Long-Term Monitoring Studies of the Mycorrhizal Colonization of Aesculus hippocastanum L. Roots and the Vitality of Soil Microorganisms in Urban and Non-Urban Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sample Collection
2.3. Root Colonization Assessment
2.4. Chemical Analyses of Soil
2.5. Estimation of Dehydrogenase Activity
2.6. Establishment of Trap Cultures
2.7. Statistical Analysis
3. Results
3.1. Chemical and Physical Characteristics of the Soil
3.2. Mycorrhizal Colonization
3.3. Activity of Nonspecific Dehydrogenase and Water Content
3.4. Trap Cultures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pauleit, S.; Jones, N.; Garcia-Martin, G.; Garcia-Valdecantos, J.L.; Rivière, L.M.; Vidal-Beaudet, L.; Bodson, M.; Randrup, T.B. Tree establishment practice in towns and cities—Results from a European survey. Urban For. Urban Green. 2002, 1, 83–96. [Google Scholar] [CrossRef]
- Jagodziński, A.M.; Łukasiewicz, S.; Turzańska, E. Horse chestnut in human environment. Ten Świat. Biul. Pol. Klubu Ekol.–Okręg Wielkop. 2003, 3, 6–13. [Google Scholar]
- Seneta, W.; Dolatowski, J. Dendrology; Scientific Publishing House, PWN: Warsaw, Poland, 2007; ISBN 97883011407. [Google Scholar]
- Oleksyn, J.; Kloppel, B.D.; Łukasiewicz, S.; Karolewski, P.; Reich, P.B. Ecophysiology of horse chestnut (Aesculus hippocastanum L.) roots in degraded and restored urban sites. Pol. J. 2003, 55, 245–260. [Google Scholar]
- Dmuchowski, W.; Baczewska, A.H.; Gozdowski, D.; Brągoszewska, P. Effect of salt stress on the chemical composition of leaves of different tree species in urban environment. Fresenius Environ. Bull. 2013, 22, 987–994. [Google Scholar]
- Gilman, E.F.; Watson, D.G. Aesculus hippocastanum—Horsechestnut. In Fact Sheet ST-61; A series of the Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 1993. [Google Scholar]
- Wilczyński, S.; Podlaski, R. The effect of climate on radial growth of horse chestnut (Aesculus hippocastanum L.) in the Świętokrzyski National Park in central Poland. Jpn. For. Soc. Springer 2007, 12, 24–33. [Google Scholar]
- Roloff, A.; Korn, S.; Gillner, S. The Climate-Species-Matrix-to select tree species for urban habitats considering climate change. Urban UrbanGreen. 2009, 8, 296–308. [Google Scholar] [CrossRef]
- Simon, P.; Lena, M. Radial growth response of horse chestnut (Aesculus hippocastanum L.) trees to climate in Ljubljana, Slovenia. Urban For. Urban Green. 2016, 18, 110–116. [Google Scholar] [CrossRef]
- Braun, G.; Schönborn, A.; Weber, E. Investigations on the relative resistance of woody plants against de–icing salt (sodium chloride). Allge. Forst Jagdz. 1978, 149, 21–35. [Google Scholar]
- Suchara, I. Extractable Cl−, Na+, K+ and Ca+ contents in the leaves of street trees exposed to salt application in winter. Zahradnictvi-UVTIZ 1982, 9, 289–300. [Google Scholar]
- Weissenhorn, I. Mycorrhiza and salt tolerance of trees, 2002, EU-Final Report of Partner 9, EU-project MYCOREM (QLK3-1999-00097), The Use of Mycorrhizal Fungi in Phytoremediation Projects January 2000–December 2002.pdf.
- Johnson, G.R.; Succof (Eds.) Minimizing De–Icing Salt Injury to Trees; University of Minnesota Extension Service: St.Paul, MN, USA, 1999; Available online: https://conservancy.umn.edu/bitstream/handle/11299/93996/1413.pdf?sequence=1&isAllowed=y (accessed on 21 December 2023).
