Bioaccumulation and Potential Risk Assessment of Heavy Metals in Tropical Bamboo Plantations of Dendrocalamus brandisii under Two Cultivation Patterns in Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Chemical Analysis
2.4. Assessment of Pollution Indices
2.5. PMF Model
2.6. Health Risk Assessment
2.7. Statistical Analysis Methods
3. Results
3.1. Concentrations and Pollution Assessment of HMs in Soil
3.1.1. Soil HMs Contents
3.1.2. Pollution Assessment of HMs
3.1.3. Spatial Distribution Characteristics
3.2. Concentrations of HMs in Bamboo Shoots
3.3. Soil Profiles
3.4. Correlation Analysis of HMs between Bamboo Shoots and Soil
3.5. Source Apportionment of HMs
3.6. Health Risk Assessment
4. Discussion
4.1. HM Accumulation and Pollution in Bamboo Shoots and Soil under Two Cultivation Patterns
4.2. HM Source Apportionment in Soil of Cultivation Areas of D. brandisii
4.3. Risk Assessment of HMs in Soil and Bamboo Shoots
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Szwalec, A.; Mundala, P.; Kedzior, R.; Pawlik, J. Monitoring and Assessment of Cadmium, Lead, Zinc and Copper Concentrations in Arable Roadside Soils in Terms of Different Traffic Conditions. Environ. Monit. Assess. 2020, 192, 155. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.F.; Wang, Y.X.; Zhao, J.; Zhu, L.Q.; Bian, X.M.; Zhang, W.J. Source Attributions of Heavy Metals in Rice Plant along Highway in Eastern China. J. Environ. Sci. 2011, 23, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Chen, X.P.; Ma, Z.B.; Jia, H.H.; Wang, J.J. Greenhouse Cultivationmitigates Metal-Ingestion-Associated Health Risks from Vegetables in Wastewater-Irrigated Agroecosystems. Sci. Total Environ. 2016, 560, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- SEPB; CNEMC. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990; pp. 87–485. [Google Scholar]
- Yang, M.; He, L.; Zeng, P.; He, S.; Yang, T. Evaluation and Migration Law of Heavy Metal Pollution in River Sediment of a Copper Mining Area in Yunnan. J. Anhui Agric. Sci. 2023, 51, 68–72. [Google Scholar]
- Zhong, T.Y.; Xue, D.W.; Zhao, L.M.; Zhang, X.Y. Concentration of Heavy Metals in Vegetables and Potential Health Risk Assessment in China. Environ. Geochem. Health 2018, 40, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.F.; Shao, S.; Ni, H.; Fu, Z.Y.; Hu, L.S.; Zhou, Y.; Min, X.X.; She, S.F.; Chen, S.C.; Huang, M.X.; et al. Current Status, Spatial Features, Health Risks, and Potential Driving Factors of Soil Heavy Metal Pollution in China at Province Level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Dou, P.; Cheng, Q.; Liang, N.; Bao, C.; Zhang, Z.; Chen, L.; Yang, H. Rhizosphere Microbe Affects Soil Available Nitrogen and Its Implication for the Ecological Adaptability and Rapid Growth of Dendrocalamus Sinicus, the Strongest Bamboo in the World. Int. J. Mol. Sci. 2023, 24, 14665. [Google Scholar] [CrossRef]
- Zhan, F.D.; Zeng, W.Z.; Yuan, X.C.; Li, B.; Li, T.G.; Zu, Y.Q.; Jiang, M.; Li, Y. Field Experiment on the Effects of Sepiolite and Biochar on the Remediation of Cd- and Pb-Polluted Farmlands around a Pb-Zn Mine in Yunnan Province, China. Environ. Sci. Pollut. Res. 2019, 26, 7743–7751. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, W.J.; Chen, Y.Y. Spatial Variations of Soil Heavy Metal Potential Ecological Risks in Typical Moso Bamboo Forests of Southeast China. Bull. Environ. Contam. Toxicol. 2019, 102, 224–230. [Google Scholar] [CrossRef]
