Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Image Data Sources
2.1.3. Ground Survey Data Sources
2.1.4. Auxiliary Data Sources
2.2. Methods
2.2.1. Mapping the Areca Distribution with Deep Learning
2.2.2. Multi-Data Fusion Combined with Machine Learning to Map Historical Areca Palm Distribution
2.2.3. Evaluation of the Classification Results
2.2.4. Dynamic Change and Spatial Pattern of Areca Analysis
2.2.5. Statistical Analysis of Driving Forces
3. Results
3.1. Model Classifier Results
3.2. Dynamic Change and Spatial Pattern of Areca Palm
3.3. Mechanisms Influencing Area Palm Evolution
4. Discussion
4.1. Historical Distribution of the Areca Palm
4.2. Spatiotemporal Evolution of Areca Palm Plantation on Hainan Island
4.3. Mechanisms Influencing the Evolution of Areca Palm Plantation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Delpeuch, C.; Leblois, A. The Elusive Quest for Supply Response to Cash-Crop Market Reforms in Sub-Saharan Africa: The Case of Cotton. World Dev. 2014, 64, 521–537. [Google Scholar] [CrossRef]
- Su, S.; Wan, C.; Li, J.; Jin, X.; Pi, J.; Zhang, Q.; Weng, M. Economic benefit and ecological cost of enlarging tea cultivation in subtropical China: Characterizing the trade-off for policy implications. Land Use Policy 2017, 66, 183–195. [Google Scholar] [CrossRef]
- Herrmann, R.; Jumbe, C.; Bruentrup, M.; Osabuohien, E. Competition between biofuel feedstock and food production: Empirical evidence from sugarcane outgrower settings in Malawi. Biomass Bioenergy 2018, 114, 100–111. [Google Scholar] [CrossRef]
- Wiréhn, L. Nordic agriculture under climate change: A systematic review of challenges, opportunities and adaptation strategies for crop production. Land Use Policy 2018, 77, 63–74. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Jin, X.; Chen, J.; Zhang, S.; He, Z.; Li, S.; He, Z.; Zhang, H.; Xiao, H. Exploring the socioeconomic and ecological consequences of cash crop cultivation for policy implications. Land Use Policy 2018, 76, 46–57. [Google Scholar] [CrossRef]
- Talhelm, T. Emerging evidence of cultural differences linked to rice versus wheat agriculture. Curr. Opin. Psychol. 2020, 32, 81–88. [Google Scholar] [CrossRef]
- Buente, W.; Dalisay, F.; Pokhrel, P.; Kramer, H.K.; Pagano, I. An Instagram-Based Study to Understand Betel Nut Use Culture in Micronesia: Exploratory Content Analysis. J. Med. Internet Res. 2020, 22, e13954. [Google Scholar] [CrossRef]
- Elbakidze, M.; Surová, D.; Muñoz-Rojas, J.; Persson, J.-O.; Dawson, L.; Plieninger, T.; Pinto-Correia, T. Perceived benefits from agroforestry landscapes across North-Eastern Europe: What matters and for whom? Landsc. Urban Plan. 2021, 209, 104044. [Google Scholar] [CrossRef]
- Liu, P.; Li, W.; Yu, Y.; Tang, R.; Guo, X.; Wang, B.; Yang, B.; Zhang, L. How much will cash forest encroachment in rainforests cost? A case from valuation to payment for ecosystem services in China. Ecosyst. Serv. 2019, 38, 100949. [Google Scholar] [CrossRef]
- Qaim, M.; Sibhatu, K.T.; Siregar, H.; Grass, I. Environmental, Economic, and Social Consequences of the Oil Palm Boom. Annu. Rev. Resour. Econ. 2020, 12, 321–344. [Google Scholar] [CrossRef]