- Łuczak, K.; Czerniawska-Kusza, I.; Rosik-Dulewska, C.; Kusza, G. Effect of NaCl road salt on the ionic composition of soils and Aesculus hippocastanum L. foliage and leaf damage intensity. Sci. Rep. 2021, 11, 5309. [Google Scholar] [CrossRef]
- Kosuta, S.; Winzer, T.; Parniske, M. Arbuscular mycorrhiza. In Lotus japonicus Handbook; Márquez, A.J., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 87–95. Available online: https://link.springer.com/chapter/10.1007/1-4020-3735-X_6 (accessed on 21 December 2023).
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: London, UK, 2008. [Google Scholar]
- Turnau, K.; Ryszka, P.; Wojtczak, G. Metal tolerant mycorrhizal plants: A review from the perspective on industrial waste in temperate region. In Arbuscular mycorrhizas: Physiology and Function; Koltai, W.H., Kapulnik, Y., Eds.; Springer: Dordrecht, The Netherland, 2010. [Google Scholar] [CrossRef]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-Plant-Microbe Interactions in Stressed Agriculture Management: A Review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. The Glomeromycota: A Species List with New Families and New Genera; Createspace Independent Publishing Platform: Gloucester, UK, 2010. [Google Scholar]
- Harley, J.L.; Harley, E.L. A checklist of mycorrhiza in the British flora—Addenda, errata and index. New Phytol. 1987, 107, 741–749. [Google Scholar] [CrossRef]
- Heklau, H.; Schindler, N.; Buscot, F.; Eisenhauer, N.; Ferlian, O.; Salcedo, L.D.P.; Bruelheide, H. Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecol. Evol. 2021, 11, 5424–5440. [Google Scholar] [CrossRef] [PubMed]
- Heklau, H.; Schindler, N.; Eisenhauer, N.; Ferlian, O.; Bruelheide, H. Temporal variation of mycorrhization rates in a tree diversity experiment. Ecol. Evol. 2023, 13, e10002. [Google Scholar] [CrossRef] [PubMed]
- Bainard, L.D.; Klironoms, J.N.; Gordon, A.M. The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments. Mycorrhiza 2011, 21, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Tyburska, J.; Frymark-Szymkowiak, A.; Kulczyk-Skrzeszewska, M.; Kieliszewska-Rokicka, B. Mycorrhizal status of forest trees grown in urban and rural environments in Poland. Ecol. Quest. 2013, 18, 51–59. [Google Scholar] [CrossRef]
- Karliński, L.; Leski, T.; Rudawska, M. Fine root parameters and mycorrhizal colonization of horse chestnut trees (Aesculus hippocastanum L.) in urban and rural environments. Landsc. Urban Plan. 2014, 127, 154–163. [Google Scholar] [CrossRef]
- Tyburska-Woś, J.; Nowak, K.; Kieliszewska-Rokicka, B. Infuence of leaf damage by the horse chestnut leafminer (Camerariaohridella Deschka&Dimić) on mycorrhiza of Aesculus hippocastanum L. Mycorrhiza 2019, 29, 61–67. [Google Scholar] [CrossRef]
- Cairney, J.W.G.; Meharg, A.A. Influences of anthropogenic pollution on mycorrhizal fungal communities. Environ. Pollut. 1999, 106, 169–182. [Google Scholar] [CrossRef]
- Entry, J.A.; Rygiewicz, P.T.; Watrud, L.S.; Donnelly, P.K. Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res. 2002, 7, 123–138. [Google Scholar] [CrossRef]
