis for Rapid Quantification of Multi-Quality Parameters of Soy Sauce Stewed Meat. Foods 2023, 12, 2882. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xue, Y. Real-Time Detection of Street Tree Crowns Using Mobile Laser Scanning Based on Pointwise Classification. Biosyst. Eng. 2023, 231, 20–35. [Google Scholar] [CrossRef]
- Wu, S.; Wen, W.; Wang, Y.; Fan, J.; Wang, C.; Gou, W.; Guo, X. MVS-Pheno: A Portable and Low-Cost Phenotyping Platform for Maize Shoots Using Multiview Stereo 3D Reconstruction. Plant Phenomics 2020, 2020, 1848437. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Y. Non-Destructive Measurement of Three-Dimensional Plants Based on Point Cloud. Plants 2020, 9, 571. [Google Scholar] [CrossRef] [PubMed]
- Hosoi, F.; Umeyama, S.; Kuo, K. Estimating 3D Chlorophyll Content Distribution of Trees Using an Image Fusion Method Between 2D Camera and 3D Portable Scanning Lidar. Remote Sens. 2019, 11, 2134. [Google Scholar] [CrossRef]
- Bayati, H.; Najafi, A.; Vahidi, J.; Gholamali Jalali, S. 3D Reconstruction of Uneven-Aged Forest in Single Tree Scale Using Digital Camera and SfM-MVS Technique. Scand. J. For. Res. 2021, 36, 210–220. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef]
- Yao, Y.; Shu, S.; Wang, W.; Liu, R.; Wang, Y.; Wang, X.; Zhang, S. Growth and Carbon Sequestration of Poplar Plantations on the Tibetan Plateau. Ecol. Indic. 2023, 147, 109930. [Google Scholar] [CrossRef]
- Semerci, A.; Guevara, C.A.; Gonzalez-Benecke, C.A. Water Availability Effects on Growth and Phenology of 11 Poplar Cultivars Growing in Semiarid Areas in Turkey. New For. 2021, 52, 411–430. [Google Scholar] [CrossRef]
- Hassanijalilian, O.; Igathinathane, C.; Doetkott, C.; Bajwa, S.; Nowatzki, J.; Haji Esmaeili, S.A. Chlorophyll Estimation in Soybean Leaves Infield with Smartphone Digital Imaging and Machine Learning. Comput. Electron. Agric. 2020, 174, 105433. [Google Scholar] [CrossRef]
- Ngugi, L.C.; Abelwahab, M.; Abo-Zahhad, M. Recent Advances in Image Processing Techniques for Automated Leaf Pest and Disease Recognition—A Review. Inf. Process. Agric. 2021, 8, 27–51. [Google Scholar] [CrossRef]
- Li, Y.; Xia, H.; Liu, Y.; Ji, K.; Huo, L.; Ni, C. Research on Morphological Indicator Extraction Method of Pinus Massoniana Lamb. Based on 3D Reconstruction. Forests 2023, 14, 1726. [Google Scholar]
- Huo, L.; Liu, Y.; Yang, Y.; Zhuang, Z.; Sun, M. Review: Research on Product Surface Quality Inspection Technology Based on 3D Point Cloud. Adv. Mech. Eng. 2023, 15, 16878132231159523. [Google Scholar] [CrossRef]
- Teshome, D.T.; Zharare, G.E.; Naidoo, S. The Threat of the Combined Effect of Biotic and Abiotic Stress Factors in Forestry Under a Changing Climate. Front. Plant Sci. 2020, 11, 601009. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, X.; Shi, M.; Wang, P. Performance Comparison of RGB and Multispectral Vegetation Indices Based on Machine Learning for Estimating Hopea Hainanensis SPAD Values under Different Shade Conditions. Front. Plant Sci. 2022, 13, 928953. [Google Scholar] [CrossRef] [PubMed]
- Barrero, O.; Perdomo, S.A. RGB and Multispectral UAV Image Fusion for Gramineae Weed Detection in Rice Fields. Precis. Agric. 2018, 19, 809–822. [Google Scholar] [CrossRef]
- Peng, C.; Li, S.; Miao, Y.; Zhang, Z.; Zhang, M. Stem-leaf segmentation and phenotypic trait extraction of tomatoes using three-dimensional point cloud. Trans. Chin. Soc. Agric. Eng. 2022, 38, 187–194. [Google Scholar]
- Zermas, D.; Morellas, V.; Mulla, D.; Papanikolopoulos, N. 3D Model Processing for High Throughput Phenotype Extraction—The Case of Corn. Comput. Electron. Agric. 2020, 172, 105047. [Google Scholar] [CrossRef]
- Fariaszewska, A.; Aper, J.; Van Huylenbroeck, J.; De Swaef, T.; Baert, J.; Pecio, Ł. Physiological and Biochemical Responses of Forage Grass Varieties to Mild Drought Stress Under Field Conditions. Int. J. Plant Prod. 2020, 14, 335–353. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, X. Advances in Fusion of Optical Imagery and LiDAR Point Cloud Applied to Photogrammetry and Remote Sensing. Int. J. Image Data Fusion 2017, 8, 1–31. [Google Scholar] [CrossRef]
- Rustioni, L.; Bianchi, D. Drought Increases Chlorophyll Content in Stems of Vitis Interspecific Hybrids. Theor. Exp. Plant Physiol. 2021, 33, 69–78. [Google Scholar] [CrossRef]
