The Growth Equation and Element Distribution of Torreya grandis in the Huangshan Region of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and of Plant Data Sources
2.2. Soil Sample Collection and Indices
2.3. Plant Sampling
2.4. Element Determination of Plant Samples
2.5. Growth Curve and Data Analysis
3. Results
3.1. Construction of T. grnadis Growth Model
3.2. Element Allocation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, Z.; Zhu, H.; Li, W.; Zeng, M.; Wu, S.; Chen, S.; Fang, Q.; Chen, J. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chem. 2016, 209, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.K.; Mao, J.H.; Zheng, L.; Zhao, C.W.; Jin, Q.Z.; Wang, X.G. Chemical characterization and free radical scavenging capacity of oils obtained from Torreya grandis Fort. ex. Lindl. and Torreya grandis Fort. var. Merrillii: A comparative study using chemometrics. Ind. Crop. Prod. 2018, 115, 250–260. [Google Scholar] [CrossRef]
- Yu, Y.J.; Ni, S.; Wu, F.; Sang, W.G. Chemical composition and antioxidant activity of essential oil from Torreya grandis cv. merrillii Arils. J. Essent. Oil Bear. Pl. 2016, 19, 1170–1180. [Google Scholar] [CrossRef]
- Zeide, B. Analysis of growth equations. For. Sci. 1993, 39, 594–616. [Google Scholar] [CrossRef]
- Yi, L.; Li, H.; Guo, J.; Deussen, O.; Zhang, X. Tree growth modelling constrained by growth equations. Comput. Graph. Forum 2018, 37, 239–253. [Google Scholar] [CrossRef]
- Özçelik, R.; Cao, Q.V.; Trincado, G.; Gocer, N. Predicting tree height from tree diameter and dominant height using mixed-effects and quantile regression models for two species in Turkey. For. Ecol. Manag. 2018, 419–420, 240–248. [Google Scholar] [CrossRef]
- Oboite, F.O.; Comeau, P.G. Climate sensitive growth models for predicting diameter growth of western Canadian boreal tree species. For. An. Int. J. For. Res. 2021, 94, 363–373. [Google Scholar] [CrossRef]
- Adame, P.; Hynynen, J.; Cañellas, I.; del-Río, M. Individual-tree diameter growth model for rebollo oak (Quercus pyrenaica Willd.) coppices. For. Ecol. Manag. 2008, 255, 1011–1022. [Google Scholar] [CrossRef]
- Bohora, S.B.; Cao, Q.V. Prediction of tree diameter growth using quantile regression and mixed-effects models. For. Ecol. Manag. 2014, 319, 62–66. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [Google Scholar] [CrossRef]
- White, T.L.; Hodge, G.R. Predicting Breeding Values with Applications in Forest Tree Improvement; Kluwer Academic Publisher: London, UK, 1989; p. 33. [Google Scholar]
- Dale, V.H.; Doyle, T.W.; Shugart, H.H. A comparison of tree growth models. Ecol. Model. 1985, 29, 145–169. [Google Scholar] [CrossRef]
- Zhang, L. Cross-validation of non-linear growth functions for modelling tree height–diameter relationships. Ann. Bot. 1997, 79, 251–257. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For. Ecol. Manag. 2007, 249, 187–198. [Google Scholar] [CrossRef]
- Fang, Z.X.; Bailey, R.L. Height diameter models for tropical forests on Hainan Island in southern China. For. Ecol. Manag. 1998, 110, 315–327. [Google Scholar] [CrossRef]
- Cosenza, D.N.; Korhonen, L.; Maltam, M.; Packalen, P.; Strunk, J.L.; Næsset, E.; Gobakken, T.; Soares, P.; Tomé, M. Comparison of linear regression, k-nearest neighbour and random forest methods in airborne laser-scanning-based prediction of growing stock. For. An. Int. J. For. Res. 2021, 94, 311–323. [Google Scholar] [CrossRef]