- Deepika, S.; Kothamasi, D. Soil moisture—A regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 2015, 25, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Alugacil, M.M.; Torrecillas, E.; Garcίa-Orenes, F.; Roldán, A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity. Soil Biol. Biochem. 2014, 76, 34–44. [Google Scholar] [CrossRef]
- Melo, C.D.; Luna, S.; Krüger, C.; Walker, C.; Mendonça, D.; Fonseca, H.M.; Jaizme-Vega, M.; da Câmara Machado, A. Arbuscular mycorrhizal fungal community composition associated with Juniperus brevifolia in native Azorean forest. Acta Oecologica 2017, 79, 48–61. [Google Scholar] [CrossRef]
- Melo, C.D.; Walker, C.; Krűger, C.; Borges, P.A.V.; Luna, S.; Mendonça, D.; Fonseca, H.M.A.C.; Machado, A.C. Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconiaazorica on native forest of Azores. Ann. Microbiol. 2019, 69, 1309–1327. [Google Scholar] [CrossRef]
- Nylund, J.E. The regulation of mycorrhiza formation—Carbohydrate and hormone theories reviewed. Scan. J. For. Res. 1988, 3, 465–479. [Google Scholar] [CrossRef]
- Cousins, J.R. Preliminary assessment of arbuscular mycorrhizal fungal diversity and community structure in an urban ecosystem. Mycorrhiza 2003, 13, 319–326. [Google Scholar] [CrossRef]
- Gupta, M.M.; Gupta, A.; Kumar, P. Urbanization and biodiversity of arbuscular mycorrhizal fungi: The case study of Delhi, India. Biol. Trop. 2018, 66, 1547–1558. [Google Scholar] [CrossRef]
- Lin, Q.; Li, L.; Adams, J.M.; Hedӗnec, P.; Tu, B.; Li, C. Nutrient resource availability mediates niche differentiation and temporal co-occurrence of soil bacterial communities. Appl. Soil Ecol. 2021, 163, 103965. [Google Scholar] [CrossRef]
- Stabler, L.B.; Martin, C.A.; Stutz, J.C. Effect of urban expansion on arbuscular mycorrhizal fungal mediation of landscape tree growth. J. Arboric. 2001, 27, 193–202. [Google Scholar] [CrossRef]
- Wiseman, P.E.; Wells, C. Soil inoculum potential and arbuscular mycorrhizalcolonization of Acer rubrum in forested and developed landscapes. J. Arboric. 2005, 31, 296–302. [Google Scholar]
- Kormanik, P.P.; McGraw, A.C. Quantification of Vesicular-arbuscular Mycorrhizae in Plant Roots. In Methods and Principles of Mycorrhizal Research; Schenck, W.N.C., Ed.; The American Phytopathological Society: Saint Paul, MN, USA, 1982; pp. 37–46. [Google Scholar]
- Trouvelot, A.; Kough, J.L.; Gianinazzi-Pearson, V. Measure du taux de mycorrhization VA d’ un systèmerediculaire. Researche de mèthodes d’ estimation ayantunesignifi—Cation fonctionelle. In Psychological and Genetical Aspects of Mycorrhizae; Gianinazzi-Pearson, V., Gianinazzi, S., Eds.; INRA: Paris, France, 1986. [Google Scholar]
- Komosa, A.; Szewczuk, A. Effect of soil potassium level and different potassium fertilizer forms on nutritional status, growth and field of apple trees in the first three years after planting. J. Fruit Ornam. Plant Res. 2002, 10, 41–54. [Google Scholar]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA Soil Test for Zinc, Iron, Manganese, and Copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Von Thalamm, A. Zur Bestimmung der DehydrogenaseaktivitatimbodenmittelsTriphenyltetrazoiumchlorid (TTC). Landwirtsch. Forsch. 1987, 21, 249. [Google Scholar]