- Ansari, A.; Mahmood, T.; Bagga, P.; Ahsan, F.; Shamim, A.; Ahmad, S.; Shariq, M.; Parveen, S. Areca catechu: A phytopharmacological legwork. Food Front. 2021, 2, 163–183. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Y.; Shi, H. First Report of Anthracnose Caused by Colletotrichum kahawae subsp. ciggaro on Areca in China. Plant Dis. 2020, 104, 1871. [Google Scholar] [CrossRef]
- Li, J.; Jia, X.; Liu, L.; Cao, X.; Xiong, Y.; Yang, Y.; Zhou, H.; Yi, M.; Li, M. Comparative biochemical and transcriptome analysis provides insights into the regulatory mechanism of striped leaf albinism in arecanut (Areca catechu L.). Ind. Crops Prod. 2020, 154, 112734. [Google Scholar] [CrossRef]
- Myers, A.L. Metabolism of the areca alkaloids—Toxic and psychoactive constituents of the areca (betel) nut. Drug Metab. Rev. 2022, 54, 343–360. [Google Scholar] [CrossRef]
- Moss, W.J. The Seeds of Ignorance—Consequences of a Booming Betel-Nut Economy. N. Engl. J. Med. 2022, 387, 1059–1061. [Google Scholar] [CrossRef]
- Su, S.-Y.; Chen, W.-T.; Chiang, C.-J.; Yang, Y.-W.; Lee, W.-C. Oral cancer incidence rates from 1997 to 2016 among men in Taiwan: Association between birth cohort trends and betel nut consumption. Oral Oncol. 2020, 107, 104798. [Google Scholar] [CrossRef]
- Mehrtash, H.; Duncan, K.; Parascandola, M.; David, A.; Gritz, E.R.; Gupta, P.C.; Mehrotra, R.; Amer Nordin, A.S.; Pearlman, P.C.; Warnakulasuriya, S.; et al. Defining a global research and policy agenda for betel quid and areca nut. Lancet Oncol. 2017, 18, e767–e775. [Google Scholar] [CrossRef]
- Warnakulasuriya, S.; Chen, T.H.H. Areca Nut and Oral Cancer: Evidence from Studies Conducted in Humans. J. Dent. Res. 2022, 101, 1139–1146. [Google Scholar] [CrossRef]
- Lechner, M.; Breeze, C.E.; Vaz, F.; Lund, V.J.; Kotecha, B. Betel nut chewing in high-income countries—Lack of awareness and regulation. Lancet Oncol. 2019, 20, 181–183. [Google Scholar] [CrossRef]
- Murphy, K.L.; Liu, M.; Herzog, T.A. Confirmatory factor analysis and structural equation modeling of socio-cultural constructs among chamorro and non-chamorro micronesian betel nut chewers. Ethn. Health 2019, 24, 724–735. [Google Scholar] [CrossRef]
- Yang, B.; Chen, H.; Chen, W.; Chen, W.; Zhong, Q.; Zhang, M.; Pei, J. Edible Quality Analysis of Different Areca Nuts: Compositions, Texture Characteristics and Flavor Release Behaviors. Foods 2023, 12, 1749. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Zhu, W.; Ren, C. First steps to regulate advertising of areca nut in China. Lancet Oncol. 2019, 20, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Chaves, M.E.D.; Picoli, M.C.A.; Sanches, I.D. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Mahlayeye, M.; Darvishzadeh, R.; Nelson, A. Cropping Patterns of Annual Crops: A Remote Sensing Review. Remote Sens. 2022, 14, 2404. [Google Scholar] [CrossRef]
- Freudenberg, M.; Nölke, N.; Agostini, A.; Urban, K.; Wörgötter, F.; Kleinn, C. Large Scale Palm Tree Detection in High Resolution Satellite Images Using U-Net. Remote Sens. 2019, 11, 312. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2017, 9, 22. [Google Scholar] [CrossRef]
