Wildfire Spread Prediction Using Attention Mechanisms in U2-NET
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. Attention U2-Net
3.2. Loss Function
4. Experiments
4.1. Datasets and Experimental Setup
4.2. Model Evaluation Metrics and Baselines
4.3. Results and Discussion
4.4. Ablation Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Wang, M.; Fu, Y.; Zhang, L.; Wang, X. A Wildfire Detection Algorithm Based on the Dynamic Brightness Temperature Threshold. Forests 2023, 14, 477. [Google Scholar] [CrossRef]
- Pereira, J.; Mendes, J.; Júnior, J.S.S.; Viegas, C.; Paulo, J.R. A Review of Genetic Algorithm Approaches for Wildfire Spread Prediction Calibration. Mathematics 2022, 10, 300. [Google Scholar] [CrossRef]
- Akhloufi, M.A.; Couturier, A.; Castro, N.A. Unmanned Aerial Vehicles for Wildland Fires: Sensing, Perception, Cooperation and Assistance. Drones 2021, 5, 15. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.; Gould, J.; Cheney, P. A Physics-Based Approach to Modeling Grassland Fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Missoula, MT, USA, 2017. [Google Scholar]
- Van Wanger, C.; Stocks, B.; Lawson, B.; Alexander, M.; Lynham, T.; McAlpine, R. Development and Structure of the Canadian Forest Fire Behavior Prediction System; Information Report No. ST-X-3; Canadian Forestry Service: Ottawa, ON, Canada, 1992; 67p. [Google Scholar]
- Ren, M.L.; Guo, Y.; Chen, B.X.; Fan, J.L.; Hu, T.X.; Sun, L. Prediction models of fire spread rate of Pinus koraiensis plantation’s surface fuel. Chin. J. Appl. Ecol. 2023, 34, 2091–2100. [Google Scholar]
- Srivas, T.; Artés, T.; de Callafon, R.A.; Altintas, I. Wildfire Spread Prediction and Assimilation for FARSITE Using Ensemble Kalman Filtering. Procedia Comput. Sci. 2016, 80, 897–908. [Google Scholar] [CrossRef]
- Sun, L.; Xu, C.; He, Y.; Zhao, Y.; Xu, Y.; Rui, X.; Xu, H. Adaptive Forest Fire Spread Simulation Algorithm Based on Cellular Automata. Forests 2021, 12, 1431. [Google Scholar] [CrossRef]
- Rui, X.; Hui, S.; Yu, X.; Zhang, G.; Wu, B. Forest fire spread simulation algorithm based on cellular automata. Nat. Hazards 2018, 91, 309–319. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Remote Sensing: Classification, Detection, and Segmentation. Remote Sens. 2023, 15, 1821. [Google Scholar] [CrossRef]
- Ghali, R.; Akhloufi, M.A. Deep Learning Approaches for Wildland Fires Using Satellite Remote Sensing Data: Detection, Mapping, and Prediction. Fire 2023, 6, 192. [Google Scholar] [CrossRef]
- Majid, S.; Alenezi, F.; Masood, S.; Ahmad, M.; Gündüz, E.S.; Polat, K. Attention based CNN model for fire detection and localization in real-world images. Expert Syst. Appl. 2022, 189, 116114. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Lv, Z.; Bellavista, P.; Yang, P.; Baik, S.W. Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1419–1434. [Google Scholar] [CrossRef]
- Shelhamer, E.; Long, J.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017, arXiv:1706.05587. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Shah, K.; Pantoja, M. Wildfire Spread Prediction Using Attention Mechanisms in U-NET. In Proceedings of the 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 19–21 July 2023; pp. 1–6. [Google Scholar]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753. [Google Scholar] [CrossRef]
- Huot, F.; Hu, R.L.; Goyal, N.; Sankar, T.; Ihme, M.; Chen, Y.F. Next Day Wildfire Spread: A Machine Learning Dataset to Predict Wildfire Spreading from Remote-Sensing Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Li, S.; Dong, M.; Du, G.; Mu, X. Attention Dense-U-Net for Automatic Breast Mass Segmentation in Digital Mammogram. IEEE Access 2019, 7, 59037–59047. [Google Scholar] [CrossRef]