- Berland, A. Urban tree growth models for two nearby cities show notable differences. Urban Ecosyst. 2020, 23, 1253–1261. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, X.; Wang, S.; Feng, S.; Ning, Z.; Wang, R.; Chen, X.; Zhao, H.; Chen, M. Untangling the influence of abiotic and biotic factors on leaf C, N, and P stoichiometry along a desert-grassland transition zone in northern China. Sci. Total Environ. 2003, 884, 163902. [Google Scholar] [CrossRef]
- Hartmann, H.; Trumbore, S. Understanding the roles of nonstructuracarbohydrates in forest trees-from what wecan measure to what we want to know. New Phytol. 2016, 211, 386–403. [Google Scholar] [CrossRef]
- Smith, A.M.; Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 2007, 30, 1126–1149. [Google Scholar] [CrossRef]
- Li, Y.; Pan, X.; Xu, X.; Wu, Y.; Zhuang, J.; Zhang, X.; Zhang, H.; Lei, B.; Hu, C.; Liu, Y. Carbon dots as light converter for plant photosynthesis: Augmenting light coverage and quantum yield effect. J. Hazard. Mater. 2021, 410, 124534. [Google Scholar] [CrossRef]
- Ohyama, T. Nitrogen as a major essential element of plants. Nitro. Assim. Plants 2010, 37, 1–17. [Google Scholar]
- Liu, C.; Duan, N.; Chen, X.; Li, X.; Zhao, N.; Cao, W.; Li, H.; Liu, B.; Tan, F.; Zhao, X.; et al. Transcriptome profiling and chlorophyll metabolic pathway analysis reveal the response of Nitraria tangutorum to increased nitrogen. Plants 2023, 12, 895. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, H.; Sharma, V.S.; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 171–190. [Google Scholar]
- Liu, D. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 2021, 63, 1065–1090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, N.; Liu, C.; Xu, L.; Chen, Z.; Li, Y.; Wang, R.; Yu, G.; Sun, W.; Xiao, C.; et al. Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Glob. Change Biol. 2020, 26, 2534–2543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, N.; Liu, C.; Yang, H.; Li, M.; Yu, G.; Wilcox, K.; Yu, Q.; He, N. C:N:P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 2017, 32, 50–60. [Google Scholar] [CrossRef]
- Elser, J.J.; Fagan, W.F.; Denno, R.F.; Dobberfuhl, D.R.; Folarin, A.; Huberty, A.; Interlandi, S.; Kilham, S.S.; McCauley, E.; Schulz, K.L.; et al. Nutritional constraints in terrestrial and freshwater food webs. Nature 2000, 408, 578–580. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowski, P.; Abramczyk, K.; Szczepaniuk, A.; Kozub, Ł. Nitrogen: Phosphorus ratio as the main ecological determinant of the differences in the species composition of brown-moss rich fens in north-eastern Poland. Preslia 2013, 85, 349–367. [Google Scholar]
- Gelfand, I.; Grünzweig, J.M.; Yakir, D. Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland. Oecologia 2012, 168, 563–575. [Google Scholar] [CrossRef]
- Aitkenhead, J.A.; McDowell, W.H. Soil C: N ratio as a predictor of annual riverine DOC flux at local and global scales. Glob. Biogeochem. Cycles 2000, 14, 127–138. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; You, C.; Tan, B.; Xu, L.; Li, H.; Zhang, L.; Wang, L.; Liu, S.; Hou, G.; et al. Warming effects on C:N:P stoichiometry and nutrient limitation in terrestrial ecosystems. Soil Tillage Res. 2024, 235, 105896. [Google Scholar] [CrossRef]