- Soleimani, H.; Mansouri, B.; Kiani, A.; Omer, A.K.; Tazik, M.; Ebrahimzadeh, G.; Sharafi, K. Ecological Risk Assessment and Heavy Metals Accumulation in Agriculture Soils Irrigated with Treated Wastewater Effluent, River Water, and Well Water Combined with Chemical Fertilizers. Heliyon 2023, 9, e14580. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.X.; Han, G.L.; Liu, M.; Song, C.; Li, X.Q.; Malem, F. Vertical Distribution and Controlling Factors Exploration of Sc, V, Co, Ni, Mo and Ba in Six Soil Profiles of the Mun River Basin, Northeast Thailand. Int. J. Environ. Res. Public Health 2020, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, X.N.; Ling, S.X.; Wu, X.Y.; Liao, X. Heavy Metal(Loid) and Pb Isotope Compositions of Black Shale Weathering Profiles on the Northern Yangtze Platform: Insights into Geochemical Behavior, Contamination Assessment, and Source Apportionment. Environ. Sci. Pollut. Res. 2021, 28, 50230–50244. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.Y.; Hu, Y.Y.; Li, Q.; Zhuang, S.Y. Effect of Cultivation Time on Soil Heavy Metal Accumulation and Bioavailability in Phyllostachys Praecox Stands. Pedosphere 2020, 30, 810–816. [Google Scholar] [CrossRef]
- Mo, R.; Cheng, J.; Tang, F.; Yue, J.; Li, Z.; Ni, Z. Heavy Metals in Bamboo Shoots from Southeastern China and Risk Assessment. Food Addit. Contam. Part B 2021, 14, 264–270. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, Y.L.; Wang, S.; Yu, Y.J.; Huang, W.Y.; Xu, Q.L.; Zeng, L. Pollution Risk Assessment and Sources Analysis of Heavy Metal in Soil from Bamboo Shoots. Int. J. Environ. Res. Public Health 2022, 19, 14806. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.F.; Wang, S.L.; Zhao, C.C.; Nan, Z.R. Risk Assessment of Trace Elements Accumulation in Soil-Herbage Systems at Varied Elevation in Subalpine Grassland of Northern Tibet Plateau. Environ. Sci. Pollut. Res. 2022, 29, 27636–27650. [Google Scholar] [CrossRef]
- Susana, F.; Tomás, C.Y.; Javier, R.P.; Celestino, O. Geographically Weighted Principal Components Analysis to Assess Diffuse Pollution Sources of Soil Heavy Metal: Application to Rough Mountain Areas in Northwest Spain. Geoderma 2018, 311, 120–129. [Google Scholar] [CrossRef]
- Yaseen, Z.M. The next Generation of Soil and Water Bodies Heavy Metals Prediction and Detection: New Expert System Based Edge Cloud Server and Federated Learning Technology. Environ. Pollut. 2022, 313, 120081. [Google Scholar] [CrossRef]
- Xiang, M.T.; Li, Y.; Yang, J.Y.; Lei, K.G.; Li, Y.; Li, F.; Zheng, D.F.; Fang, X.Q.; Cao, Y. Heavy Metal Contamination Risk Assessment and Correlation Analysis of Heavy Metal Contents in Soil and Crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Heidari, M.; Darijani, T.; Alipour, V. Heavy Metal Pollution of Road Dust in a City and Its Highly Polluted Suburb; Quantitative Source Apportionment and Source-Specific Ecological and Health Risk Assessment. Chemosphere 2021, 273, 129656. [Google Scholar] [CrossRef] [PubMed]
- Zulkafflee, N.S.; Mohd Redzuan, N.A.; Nematbakhsh, S.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Yee Lee, S.; Abdull Razis, A.F. Heavy Metal Contamination in Oryza Sativa L. at the Eastern Region of Malaysia and Its Risk Assessment. Int. J. Environ. Res. Public. Health 2022, 19, 739. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.M.; Burmaster, D.E.; Crouch, E.A. Monte Carlo Techniques for Quantitative Uncertainty Analysis in Public Health Risk Assessments. Risk Anal. Off. Publ. Soc. Risk Anal. 1992, 12, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Li, H.M.; Zhang, G.M.; Tian, W. Contaminated Site-Induced Health Risk Using Monte Carlo Simulation: Evaluation from the Brownfield in Beijing, China. Environ. Sci. Pollut. Res. 2021, 28, 25166–25178. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.P.; Liu, S.Y.; Luo, Y. Spatiotemporal Distribution and Probabilistic Health Risk Assessment of Arsenic in Drinking Water and Wheat in Northwest China. Ecotoxicol. Environ. Saf. 2023, 256, 114880. [Google Scholar] [CrossRef] [PubMed]