- Rossel, D.; Tarradellas, J.; Bitton, G.; Morel, J.L. Use of enzymes in ecotoxicology: A case for dehydrogenase and hydrolytic enzymes. In Soil Ecotoxicology, 1st ed.; Taradellas, J., Bitton, G., Rossel, D., Eds.; CRC Lewis Publishers: Boca Raton, FL, USA, 1997; pp. 179–192. [Google Scholar]
- Merryweather, J.W.; Fitter, A.H. Techniques in Arbuscular Mycorrhiza Research; York Mycorrhiza Research Group: York, UK, 1999. [Google Scholar]
- Snedecor, W.; Cochran, W.G. Statistical Methods, 6th ed.; The Iowa State University Press: Ames, IA, USA, 1967. [Google Scholar]
- Brundrett, M. Mycorrhizas in natural ecosystems. Adv. Ecol. Res. 1991, 21, 17–313. [Google Scholar]
- Smith, S.E.; Bowen, G.D. Soil temperature, mycorrhizal infection and nodulation of Medicago truncatula and Trifolium subterraneeum. Soil Biol. Biochem. 1979, 11, 469–473. [Google Scholar] [CrossRef]
- Hayman, D.S. The physiology of vesicular—Arbuscular endomycorrhizal symbiosis. Can. J. Bot. 1983, 61, 944–963. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Kendrik, B. The roots and mycorrhizas of herbaceous woodland plants I. Quantitative aspects of morfology. New Phytol. 1990, 114, 469–479. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Rudawska, M.; Leski, T.; Stańska, M. Species and functional diversity of ectomycorrhizal fungal communities on Scots pine (Pinus sylvestris L.) trees on three different sites. Annals of Forest Science, communities on Scots pine (Pinus sylvestris L.) trees on three different sites. Ann. For. Sci. 2015, 68, 5–15. [Google Scholar] [CrossRef]
- Schellenbaum, L.; Müller, J.; Boller, T.; Wiemken, A.; Schüepp, H. Effects of drought on non-mycorrhizal and mycorrhizal maize: Changes in the pools of non-structural carbonhydrates, in the activities of invertase and trehalase, and in the pools of amino acids and andimino acids. New Phytol. 1998, 138, 59–66. [Google Scholar] [CrossRef]
- Kyriazopoulos, A.P.; Orfanoudakis, M.; Abraham, E.M.; Parissi, Z.M.; Serafidou, N. Effects of arbuscular mycorrhiza fungi on growth characteristics of Dactylis glomerata L. under drought stress conditions. Notulae Bot. Hortic. Agrobotanici Cluj-Napoca 2014, 42, 132–137. [Google Scholar] [CrossRef]
- Pouyat, R.V.; Yesilonis, I.D.; Russell-Anelli, J.; Neerchal, N.K. Soil chemical and physical properties that differentiate urban land-use and cover types. Soil. Sci. Soc. Am. 2007, J71, 1010–1019. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. (Eds.) Trace Element in Soils and Plants, 3rd ed.; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Breś, W.; Golcz, A.; Komosa, A.; Kozik, E.; Tyksiński, W. Fertilization of Garden Plants; Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu: Poznań, Poland, 2003; ISBN 978-83-7160-548-2. [Google Scholar]
- Bojarczuk, K.; Kieliszewska-Rokicka, B. Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth.) seedlings grown in metal—Contaminated soil. Water Air Soil Pollut. 2010, 207, 227–240. [Google Scholar] [CrossRef]
- Przybulewska, K.; Krompiewska, A. Influence of NaCl salinity yield on a group of beneficial metabolizing selected similar compounds in the soil. Zesz. Probl. PostępówNauk. Rol. 2005, 505, 323–329.1. [Google Scholar]