- Shi, L.; Lin, Z.; Wei, X.; Peng, C.; Yao, Z.; Han, B.; Xiao, Q.; Zhou, H.; Deng, Y.; Liu, K.; et al. Precipitation increase counteracts warming effects on plant and soil C:N:P stoichiometry in an alpine meadow. Front. Plant Sci. 2022, 13, 1044173. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, G.; Innes, J.L.; Brad Seely, B.; Chen, B. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. Eng. 2017, 4, 448–458. [Google Scholar] [CrossRef]
- Meng, Q.; Ge, L.; Lin, Y.; Qiu, L.; Hu, H.; He, Z.; Dong, Q.; Cui, J. Ecolcgical Stoichiometric characteristics of leaf-litter-soil in natural and planted forests of Castanopsis kawakamii and Cunninghamia lanceolata. J. Northwest For. Univ. 2019, 34, 8–15. (In Chinese) [Google Scholar]
- Hong, L.; Tang, S.; Li, H.; Li, Y.; de Coligny, F. Integrated Stand Growth Model (ISGM) and its application. In Proceedings of the 2006 Second International Symposium on Plant Growth Modeling and Applications, Beijing, China, 13–17 November 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 223–230. [Google Scholar]
- Chen, P.T.; Kang, X.G.; Gong, Z.W.; Yang, H.; Cai, S. The DBH growth process of larch in northeast was modeled by computer. In Proceedings of the 2010 International Symposium on Intelligence Information Processing and Trusted Computing, Huanggang, China, 28–29 October 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 337–340. [Google Scholar]
- Li, F.R.; Zhao, B.D.; Su, G.L. A derivation of the generalized Korf growth equation and its application. J. For. Res. 2000, 11, 81–88. [Google Scholar]
- Stoll, P.; Weiner, J.; Schmid, B. Growth variation in a naturally established population of Pinus sylvestris. Ecology 1994, 75, 660–670. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, W.; Shao, J.; Wan, P.; Cheng, S.; Cai, S.; Yan, G.; Li, A. Estimation of larch growth at the stem, crown, and branch levels using ground-based LiDAR point cloud. J. Remote Sens. 2022, 2022, 9836979. [Google Scholar] [CrossRef]
- Tan, C.; Nie, W.; Liu, Y.; Wang, Y.; Dong, Y.; Huang, R.; Liu, J.; Shi, S.; Chang, E.; Zhao, X.; et al. Tree growth model and bark thickness model of three Quercus species based on trunk analysis. Zhejiang Agric. For. Univ. 2023, 40, 589–597. (In Chinese) [Google Scholar]
- Xu, H.; Sun, Y.; Wang, X.; Fu, Y.; Dong, Y.; Li, Y. Nonlinear mixed-effects (NLME) diameter growth models for individual China-fir (Cunninghamia lanceolata) trees in southeast China. PLoS ONE 2014, 9, e104012. [Google Scholar] [CrossRef]
- Sumida, A.; Miyaura, T.; Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol. 2013, 33, 106–118. [Google Scholar] [CrossRef]
- Larsen, M.L.; Wilhelm, S.W.; Lennon, J.T. Nutrient stoichiometry shapes microbial coevolution. Ecol. Lett. 2019, 22, 1009–1018. [Google Scholar] [CrossRef]
- Niklas, K.; Owens, T.; Reich, P.B.; Cobb, E.D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 2005, 8, 636–642. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Y.; Jia, Z.; He, K.; Wang, J.; Wei, X. C, N and stoichiometry characteristics of oat cultivars in eastern agricultural area of Qinghai Province. Agric. Res. Arid Areas 2023, 41, 160–168. (In Chinese) [Google Scholar]