- Cheng, Y.; Yu, L.; Xu, Y.; Lu, H.; Cracknell, A.P.; Kanniah, K.; Gong, P. Mapping oil palm extent in Malaysia using ALOS-2 PALSAR-2 data. Int. J. Remote Sens. 2018, 39, 432–452. [Google Scholar] [CrossRef]
- Lee, J.S.H.; Wich, S.; Widayati, A.; Koh, L.P. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Li, H.; Song, X.-P.; Hansen, M.C.; Becker-Reshef, I.; Adusei, B.; Pickering, J.; Wang, L.; Wang, L.; Lin, Z.; Zalles, V.; et al. Development of a 10-m resolution maize and soybean map over China: Matching satellite-based crop classification with sample-based area estimation. Remote Sens. Environ. 2023, 294, 113623. [Google Scholar] [CrossRef]
- Johnson, D.M. Using the Landsat archive to map crop cover history across the United States. Remote Sens. Environ. 2019, 232, 111286. [Google Scholar] [CrossRef]
- Carrasco, L.; Fujita, G.; Kito, K.; Miyashita, T. Historical mapping of rice fields in Japan using phenology and temporally aggregated Landsat images in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2022, 191, 277–289. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Asgarian, A.; Soffianian, A.; Pourmanafi, S. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Comput. Electron. Agric. 2016, 127, 531–540. [Google Scholar] [CrossRef]
- Jin, Y.; Guo, J.; Ye, H.; Zhao, J.; Huang, W.; Cui, B. Extraction of Arecanut Planting Distribution Based on the Feature Space Optimization of PlanetScope Imagery. Agriculture 2021, 11, 371. [Google Scholar] [CrossRef]
- Gumma, M.K.; Nelson, A.; Thenkabail, P.S.; Singh, A.N. Mapping rice areas of South Asia using MODIS multitemporal data. J. Appl. Remote Sens. 2011, 5, 053547. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Song, K.; Zhao, C.; Wang, C.; Xiao, X.; Wang, Y. Mapping global distribution of mangrove forests at 10-m resolution. Sci. Bull. 2023, 68, 1306–1316. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Xue, X.; Jiang, Y.; Shen, Q. Deep learning for remote sensing image classification: A survey. WIREs Data Min. Knowl. Discov. 2018, 8, e1264. [Google Scholar] [CrossRef]
- Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.-S. Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756. [Google Scholar] [CrossRef]
- Lin, Y.-z.; Nie, Z.-h.; Ma, H.-w. Structural Damage Detection with Automatic Feature-Extraction through Deep Learning: Structural damage detection with automatic feature-extraction through deep learning. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 1025–1046. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning Applications. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 6–18 August 2018; pp. 1–6. [Google Scholar]
- Liang, J.; Gong, J.; Li, W. Applications and impacts of Google Earth: A decadal review (2006–2016). ISPRS J. Photogramm. Remote Sens. 2018, 146, 91–107. [Google Scholar] [CrossRef]
- Schmidt, G.; Jenkerson, C.B.; Masek, J.; Vermote, E.; Gao, F. Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) Algorithm Description; 2013–1057; USGS: Reston, VA, USA, 2013; p. 27.