- Li, X.F.; Fu, B.T.; Guo, J.; Ji, K.L.; Xu, Y.K.; Dahab, M.M.; Zhang, P. Bamboo Shoot Fiber Improves Insulin Sensitivity in High-Fat Diet-Fed Mice. J. Funct. Foods 2018, 49, 510–517. [Google Scholar] [CrossRef]
- Yang, H.Q.; Sun, M.S.; Ruan, Z.Y.; Dong, Y.R.; Liang, N. Study on Provenance Differentiation of Four Typical Tropical Clump bamboos in Yunnan, China. For. Res. 2014, 27, 168–173. [Google Scholar]
- Hui, C.M.; Liu, W.Y.; Zhang, G.X.; Shi, M.; Lu, D.W.; Zou, X.M. Exploration and Breeding of Excellent Germplasm Resources of Sweet Dragon Bamboo. J. Bamboo 2019, 38, 26–30. [Google Scholar]
- Bahru, T.; Ding, Y.L. Effect of Stand Density, Canopy Leaf Area Index and Growth Variables on Dendrocalamus Brandisii (Munro) Kurz Litter Production at Simao District of Yunnan Province, Southwestern China. Glob. Ecol. Conserv. 2020, 23, e01051. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.L.; Qu, M.K.; Yang, L.F.; Zhao, Y.C.; Huang, B. Pollution Characteristics and Risk Assessment of Soil Heavy Metals in the Areas Affected by the Mining of Metal-Bearing Minerals in Southwest China. Bull. Environ. Contam. Toxicol. 2021, 107, 1070–1079. [Google Scholar] [CrossRef]
- GB15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. MEE (Ministry of Ecology and Environment): Beijing, China, 2018. (In Chinese)
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Moya, J. Exposure Factors Handbook; Exposure Analysis and Risk Characterization Group, US EPA National Center for Environmental Assessment: Washington, DC, USA, 1997.
- GB2762-2022; National Standards for Food Safety. NHC (National Health Commission of the People’s Republic of China): Beijing, China, 2022. (In Chinese)
- Liang, J.; Liu, Z.; Tian, Y.; Shi, H.; Fei, Y.; Qi, J.; Mo, L. Research on Health Risk Assessment of Heavy Metals in Soil Based on Multi-Factor Source Apportionment: A Case Study in Guangdong Province, China. Sci. Total Environ. 2023, 858, 159991. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.L.; Shen, X.F.; Chen, H.Y.; Dong, H.R.; Zhang, L.J.; Yuan, T.; Zhang, D.; Shang, X.D.; Tan, Q.; Liu, J.Y.; et al. Analysis of Heavy Metal Content in Lentinula Edodes and the Main Influencing Factors. Food Control 2021, 130, 108198. [Google Scholar] [CrossRef]
- Zhang, S.C.; Zhao, R.; Wu, K.; Huang, Q.; Kang, L. Effects of the Rapid Construction of a High-Quality Plough Layer Based on Woody Peat in a Newly Reclaimed Cultivated Land Area. Agriculture 2022, 12, 31. [Google Scholar] [CrossRef]
- Lee, H.; Byun, Y.J.; Chun, Y.; Noh, H.; Kim, D.; Kim, H.; Kim, J. Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities. Toxics 2021, 9, 278. [Google Scholar] [CrossRef] [PubMed]
- Superville, P.J.; Prygiel, E.; Magnier, A.; Lesven, L.; Gao, Y.; Baeyens, W.; Ouddane, B.; Dumoulin, D.; Billon, G. Daily Variations of Zn and Pb Concentrations in the Defile River in Relation to the Resuspension of Heavily Polluted Sediments. Sci. Total Environ. 2014, 470, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Ryu, J.; Ra, K. Characteristics of Potentially Toxic Elements and Multi-Isotope Signatures (Cu, Zn, Pb) in Non-Exhaust Traffic Emission Sources. Environ. Pollut. 2022, 292, 118339. [Google Scholar] [CrossRef]