- Meng, B.; Li, J.; Maurer, G.E.; Zhong, S.; Yao, Y.; Yang, X.; Collins, S.L. Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology 2021, 102, e03483. [Google Scholar] [CrossRef] [PubMed]
- de Bang, T.C.; Husted, S.; Laursen, K.H.; Persson, D.P.; Schjoerring, J.K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 2021, 229, 2446–2469. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Q.; Zhao, N.; Yu, G.; He, N. Complex trait relationships between leaves and absorptive roots: Coordination in tissue N concentration but divergence in morphology. Ecol. Evol. 2017, 7, 2697–2705. [Google Scholar] [CrossRef] [PubMed]
- Kramer-Walter, K.R.; Laughlin, D.C. Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant Soil 2017, 416, 539–550. [Google Scholar] [CrossRef]
- Liu, Z.; Hikosaka, K.; Li, F.; Zhu, L.; Jin, G. Plant size, environmental factors and functional traits jointly shape the stem radius growth rate in an evergreen coniferous species across ontogenetic stages. J. Plant Ecol. 2021, 14, 257–269. [Google Scholar] [CrossRef]
- Li, H.; Crabbe, M.J.C.; Xu, F.; Wang, W.; Ma, L.; Niu, R.; Gao, X.; Zhang, P.; Ma, X.; Chen, H. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in different organs of a Larix principis-rupprechtii Mayr. plantation in the Qinling Mountains, China. PLoS ONE 2017, 12, e0185163. [Google Scholar] [CrossRef]
- Du, Y.; Lu, R.; Xia, J. Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Funct. Ecol. 2020, 34, 1525–1536. [Google Scholar] [CrossRef]
- Song, L.; Luo, W.; Griffin-Nolan, R.J.; Cai, J.; Zuo, X.; Yu, Q.; Hartmann, H.; Li, M.H.; Smith, M.D.; Collins, S.L.; et al. Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Sci. Total Environ. 2022, 822, 153589. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, C.; Quan, X.; Wang, X. Ecological stoichiometric characteristics of different organs of broadleaf tree species in a temperate forest in Maoershan area, Heilongjiang Province. Sci. Silver Sin. 2021, 57, 1–11. (In Chinese) [Google Scholar]
- Loomis, R.S. On the utility of nitrogen in leaves. Proc. Natl. Acad. Sci. USA 1997, 94, 13378–13379. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Xu, L.; Zhu, J.; Dai, G.; He, N. C:N:P stoichiometry in terrestrial ecosystems in China. Sci. Total Environ. 2021, 795, 148849. [Google Scholar] [CrossRef]
- Henry, H.A.L.; Aarssen, L.W. On the relationship between shade tolerance and shade avoidance strategies in woodland plants. Oikos 1997, 80, 575–582. [Google Scholar] [CrossRef]
- Minden, V.; Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biol. 2014, 16, 897–907. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, Q.; Li, K.; Gong, Y.; Liu, Y.; Han, W. Patterns of nitrogen and phosphorus stoichiometry among leaf, stem and root of desert plants and responses to climate and soil factors in Xinjiang, China. Catena 2021, 199, 105100. [Google Scholar] [CrossRef]
- Gong, Y.M.; Ling, H.B.; Chen, Y.; Cao, J.; Guo, Z.J.; Lv, G.H. N:P stoichiometric changes via species turnover in arid versus saline desert environments. Ecol. Evol. 2020, 10, 6636–6645. [Google Scholar] [CrossRef]
- Vrede, T.; Dobberfuhl, D.R.; Kooijman, S.A.L.M.; Elser, J.J. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 2004, 85, 1217–1229. [Google Scholar] [CrossRef]
- Hooker, T.D.; Compton, J.E. Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecol. Appl. 2003, 13, 299–313. [Google Scholar] [CrossRef]