- Vermote, E.; Roger, J.C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176. [Google Scholar]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Li, D.; Lin, B.; Wang, X.; Guo, Z. High-Performance Polarization Remote Sensing with the Modified U-Net Based Deep-Learning Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Zareapoor, M.; Wang, R.; Zhou, H.; Yang, J. A Novel Deep Structure U-Net for Sea-Land Segmentation in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3219–3232. [Google Scholar] [CrossRef]
- Fan, X.; Yan, C.; Fan, J.; Wang, N. Improved U-Net Remote Sensing Classification Algorithm Fusing Attention and Multiscale Features. Remote Sens. 2022, 14, 3591. [Google Scholar] [CrossRef]
- Ayushi; Buttar, P.K. Satellite Imagery Analysis for Crop Type Segmentation Using U-Net Architecture. Procedia Comput. Sci. 2024, 235, 3418–3427. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lee, J.; Li, S. Extending Moran’s Index for Measuring Spatiotemporal Clustering of Geographic Events. Geogr. Anal. 2017, 49, 36–57. [Google Scholar] [CrossRef]
- Luo, H.; Li, M.; Dai, S.; Li, H.; Li, Y.; Hu, Y.; Zheng, Q.; Yu, X.; Fang, J. Combinations of Feature Selection and Machine Learning Algorithms for Object-Oriented Betel Palms and Mango Plantations Classification Based on Gaofen-2 Imagery. Remote Sens. 2022, 14, 1757. [Google Scholar] [CrossRef]
- Mayes, S. The History and Economic Importance of the Oil Palm. In The Oil Palm Genome; Ithnin, M., Kushairi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–8. [Google Scholar]
- Takeuchi, K.; Ichikawa, K.; Elmqvist, T. Satoyama landscape as social–ecological system: Historical changes and future perspective. Curr. Opin. Environ. Sustain. 2016, 19, 30–39. [Google Scholar] [CrossRef]
- Srinivasan, U.; Velho, N.; Lee, J.S.H.; Chiarelli, D.D.; Davis, K.F.; Wilcove, D.S. Oil palm cultivation can be expanded while sparing biodiversity in India. Nat. Food 2021, 2, 442–447. [Google Scholar] [CrossRef]
Complete Name | Short Form | Abbreviation |
---|---|---|
Baisha Li Autonomous County | Baisha | BS |
Baoting Li and Miao Autonomous County | Baoting | BT |
Changjiang Li Autonomous County | Changjiang | CJ |
Chengmai County | Chengmai | CM |
Danzhou City | Danzhou | DZ |
Ding’an County | Ding’an | DA |
Dongfang City | Dongfang | DF |
Haikou City | Haikou | HK |
Ledong Li Autonomous County | Ledong | LD |
Lingshui Li Autonomous County | Lingshui | LS |
Lingao County | Lingao | LG |
Qionghai City | Qionghai | QH |
Qiongzhong Li Autonomous County | Qiongzhong | QZ |
Sanya City | Sanya | SY |
Tunchang County | Tunchang | TC |
Wanning City | Wanning | WN |
Wenchang City | Wenchang | WC |
Wuzhishan City | Wuzhishan | WZS |
Year | Image Composition Time | Satellite Sensor | Bands Information |
---|---|---|---|
1987 | 01/01/1987–30/12/1987 | Landsat5 TM | Blue (0.45–0.52 μm) |
1992 | 01/01/1992–01/03/1993 | Green (0.52–0.60 μm) | |
1997 | 01/01/1997–30/12/1997 | Red (0.63–0.69 μm) | |