- Mistikawy, J.A.; Mackowiak, T.J.; Butler, M.J.; Mischenko, I.C.; Cernak, R.S., Sr.; Richardson, J.B. Chromium, Manganese, Nickel, and Cobalt Mobility and Bioavailability from Mafic-to-Ultramafic Mine Spoil Weathering in Western Massachusetts, USA. Environ. Earth Sci. 2020, 42, 3263–3279. [Google Scholar] [CrossRef]
- Garnier, J.; Quantin, C.; Raous, S.; Guimaraes, E.; Becquer, T. Field Availability and Mobility of Metals in Ferralsols Developed on Ultramafic Rock of Niquelandia, Brazil. Braz. J. Geol. 2021, 51, e20200092. [Google Scholar] [CrossRef]
- Li, B.; Deng, J.; Li, Z.; Chen, J.; Zhan, F.; He, Y.; He, L.; Li, Y. Contamination and Health Risk Assessment of Heavy Metals in Soil and Ditch Sediments in Long-Term Mine Wastes Area. Toxics 2022, 10, 607. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, F.F.; Huang, C.M. Heavy Metal Distribution in Particle Size Fractions of Floodplain Soils from Dongchuan, Yunnan Province, Southwest China. Environ. Monit. Assess. 2021, 193, 54. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, F.; Huang, J.Y.; Li, H.G.; Peng, X.; Xia, L.; Zhou, L.; Zhang, T.; Liu, Z.H.; He, Q.; Luo, F.; et al. Biogeochemical Behavior and Pollution Control of Arsenic in Mining Areas: A Review. Front. Microbiol. 2023, 14, 1043024. [Google Scholar] [CrossRef] [PubMed]
- Barago, N.; Mastroianni, C.; Pavoni, E.; Floreani, F.; Parisi, F.; Lenaz, D.; Covelli, S. Environmental Impact of Potentially Toxic Elements on Soils, Sediments, Waters, and Air Nearby an Abandoned Hg-Rich Fahlore Mine (Mt. Avanza, Carnic Alps, NE Italy). Environ. Sci. Pollut. Res. 2023, 30, 63754–63775. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Li, X.; Yu, L.; Wang, T.; Wang, J.; Liu, T. Review of Soil Heavy Metal Pollution in China: Spatial Distribution, Primary Sources, and Remediation Alternatives. Resour. Conserv. Recycl. 2022, 181, 106261. [Google Scholar] [CrossRef]
- Shi, J.D.; Zhao, D.; Ren, F.T.; Huang, L. Spatiotemporal Variation of Soil Heavy Metals in China: The Pollution Status and Risk Assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.P.; Kang, X.R.; Yu, J.P.; Gao, S.; Zhang, J.; Wang, H.; Pan, H.; Yang, Q.G.; Zhuge, Y.P.; et al. Effective Utilization of Weak Alkaline Soils with Cd-Contamination by Wheat and Rape Intercropping. Ecotoxicol. Environ. Saf. 2022, 248, 114335. [Google Scholar] [CrossRef]
- Gololobova, A.; Legostaeva, Y. An Assessment of the Impact of the Mining Industry on Soil and Plant Contamination by Potentially Toxic Elements in Boreal Forests. Forests 2023, 14, 1641. [Google Scholar] [CrossRef]
- US EPA. Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- US EPA. Soil Screening Guidance: Technical Background Document; Superfund US EPA: Washington, DC, USA, 1996.
- MEPPRC. Technical Guidelines for Risk Assessment of Contaminated Sites; HJ25.3-2014; Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2014.
- Li, Z.; Zhang, Y.; Wang, J.; Chen, C.; Zhang, Y.; Wang, P. A Survey on Dietary Types and Intake of Children Aged 3–12 in China. China Food Nutr. 2014, 20, 78–82. [Google Scholar]
- He, Y.-N.; Zhao, L.Y.; Yu, D.-M. Vegetable and Fruit Intake Status of Adult Residents in China from 2010 to 2012. Chin. J. Prev. Med. 2016, 50, 221–224. [Google Scholar] [CrossRef]
- US EPA. Region IX, Regional Screening Levels (Formerly PRGs); US EPA: San Francisco, CA, USA, 2013.