- Mazur, Z.; Radziemska, M.; Deptuła, D. Influence of antislippery measures on the content of chlorides in soils along the streets of Olsztyn city. Ochr. Sr. I ZasobówNat. 2011, 50, 212–217. [Google Scholar]
- Łukasiewicz, S. The physical structure of land, the content of organic substances, and the chemical composition of soil comprising the subsoil of 21 urban greenery locations in the area of Poznań. Part IV. Physiogr. Stud. Ser. A—Phys. Geogr. Arch. 2012; 63, 049–075, Badania Fizjograficzne R III. [Google Scholar] [CrossRef]
- Hoffmann, M.; Staszewski, T.; Komosa, A.; Tyksiński, W. Analiza Chemiczna w Ochronie i Nawożeniu Zieleni Miejskiej; Ogólnopolska Konferencja NOT: Poznań, Poland, 1973; pp. 75–93. [Google Scholar]
- Nowosielski, O. Zasady Opracowywania Zaleceń Nawozowych w Ogrodnictwie; PWRiL: Warszawa, Poland, 1988. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants; Acad. Press: London, UK; San Diego, CA, USA, 1995. [Google Scholar]
- Nowosielski, O. Methods of Determining Fertilization Needs; PWRiL: Warszawa, Poland, 1974. [Google Scholar]
- Niesiobędzka, K. Mobility indexes of Cu, Pb, and Zn in soil ecosystems with various levels of metal contamination. Environ. Monit. Assess. 2023, 195, 505. (In Poland) [Google Scholar] [CrossRef] [PubMed]
- Bielińska, E.; Mocek-Płóciniak, A.; Futa, B.; Kawecka-Radomska, M. The relationship between the activity of dehydrogenases and phosphatases and the content of polycyclic aromatic hydrocarbons in urban soils. J. Res. Appl. Agric. Eng. 2014, 59, 8–11. [Google Scholar]
- Li, T.; Meng, L.; Herman, U.; Lu, Z.; Crittenden, J. A survey of soil enzyme activities along major roads in Beijing: The implications for traffic corridor green space management. Int. J. Environ. Res. Public Health 2015, 12, 12475–12488. [Google Scholar] [CrossRef]
- Kieliszewska-Rokicka, B.; Oleksyn, J.; Zytkowiak, R.; Reich, P.B. Links between root carbohydrates and seasonal pattern of soil microbial activity of diverse European populations of Pinus sylvestris grown in a provenance plantation. Acta Soc. Bot. Poloniae 2003, 2, 167–173. [Google Scholar] [CrossRef]
- Brzezińska, M.; Stępniewska, Z.; Stępniewski, W. Soil oxygen status and dehydrogenase activity. Soil Biol. Biochem. 1998, 30, 1783–1790. [Google Scholar] [CrossRef]
- Brzezińska, M.; Stępniewska, Z.; Stępniewski, Z. Dehydrogenase and catalase activity of soil irrigated with municipal wastewater. Pol. J. Environ. Stud. 2001, 10, 307–311. [Google Scholar]
- Włodarczyk, T.; Stępniewski, W.; Brzezińska, M. Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol. Fertil. Soils 2002, 36, 200–206. [Google Scholar] [CrossRef]
- Trevors, J.T. Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil. Plant Soil 1984, 77, 285–293. [Google Scholar] [CrossRef]
- Levyk, V.; Maryskevych, O.; Brzezińska, M.; Włodarczyk, T. Dehydrogenase Activity of Technogenic Soils of Former Sulphur Mines (Yvaoriv and Nemyriv, Ukraine). Int. Agrophys. 2007, 21, 255–260. [Google Scholar]
- Fernandez-Calviño, D.; Soler-Rovira, P.; Polo, A.; Diaz-Raviña, M.; Arias-Estevez, M.; Plaza, C. Enzyme Activities In Vineyard Soils Long-Term Treated With Copper-Based Fungicides. Soil Biol. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- Bååth, E.; Anderson, T.H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA—Based techniques. Soil Biol. Biochem. 2003, 35, 955–963. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef]