- Sakya, A.T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B.H. Stomata Character and Chlorophyll Content of Tomato in Response to Zn Application under Drought Condition. IOP Conf. Ser. Earth Environ. Sci. 2018, 142, 012033. [Google Scholar] [CrossRef]
- Gai, J.; Wang, J.; Xie, S.; Xiang, L.; Wang, Z. Spectroscopic Determination of Chlorophyll Content in Sugarcane Leaves for Drought Stress Detection. Precis. Agric. 2023. [Google Scholar] [CrossRef]
- Yudina, P.K.; Ivanova, L.A.; Ronzhina, D.A.; Zolotareva, N.V.; Ivanov, L.A. Variation of Leaf Traits and Pigment Content in Three Species of Steppe Plants Depending on the Climate Aridity. Russ. J. Plant Physiol. 2017, 64, 410–422. [Google Scholar] [CrossRef]
- Li, Z.; Guo, R.; Li, M.; Chen, Y.; Li, G. A Review of Computer Vision Technologies for Plant Phenotyping. Comput. Electron. Agric. 2020, 176, 105672. [Google Scholar] [CrossRef]
- Li, D.; Shi, G.; Kong, W.; Wang, S.; Chen, Y. A Leaf Segmentation and Phenotypic Feature Extraction Framework for Multiview Stereo Plant Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2321–2336. [Google Scholar] [CrossRef]
- Ma, X.; Wei, B.; Guan, H.; Yu, S. A Method of Calculating Phenotypic Traits for Soybean Canopies Based on Three-Dimensional Point Cloud. Ecol. Inform. 2022, 68, 101524. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Li, G.; Li, J.; Zheng, L.; Zhang, M.; Wang, M. Multi-Phenotypic Parameters Extraction and Biomass Estimation for Lettuce Based on Point Clouds. Measurement 2022, 204, 112094. [Google Scholar] [CrossRef]
- Miao, T.; Wen, W.; Li, Y.; Wu, S.; Zhu, C.; Guo, X. Label3DMaize: Toolkit for 3D Point Cloud Data Annotation of Maize Shoots. GigaScience 2021, 10, giab031. [Google Scholar] [CrossRef] [PubMed]
Before Drought Treatment | After Drought Treatment | |||
---|---|---|---|---|
Image acquisition times | 4 | 1 | ||
Experiment sample size | 96 | Control check | Mild drought | Severe drought |
32 | 32 | 32 | ||
Experiment interval date (days) | 7 | 15 |
Specific Parameters (Symbol) | Camera Model Nikon Z5 | |
---|---|---|
Numerical Value | Unit | |
Shutter speed (S) | 1/320 | Seconds (s) |
Aperture (A) | 10 | Dimensionless |
Speed (ISO) | 100 | Dimensionless |
Imaging focal length (f) | 35 | Millimeter (mm) |
Image storage format (F) | JPG | Dimensionless |
Picture size (P) | 4016 × 6016 | Pixels per inch (PPI) |
Total rotation Angle (θ) | 400 | Degree (°) |
Function Type | Parameter Setting | ||
---|---|---|---|
Spatial filtering | X (m) | Y (m) | Z (m) |
0.65 | 0.65 | 1.5 | |
Color filtering | R | G | B |
60 | 60 | 60 | |
Radius filtering | r (mm) | n (a) | |
0.5 | 20 |
Color Index Type | Color Index Name | Abbreviation | Formula |
---|---|---|---|
Normalized type color index | (visible-band difference vegetation index) | VDVI | |
(normalized green-blue difference index) | NGBDI | ||
(visible atmospheric impedance vegetation index) | VARI | ||
(normalized difference index) | NDI | ||
(improved green-red vegetation index) | IGRVI | ||
(red-green-blue vegetation index) | RGBVI | ||
Ratio type color index | (green-red ration index) | GRRI | |
(blue-green red ration index) | BGRRI | ||
(red-green blue ration index) | RGBRI | ||
(red-blue green ration index) | RBGRI | ||
Composite color index | (excess green index) | ExG | |
(excess red index) | ExR | ||
(green-red difference vegetation index) | ExGR | ||
(color index of vegetation) | CIVE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Q.; Zhang, H.; Bian, L.; Zhou, L.; Ge, Y. Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS. Forests 2024, 15, 20. https://doi.org/10.3390/f15010020
Tian Q, Zhang H, Bian L, Zhou L, Ge Y. Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS. Forests. 2024; 15(1):20. https://doi.org/10.3390/f15010020
Chicago/Turabian StyleTian, Qifei, Huichun Zhang, Liming Bian, Lei Zhou, and Yufeng Ge. 2024. "Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS" Forests 15, no. 1: 20. https://doi.org/10.3390/f15010020
APA StyleTian, Q., Zhang, H., Bian, L., Zhou, L., & Ge, Y. (2024). Three-Dimensional Quantification and Visualization of Leaf Chlorophyll Content in Poplar Saplings under Drought Using SFM-MVS. Forests, 15(1), 20. https://doi.org/10.3390/f15010020