- Zhao, R.; Guan, Q.; Luo, H.; Lin, J.; Yang, L.; Wang, F.; Pan, N.; Yang, Y. Fuzzy Synthetic Evaluation and Health Risk Assessment Quantification of Heavy Metals in Zhangye Agricultural Soil from the Perspective of Sources. Sci. Total Environ. 2019, 697, 134126. [Google Scholar] [CrossRef]
- Luo, H.; Wang, Q.; Guan, Q.; Ma, Y.; Ni, F.; Yang, E.; Zhang, J. Heavy Metal Pollution Levels, Source Apportionment and Risk Assessment in Dust Storms in Key Cities in Northwest China. J. Hazard. Mater. 2022, 422, 126878. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Du, Q.; Guan, Q.; Luo, H.; Shan, Y.; Shao, W. A Monte Carlo Simulation-Based Health Risk Assessment of Heavy Metals in Soils of an Oasis Agricultural Region in Northwest China. Sci. Total Environ. 2023, 857, 159543. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Gao, F.; Qin, N.; Duan, X.; Li, Y.; Cao, S. A Comprehensive Analysis on Source-Distribution-Bioaccumulation-Exposure Risk of Metal(Loid)s in Various Vegetables in Peri-Urban Areas of Shenzhen, China. Environ. Pollut. 2022, 293, 118613. [Google Scholar] [CrossRef] [PubMed]
- Tan, C. An Integrated Approach for Quantifying Source Apportionment and Source-Oriented Health Risk of Heavy Metals in Soils near an Old Industrial Area. Environ. Pollut. 2023, 323, 121271. [Google Scholar] [CrossRef]
Indices | pH | Content (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Ni | Cu | Zn | As | Cd | Pb | |||
Background value in China (n = 4094) | Maximum | - | 1209 | 5888 | 627 | 272 | 593 | 626 | 13.4 | 1143 |
Minimum | - | 2.20 | 1 | 0.06 | 0.33 | 2.60 | 0.01 | 0.001 | 0.68 | |
Mean | - | 61.0 | 583 | 26.9 | 22.6 | 74.2 | 11.2 | 0.097 | 26.0 | |
Background value in Yunnan (n = 73) | Maximum | 8.8 | 426.0 | 2768 | 315.0 | 208.9 | 281.0 | 133.8 | 3.409 | 490.0 |
Minimum | 4.0 | 13.7 | 70 | 4.5 | 6.2 | 14.0 | 1.0 | 0.009 | 9.5 | |
Mean | 5.7 | 65.2 | 626 | 42.5 | 46.3 | 89.7 | 18.4 | 0.218 | 40.6 | |
This study in LA (bamboo forests of the large-area intensive afforestation pattern) (n = 34) | Maximum | 6.9 | 135.5 | 2005.63 | 57.26 | 112.62 | 166.37 | 62.70 | 0.70 | 177.6 |
Minimum | 3.7 | 36.64 | 144.95 | 8.78 | 10.29 | 18.40 | 8.31 | 0.06 | 7.32 | |
Mean | 5.7 | 67.49 | 561.05 | 20.46 | 34.59 | 55.43 | 23.68 | 0.20 | 25.31 | |
This study in SF (bamboo forests of the small-scale farmer management pattern) (n = 40) | Maximum | 7.9 | 458.3 | 2235.27 | 265.04 | 424.88 | 730.21 | 388.37 | 1.51 | 101.7 |
Minimum | 4.1 | 31.56 | 117.45 | 7.11 | 11.56 | 17.08 | 8.17 | 0.05 | 6.54 | |
Mean | 5.9 | 104.6 | 610.46 | 49.10 | 49.63 | 86.89 | 34.53 | 0.28 | 21.39 | |
Based on the soil environmental quality standard of China (GB15618-2018) | pH ≤ 5.5 | 150 | 60 | 50 | 200 | 40 | 0.3 | 70 | ||
5.5 < pH ≤ 6.5 | 150 | 70 | 50 | 200 | 40 | 0.3 | 90 | |||
6.5 < pH ≤ 7.5 | 200 | 100 | 100 | 250 | 30 | 0.3 | 120 | |||
pH > 7.5 | 250 | 190 | 100 | 300 | 25 | 0.6 | 170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; Dou, P.; Bao, C.; Zhang, Z.; Cao, Y.; Yang, H. Bioaccumulation and Potential Risk Assessment of Heavy Metals in Tropical Bamboo Plantations of Dendrocalamus brandisii under Two Cultivation Patterns in Yunnan, China. Forests 2024, 15, 41. https://doi.org/10.3390/f15010041
Cheng Q, Dou P, Bao C, Zhang Z, Cao Y, Yang H. Bioaccumulation and Potential Risk Assessment of Heavy Metals in Tropical Bamboo Plantations of Dendrocalamus brandisii under Two Cultivation Patterns in Yunnan, China. Forests. 2024; 15(1):41. https://doi.org/10.3390/f15010041
Chicago/Turabian StyleCheng, Qian, Peitong Dou, Changyan Bao, Zhiming Zhang, Yurong Cao, and Hanqi Yang. 2024. "Bioaccumulation and Potential Risk Assessment of Heavy Metals in Tropical Bamboo Plantations of Dendrocalamus brandisii under Two Cultivation Patterns in Yunnan, China" Forests 15, no. 1: 41. https://doi.org/10.3390/f15010041
APA StyleCheng, Q., Dou, P., Bao, C., Zhang, Z., Cao, Y., & Yang, H. (2024). Bioaccumulation and Potential Risk Assessment of Heavy Metals in Tropical Bamboo Plantations of Dendrocalamus brandisii under Two Cultivation Patterns in Yunnan, China. Forests, 15(1), 41. https://doi.org/10.3390/f15010041