- Elser, J.J.; Dobberfuhl, D.R.; MacKay, N.A.; Schampel, J.H. Organism size, life history, and N:P stoichiometry toward a unified view of cellular and ecosystem processes. BioScience 1996, 46, 674–684. [Google Scholar] [CrossRef]
- Han, W.; Fang, J.; Guo, D.; Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 2005, 168, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Yan, Z.; Ma, S.; Ding, Y.; Luo, Y.; Chen, Y.; Du, E.; Han, W.; Kovacs, E.D.; Shen, H.; et al. Family-level leaf nitrogen and phosphorus stoichiometry of global terrestrial plants. Sci. China Life Sci. 2019, 62, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, H.; Yu, Q.; Wang, Z.; Wei, C.; Long, M.; Kattge, J.; Smith, M.; Han, X. Sampling date, leaf ageand root size:implications for the study of plant C:N:P stoichiometry. PLoS ONE 2013, 8, e60360. [Google Scholar]
- Tao, Y.; Zhou, X.B.; Li, Y.G.; Liu, H.L.; Zhang, Y.M. Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environ. Exp. Bot. 2022, 200, 104932. [Google Scholar] [CrossRef]
- You, C.; Wu, F.; Yang, W.; Xu, Z.; Tan, B.; Yue, K.; Ni, X. Nutrient-limited conditions determine theresponses offoliar nitrogen andphosphorus stoichiometry to nitrogenaddition: A global meta-analysis. Environ. Pollut. 2018, 241, 740–749. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Chen, Y.; Han, W.; Tang, L.; Tang, Z.; Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 2013, 36, 178–184. [Google Scholar] [CrossRef]
- Zheng, Y.; Hu, Z.; Pan, X.; Chen, X.; Derrien, D.; Hu, F.; Liu, M.; Hättenschwiler, S. Carbon and nitrogen transfer from litter to soil is higher in slow than rapiddecomposing plant litter: A synthesis of stable isotope studies. Soil Biol. Biochem. 2021, 156, 108196. [Google Scholar] [CrossRef]
- Yang, L.X.; Wang, Y.L.; Huang, J.Y.; Zhu, J.G.; Yang, H.J.; Liu, G.; Liu, H.J.; Dong, G.C.; Hu, J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crop. Res. 2007, 102, 141–150. [Google Scholar] [CrossRef]
- Tian, X.J.; Takahiro, T. Relative roles of microorganisms and soil animals on needel litter decomposition in a subalpine coniferous forest. Acta Phytoecol. Sin. 2002, 26, 257–263. [Google Scholar]
Latitude | 35.47421 | Spring (Mar.–May) mean temperature (°C) | 13.0 |
Longitude | 117.5117 | Summer (Jun.–Aug.) mean temperature (°C) | 24.9 |
Elevation (m) | 244 | Autumn (Sep.–Nov.) mean temperature (°C) | 13.5 |
Period | 1961–1990 | Soil organic matter (SOM) (mg·g−1) | 40.5 |
Mean annual precipitation (mm) | 758 | Soil total N (TN) (mg·g−1) | 5.3 |
Winter (Dec.(prev. yr)–Feb.) mean temperature (°C) | −0.8 | Soil total P (TP) (mg·g−1) | 0.9 |
Function Type | Function Name | Equation | Ranges of C |
---|---|---|---|
Quasi-linear | Height curve | y = a + b/(c + x) | 0–50 |
Quasi-power | Levakovic | y = a × (x2/(c + x2))b | 1–2500 |
Quasi-power | Allometeric | y = a × (x + c)b | - |
Quasi-exponential | Korf | y = a × Exp(−b/xc) | 0.001–2 |
Quasi-exponential | Gompertz | y = a × Exp(−b × Exp(−c × x)) | 0.001–2 |
Quasi-hyperbolic | Hossfeld | y = a/(1 + b/xc) | 0.1–9 |
Age Level (Year) | Tree Height (m) | DBH (cm) | Amount |
---|---|---|---|
40 | 7.00 | 24.00 | 1 |
50 | 8.00 | 16.00 | 1 |
70 | 11.00 | 24.00 | 1 |
80 | 8.50 ± 0.00 | 19.75 ± 6.01 | 2 |