2002 | 01/10/2001–30/12/2002 | NIR (0.77–0.90 μm) | |
2007 | 01/01/2007–30/12/2007 | SWIR1 (1.55–1.75 μm) | |
2012 | 01/06/2011–01/05/2012 | SWIR2 (2.08–2.35 μm) | |
Landsat8 OLI | Blue (0.452–0.512 μm) | ||
2017 | 01/01/2017–30/12/2017 | Green (0.533–0.590 μm) | |
Red (0.636–0.673 μm) | |||
NIR (0.851–0.879 μm) | |||
2022 | 01/01/2022–30/12/2022 | SWIR1 (1.566–1.651 μm) | |
SWIR2 (2.107–2.294 μm) |
Cities/Counties | Areca Palm Plot | Average Area (ha) |
---|---|---|
BS | 56 | 0.98 |
BT | 105 | 2.65 |
CJ | 1 | 0.86 |
CM | 122 | 2.78 |
DZ | 5 | 1.71 |
DA | 136 | 3.42 |
DF | 4 | 1.35 |
HK | 132 | 1.57 |
LD | 44 | 1.88 |
LS | 13 | 3.61 |
LG | 44 | 2.22 |
QH | 211 | 4.78 |
QZ | 154 | 2.44 |
SY | 44 | 1.38 |
TC | 114 | 3.78 |
WN | 167 | 2.65 |
WC | 97 | 1.21 |
WZS | 51 | 2.11 |
Parameter | Representation Results |
---|---|
TP | True positive (predicted as positive and actually positive) |
FP | False positive (predicted as positive but actually negative) |
TN | True negative (predicated as negative and actually negative) |
FN | False negative (predicated as negative but actually positive) |
Confusion Matrix | Reference Data | |||
---|---|---|---|---|
Areca | Non-Areca | Total | ||
Classified data | Areca | a | b | a + b |
Non-Areca | c | d | c + d | |
Total | a + c | b + d | a + b + c + d |
Internal Evaluation | Areca | Non-Areca |
---|---|---|
Precision | 0.85 | 0.98 |
Recall | 0.82 | 0.97 |
Dice | 0.81 | 0.97 |
External evaluation | ||
User’s Accuracy | 0.87 | 0.93 |
Producer’s Accuracy | 0.92 | 0.88 |
F1-Score | 0.89 | 0.90 |
Overall Accuracy | 0.90 | |
Kappa coefficient | 0.80 |
User’s Accuracy | Producer’s Accuracy | F1-Score | Overall Accuracy | Kappa Coefficient | |
---|---|---|---|---|---|
Areca | 0.68 | 0.65 | 0.66 | 0.67 | 0.34 |
Non-Areca | 0.66 | 0.69 | 0.67 |
Areca Palm Area (ha) | ||||||||
---|---|---|---|---|---|---|---|---|
1987 | 1992 | 1997 | 2002 | 2007 | 2012 | 2017 | 2022 | |
Baisha | 176 | 221 | 93 | 343 | 539 | 537 | 1330 | 3787 |
Baiting | 506 | 687 | 1092 | 1609 | 3277 | 4435 | 5961 | 14,449 |
Changjiang | 0 | 0 | 0 | 0 | 0 | 19 | 51 | 121 |
Chengmai | 144 | 142 | 386 | 1010 | 2069 | 3409 | 5308 | 14,390 |
Danzhou | 11 | 11 | 13 | 35 | 297 | 118 | 330 | 574 |
Dingan | 330 | 257 | 707 | 1380 | 4488 | 8327 | 10,792 | 19,192 |
Dongfang | 26 | 26 | 2 | 6 | 6 | 36 | 123 | 379 |
Haikou | 77 | 221 | 311 | 239 | 785 | 1636 | 2213 | 11,600 |
Lengdong | 876 | 910 | 2423 | 1874 | 2724 | 3625 | 4272 | 6248 |
Linggao | 0 | 0 | 0 | 1 | 6 | 68 | 404 | 1427 |
Lingshui | 1155 | 1641 | 3786 | 3491 | 3942 | 4503 | 4395 | 4277 |
Qionghai | 864 | 1012 | 3103 | 8537 | 8993 | 15,932 | 17,755 | 33,906 |
Qiongzhong | 529 | 529 | 1799 | 5134 | 6086 | 12,500 | 14,934 | 22,484 |
Sanya | 664 | 945 | 1463 | 3569 | 4763 | 4243 | 4742 | 4774 |
Tunchang | 837 | 1013 | 1420 | 3878 | 6500 | 9601 | 11,922 | 19,390 |
Wangning | 1698 | 1896 | 3469 | 6446 | 12,259 | 15,629 | 19,157 | 21,739 |