- Pandey, S.; Singh, D. Soil dehydrogenase, phosphomonoesterase and arginine deaminase activities in an insecticide treated groundnut (Arachis hypogaea L.) field. Chemosphere 2006, 63, 869–880. [Google Scholar] [CrossRef]
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | |
---|---|---|---|---|---|
pH (H2O) | 7.77 ± 0.52 | 7.11 ± 0.60 | 7.73 ± 0.12 | 7.35 ± 0.29 | 7.62 ± 0.13 |
pH (KCL) | 7.30 ± 0.40 | 7.01 ± 0.81 | 7.20 ± 0.01 | 7.29 ± 0.02 | 7.08 ± 0.09 |
P (mg 100 g−1) | 3.77 ± 2.14 a | 13.90 ± 0.68 ab | 3.36 ± 1.77 a | 11.40 ± 2.69 b | 5.40 ± 1.48 ab |
K (mg 100 g−1) | 15.00 ± 1.84 ab | 13.52 ± 5.22 ab | 21.99 ± 12.70 a | 20.10 ± 0.85 a | 7.33 ± 2.36 b |
Ca (mg 100 g−1) | 196.30 ± 17.34 a | 78.00 ± 29.88 b | 170.10 ± 70.32 a | 117.50 ± 33.66 a | 117.94 ± 15.41 a |
Mg (mg100 g−1) | 13.50 ± 0.71 a | 7.00 ± 0.47 a | 20.12 ± 1.60 ab | 11.05 ± 2.48 a | 32.96 ± 4.12 b |
S-SO4 | 1.05 ± 0.92 | 0.69 ± 0.33 | 1.73 ± 1.68 | 0.95 ± 0.35 | 1.42 ± 0.89 |
(mg 100g−1) | |||||
Cl (mg 100 g−1) | 1.90 ± 0.56 | 2.03 ± 0.57 | 1.69 ± 0.11 | 2.25 ± 0.35 | 1.42 ± 0.11 |
Na (mg 100 g−1) | 1.75 ± 0.49 | 1.42 ± 0.07 | 2.85 ± 0.01 | 2.05 ± 0.78 | 1.78 ± 0.69 |
Pb (mg kg−1) | 12.92 ± 2.89 | 12.97 ± 2.97 | 24.00 ± 0.09 | 25.23 ± 9.80 | 27.99 ± 25.95 |
C (%) | 0.40 ± 0.32 ab | 0.20 ± 0.32 ab | 0.77 ± 0.20 b | 0.15 ± 0.00 a | 0.70 ± 0.27 b |
N (%) | 0.10 ± 0.13 a | 0.11 ± 0.20 a | 0.44 ± 0.11 b | 0.13 ± 0.05 a | 0.28 ± 0.01 ab |
C/N | 4.00 ± 0.14 | 1.77 ± 1.67 | 1.69 ± 0.17 | 1.11 ± 0.05 | 2.49 ± 0.10 |
EC (mS cm−1) | 0.18 ± 0.04 | 0.15 ± 0.01 | 0.22 ± 0.11 | 0.15 ± 0.05 | 0.26 ± 0.79 |
F% | M% | A% | ||||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Overall term study site term and study site In each study term term 1 study site term 2 study site term 3 study site term 4 study site term 5 study site term 6 study site | 7.183 0.000 * 11.884 0.000 * 1.888 0.018 * 2.633 0.058 2.417 0.075 1.218 0.328 5.281 0.003 * 3.144 0.032 * 13.727 0.000 * | 9.121 0.000 * 2.484 0.046 * 3.219 0.000 * 3.141 0.032 * 5.690 0.002 * 2.783 0.048 * 1.325 0.287 2.551 0.064 11.688 0.000 * | 6.628 0.000 * 1.905 0.112 5.134 0.000 * 3.013 0.037 * 6.170 0.001 * 18.244 0.000 * 0.649 0.632 5.228 0.003 * 4.199 0.009 * |
Water Content (%) | |||||
---|---|---|---|---|---|
Study Term | Study Site | ||||
1 | 2 | 3 | 4 | 5 | |
April 2009 | 7.69 ± 0.27 a | 10.06 ± 3.20 a | 30.33 ± 1.97 b | 5.27 ± 0.59 a | 39.58 ± 26.82 b |
November 2009 | 9.23 ± 1.04 ab | 9.80 ± 3.18 ab | 21.79 ± 3.22 b | 4.77 ± 1.10 a | 45.90 ± 22.07 c |
April 2011 | 7.78 ± 0.33 a | 8.08 ± 0.00 a | 28.72 ± 0.02 b | 8.08 ± 0.00 a | 8.07 ± 0.03 a |
November 2013 | 1.99 ± 0.55 a | 1.70 ± 0.64 a | 7.37 ± 1.31 b | 2.33 ± 1.53 a | 35.52 ± 0.75 c |
April 2014 | 5.66 ± 2.28 a | 5.36 ± 1.35 a | 14.72 ± 6.26 b | 5.65 ± 0.66 a | 32.46 ± 4.36 c |
Activity of nonspecific dehydrogenase (µmol TTF g−1s.m 24 h−1) | |||||
1 | 2 | 3 | 4 | 5 | |
April 2009 | 0.225 ± 0.00 a | 0.349 ± 0.17 a | 0.815 ± 0.22 b | 0.207 ± 0.11 a | 0.680 ± 0.29 b |