100 | 12.29 ± 5.79 | 55.36 ± 39.64 | 7 |
150 | 27.85 ± 28.07 | 33.50 ± 14.85 | 2 |
200 | 13.40 ± 4.62 | 43.40 ± 3.19 | 5 |
300 | 22.00 ± 16.38 | 54.85 ± 17.80 | 11 |
400 | 24.00 ± 1.41 | 58.25 ± 16.62 | 2 |
500 | 17.08 ± 6.57 | 81.42 ± 21.44 | 12 |
600 | 15.00 | 58.50 | 1 |
700 | 17.44 ± 9.03 | 85.00 ± 19.66 | 9 |
800 | 17.75 ± 2.50 | 78.38 ± 20.54 | 4 |
1000 | 21.03 ± 8.11 | 114.62 ± 29.71 | 19 |
1100 | 26.50 ± 2.12 | 119.10 ± 4.10 | 2 |
1200 | 20.00 | 154.00 | 1 |
2000 | 25.00 | 156.00 | 1 |
Function Name | Function | R2 | α1 | α2 |
---|---|---|---|---|
Height curve | H = 31.35 − 3110.23/(49.99 + age) | 0.86 | −0.4015 | 1.0159 |
DBH = 104.87 − 11,733.63/(49.99 + age) | 0.69 | −0.5705 | 1.0278 | |
Levakovic | H = 26.39 × { age2/(2499.94 + age2)}3.88 | 0.88 | −1.6021 | 1.0856 |
DBH = 83.75 × { age2/(2499.94 + age2)}4.73 | 0.73 | −5.2448 | 1.1190 | |
Allometeric | H = 1.73 × (0.001 + age)0.42 | 0.86 | 2.7178 | 0.8779 |
DBH = 2.67 × (age + 0.001)0.53 | 0.77 | 5.8259 | 0.9486 | |
Korf | H = 33.98 × Exp(−53.56/age0.84) | 0.93 | −0.0003 | 0.9999 |
DBH = 158.48 × Exp(−21.41/age0.55) | 0.80 | 0.0024 | 0.9999 | |
Gompertz | H = 28.41 × Exp(−1.83 × Exp(−0.0063 × age)) | 0.93 | 0.0188 | 1.0069 |
DBH = 99.58 × Exp(−1.93 × Exp(−0.0045 × age)) | 0.78 | 0.5688 | 1.0160 | |
Hossfeld | H = 29.38/(1 + 2095.55/age1.55) | 0.81 | −1.0298 | 1.0445 |
DBH = 87.46/(1 + 10,994.85/age1.9) | 0.45 | −11.7305 | 1.1949 |
Organ | Age Level (Year) | C:N | C:P | N:P |
---|---|---|---|---|
Leaf | 100 | 17.47 ± 1.05 | 393.04 ± 41.06 | 22.60 ± 3.35 |
200 | 18.63 ± 0.90 | 592.65 ± 77.09 | 31.74 ± 2.90 | |
300 | 17.48 ± 0.64 | 375.75 ± 22.23 | 21.54 ± 2.04 | |
400 | 17.40 ± 0.89 | 470.58 ± 3.37 | 27.09 ± 1.37 | |
500 | 15.90 ± 0.70 | 395.96 ± 16.52 | 24.93 ± 1.53 | |
Branch | 100 | 25.39 ± 1.71 | 257.98 ± 14.57 | 10.17 ± 0.47 |
200 | 28.92 ± 0.78 | 220.19 ± 18.60 | 7.63 ± 0.85 | |
300 | 27.57 ± 1.06 | 270.42 ± 25.92 | 9.84 ± 1.29 | |
400 | 27.40 ± 0.78 | 215.18 ± 19.13 | 7.87 ± 0.92 | |
500 | 28.99 ± 0.98 | 211.04 ± 8.14 | 7.29 ± 0.46 | |
Root | 100 | 28.05 ± 1.61 | 368.76 ± 21.46 | 13.15 ± 0.39 |
200 | 31.90 ± 1.39 | 434.30 ± 12.73 | 13.64 ± 0.87 | |
300 | 27.30 ± 0.36 | 469.83 ± 22.61 | 17.20 ± 0.61 | |
400 | 33.42 ± 0.14 | 415.91 ± 3.39 | 12.44 ± 0.11 | |
500 | 28.65 ± 2.06 | 374.18 ± 37.02 | 13.08 ± 1.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Liu, N.; Wan, Z.; Liu, F.; Cao, L.; Gao, C.; Sun, N.; Liu, C. The Growth Equation and Element Distribution of Torreya grandis in the Huangshan Region of China. Forests 2024, 15, 68. https://doi.org/10.3390/f15010068
Chen L, Liu N, Wan Z, Liu F, Cao L, Gao C, Sun N, Liu C. The Growth Equation and Element Distribution of Torreya grandis in the Huangshan Region of China. Forests. 2024; 15(1):68. https://doi.org/10.3390/f15010068
Chicago/Turabian StyleChen, Li, Ning Liu, Zhibing Wan, Fenfen Liu, Lei Cao, Chengcheng Gao, Na Sun, and Chenggong Liu. 2024. "The Growth Equation and Element Distribution of Torreya grandis in the Huangshan Region of China" Forests 15, no. 1: 68. https://doi.org/10.3390/f15010068
APA StyleChen, L., Liu, N., Wan, Z., Liu, F., Cao, L., Gao, C., Sun, N., & Liu, C. (2024). The Growth Equation and Element Distribution of Torreya grandis in the Huangshan Region of China. Forests, 15(1), 68. https://doi.org/10.3390/f15010068