Wengchang | 48 | 67 | 234 | 158 | 667 | 1585 | 4788 | 10,024 |
Wuzhishan | 123 | 215 | 399 | 184 | 927 | 1283 | 2945 | 4567 |
Total | 8064 | 9793 | 20,700 | 37,894 | 58,328 | 87,486 | 111,422 | 193,328 |
Period | Total Annual Precipitation (mm) | Average Annual Minimum Temperature (Celsius) | Average Annual Maximum Temperature (Celsius) |
---|---|---|---|
1987 | 1109 | 17.98 | 24.53 |
1992 | 1415 | 17.27 | 24.03 |
1997 | 1739 | 17.80 | 24.40 |
2002 | 1689 | 18.62 | 24.73 |
2007 | 1292 | 17.73 | 24.08 |
2012 | 1917 | 17.52 | 23.76 |
2017 | 1964 | 18.52 | 24.08 |
2022 | 1590 | 17.73 | 24.77 |
Total Pop | Rural Pop | Urban Pop | GDP | Precipitation | Maximum Temperature | Minimum Temperature | |
---|---|---|---|---|---|---|---|
Hainan Island | 0.92 ** | −0.76 * | −0.08 | 0.98 *** | 0.41 | 0.15 | 0.06 |
Baisha | −0.03 | −0.03 | 0.15 | 0.87 ** | 0.17 | 0.25 | 0.63 |
Baoting | −0.18 | 0.09 | 0.48 | 0.92 *** | 0.36 | −0.02 | 0.62 |
Changjiang | 0.30 | −0.78 * | 0.81 * | 0.85 ** | 0.29 | 0.20 | 0.53 |
Chengmai | 0.42 | −0.93 *** | 0.82 * | 0.94 *** | 0.18 | 0.37 | 0.67 |
Danzhou | 0.65 | −0.38 | 0.72 * | 0.26 | 0.01 | 0.04 | 0.23 |
Ding’an | 0.29 | −0.80 * | −0.01 | 0.98 *** | 0.33 | 0.32 | 0.65 |
Dongfang | 0.48 | −0.70 | 0.79 * | 0.85 ** | 0.22 | 0.32 | 0.51 |
Haikou | 0.93 *** | −0.43 | 0.84 ** | 0.88 ** | 0.05 | 0.52 | 0.67 |
Ledong | 0.60 | 0.28 | 0.75 * | 0.84 ** | 0.64 | −0.22 | 0.52 |
Lingao | 0.17 | −0.82 * | 0.53 | 0.86 ** | 0.07 | 0.24 | 0.36 |
Lingshui | 0.90 ** | 0.42 | 0.80 * | 0.58 | 0.76 | −0.46 | 0.36 |
Qionghai | 0.94 *** | −0.80 * | 0.85 ** | 0.97 *** | 0.38 | 0.40 | 0.71 * |
Qiongzhong | 0.01 | 0.25 | 0.44 | 0.83 * | 0.50 | 0.01 | 0.62 |
Sanya | 0.70 | 0.66 | 0.82 | 0.70 | 0.61 | −0.45 | 0.55 |
Tunchang | 0.48 | −0.61 | 0.77 * | 0.98 *** | 0.38 | 0.27 | 0.65 |
Wanning | 0.71 | −0.51 | 0.94 *** | 0.67 ** | 0.52 | −0.21 | 0.51 |
Wenchang | 0.51 | −0.92 ** | 0.98 *** | 0.92 ** | 0.19 | 0.50 | 0.73 * |
Wuzhishan | 0.36 | −0.52 | −0.17 | 0.98 *** | 0.40 | 0.02 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yin, Z.; Luo, R.; Qian, J.; Fu, C.; Wang, Y.; Xie, Y.; Liu, Z.; Qiu, Z.; Pei, H. Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022). Forests 2024, 15, 1679. https://doi.org/10.3390/f15101679
Wang C, Yin Z, Luo R, Qian J, Fu C, Wang Y, Xie Y, Liu Z, Qiu Z, Pei H. Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022). Forests. 2024; 15(10):1679. https://doi.org/10.3390/f15101679
Chicago/Turabian StyleWang, Cai, Zhaode Yin, Ruoyu Luo, Jun Qian, Chang Fu, Yuling Wang, Yu Xie, Zijia Liu, Zixuan Qiu, and Huiqing Pei. 2024. "Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022)" Forests 15, no. 10: 1679. https://doi.org/10.3390/f15101679
APA StyleWang, C., Yin, Z., Luo, R., Qian, J., Fu, C., Wang, Y., Xie, Y., Liu, Z., Qiu, Z., & Pei, H. (2024). Spatiotemporal Evolution and Impact Mechanisms of Areca Palm Plantations in China (1987–2022). Forests, 15(10), 1679. https://doi.org/10.3390/f15101679