November 2009 | 0.309 ± 0.11 a | 0.367 ± 0.03 a | 0.725 ± 0.08 b | 0.102 ± 0.05 a | 0.134 ± 0.48 a |
April 2011 | 0.264 ± 0.04 ac | 0.497 ± 0.13 ab | 0.599 ± 0.09 b | 0.349 ± 0.16 a | 0.360 ± 0.16 a |
November 2013 | 0.075 ± 0.05 a | 0.089 ± 0.05 a | 0.169 ± 0.10 a | 0.067 ± 0.02 a | 0.630 ± 0.15 b |
April 2014 | 0.387 ± 0.24 a | 0.215 ± 0.07 a | 0.620 ± 0.09 b | 0.310 ± 0.06 a | 0.620 ± 0.17 b |
Two-Way Analysis of Variance | ||||
---|---|---|---|---|
Activity of Nonspecific Dehydrogenase | Water Content (%) | |||
F | p | F | p | |
Overall | ||||
Term | 19.277 | 0.000 * | 15.862 | 0.000 * |
study site | 60.533 | 0.000 * | 34.780 | 0.000 * |
term and study site | 8.573 | 0.000 * | 8.024 | 0.000 * |
In each study term | ||||
term 1 | ||||
study site | 12.955 | 0.000 * | 12.915 | 0.000 * |
term 2 | ||||
study site | 27.472 | 0.000 * | 22.123 | 0.000 * |
term 3 | ||||
study site | 7.080 | 0.000 * | 121.666 | 0.000 * |
term 4 | ||||
study site | 42.720 | 0.000 * | 216.666 | 0.000 * |
term 5 | ||||
study site | 10.156 | 0.000 * | 3.961 | 0.018 * |
Factor | Pearson Correlation Coefficient | |||
---|---|---|---|---|
F% | M% | A% | Activity of Nonspecific Dehydrogenase | |
Water content % | 0.057 | 0.153 | −0.238 * | 0.843 * |
Mycorrhizal Colonization | Origin of Soils in Trap Cultures | One-Way Analysis of Variance | |||||
---|---|---|---|---|---|---|---|
Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | F | p | |
F% | 41.66 ± 14.72 a | 82.22 ± 7.50 b | 58.33 ± 2.43 ab | 52.77 ± 17.81 ab | 34.44 ± 14.71 a | 4.604 | 0.006 * |
M% | 0.48 ± 0.24 a | 3.80 ± 3.54 b | 4.23 ± 4.70 b | 0.73 ± 0.42 a | 0.48 ± 0.31 a | 3.740 | 0.016 * |
A% | 0.15 ± 0.12 ab | 0.33 ± 0.12 ab | 1.80 ± 0.40 a | 0.09 ± 0.06 ab | 0.02 ± 0.02 b | 3.296 | 0.026 * |
Factor | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | One-Way Analysis of Variance | |
---|---|---|---|---|---|---|---|
F | p | ||||||
The activity of nonspecific dehydrogenase | 0.043 ± 0.02 a | 0.124 ± 0.06 ab | 0.128 ± 0.2 ab | 0.105 ± 0.08 ab | 0.208 ± 0.14 b | 0.338 | 0.026 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyburska-Woś, J.; Kieliszewska-Rokicka, B. Long-Term Monitoring Studies of the Mycorrhizal Colonization of Aesculus hippocastanum L. Roots and the Vitality of Soil Microorganisms in Urban and Non-Urban Environments. Forests 2024, 15, 84. https://doi.org/10.3390/f15010084
Tyburska-Woś J, Kieliszewska-Rokicka B. Long-Term Monitoring Studies of the Mycorrhizal Colonization of Aesculus hippocastanum L. Roots and the Vitality of Soil Microorganisms in Urban and Non-Urban Environments. Forests. 2024; 15(1):84. https://doi.org/10.3390/f15010084
Chicago/Turabian StyleTyburska-Woś, Jolanta, and Barbara Kieliszewska-Rokicka. 2024. "Long-Term Monitoring Studies of the Mycorrhizal Colonization of Aesculus hippocastanum L. Roots and the Vitality of Soil Microorganisms in Urban and Non-Urban Environments" Forests 15, no. 1: 84. https://doi.org/10.3390/f15010084
APA StyleTyburska-Woś, J., & Kieliszewska-Rokicka, B. (2024). Long-Term Monitoring Studies of the Mycorrhizal Colonization of Aesculus hippocastanum L. Roots and the Vitality of Soil Microorganisms in Urban and Non-Urban Environments. Forests, 15(1), 84. https://doi.org/10.3390/f15010084