- Khryashchev, V.; Larionov, R. Wildfire Segmentation on Satellite Images using Deep Learning. In Proceedings of the 2020 Moscow Workshop on Electronic and Networking Technologies (MWENT), Moscow, Russia, 11–13 March 2020; pp. 1–5. [Google Scholar]
- Wang, Z.; Yang, P.; Liang, H.; Zheng, C.; Yin, J.; Tian, Y.; Cui, W. Semantic Segmentation and Analysis on Sensitive Parameters of Forest Fire Smoke Using Smoke-Unet and Landsat-8 Imagery. Remote Sens. 2022, 14, 45. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, 20 September 2018, Proceedings 4; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar]
- Bochkov, V.S.; Kataeva, L.Y. wUUNet: Advanced Fully Convolutional Neural Network for Multiclass Fire Segmentation. Symmetry 2021, 13, 98. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Zhang, L.; Shen, Z.; Lin, W.; Zhang, D. U2Net-based Single-pixel Imaging Salient Object Detection. Curr. Opt. Photon. 2022, 6, 463–472. [Google Scholar]
- Vaswani, A.; Shazeer, N.M.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 2017; pp. 5998–6008. [Google Scholar]
- Zhang, J.; Zhu, H.; Wang, P.; Ling, X. ATT Squeeze U-Net: A Lightweight Network for Forest Fire Detection and Recognition. IEEE Access 2021, 9, 10858–10870. [Google Scholar] [CrossRef]
- Shirvani, Z.; Abdi, O.; Goodman, R.C. High-Resolution Semantic Segmentation of Woodland Fires Using Residual Attention UNet and Time Series of Sentinel-2. Remote Sens. 2023, 15, 1342. [Google Scholar] [CrossRef]
- Alsrehin, N.O.; Gupta, M.; Alsmadi, I.; Alrababah, S.A. U2-Net: A Very-Deep Convolutional Neural Network for Detecting Distracted Drivers. Appl. Sci. 2023, 13, 11898. [Google Scholar] [CrossRef]
- Nadeem, S.A.; Hoffman, E.A.; Sieren, J.C.; Comellas, A.P.; Bhatt, S.P.; Barjaktarevic, I.Z.; Abtin, F.; Saha, P.K. A CT-Based Automated Algorithm for Airway Segmentation Using Freeze-and-Grow Propagation and Deep Learning. IEEE Trans. Med. Imaging 2020, 40, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, W.; Shen, Z.; Zhang, D.; Xu, B.; Wang, K.; Chen, J. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection. IEEE Access 2023, 11, 88245–88257. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Abbas, S.F.; Duc, N.T.; Song, Y.-O.; Kim, K.; Lee, B. CV-Attention UNet: Attention-based UNet for 3D Cerebrovascular Segmentation of Enhanced TOF-MRA Images. arXiv 2023, arXiv:2311.10224. [Google Scholar]
- A Detailed Explanation of the Attention U-Net. Available online: https://towardsdatascience.com/a-detailed-explanation-of-the-attention-u-net-b371a5590831 (accessed on 1 May 2020).
- Wu, Y.; Wu, Y. Application of Split Coordinate Channel Attention Embedding U2Net in Salient Object Detection. Algorithms 2024, 17, 109. [Google Scholar] [CrossRef]
OA | Precision | Recall | F1 | |
---|---|---|---|---|
U-Net [20] | 0.977 | 0.275 | 0.563 | 0.37 |
Attention U-Net [20] | 0.978 | 0.294 | 0.574 | 0.389 |
ResUNet [22] | 0.985 | 0.4 | 0.389 | 0.394 |
U2-Net [28] | 0.986 | 0.377 | 0.358 | 0.367 |
Attention U2-Net | 0.982 | 0.521 | 0.331 | 0.405 |
Removed Feature | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|
Elevation | 0.98 | 0.519 | 0.343 | 0.413 |
ERC | 0.982 | 0.474 | 0.364 | 0.412 |
PDSI | 0.98 | 0.526 | 0.33 | 0.406 |
tmmn | 0.981 | 0.492 | 0.343 | 0.404 |
sph | 0.982 | 0.474 | 0.351 | 0.403 |
th | 0.983 | 0.48 | 0.345 | 0.401 |
Population | 0.981 | 0.504 | 0.332 | 0.400 |
pr | 0.978 | 0.508 | 0.330 | 0.400 |
vs | 0.979 | 0.523 | 0.323 | 0.399 |
Tmmx | 0.981 | 0.492 | 0.336 | 0.399 |
NDVI | 0.98 | 0.48 | 0.338 | 0.397 |
Prefiremask | 0.982 | 0.424 | 0.325 | 0.368 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, H.; Zhu, Y.; Sun, Y.; Zhang, G.; Gong, Z. Wildfire Spread Prediction Using Attention Mechanisms in U2-NET. Forests 2024, 15, 1711. https://doi.org/10.3390/f15101711
Xiao H, Zhu Y, Sun Y, Zhang G, Gong Z. Wildfire Spread Prediction Using Attention Mechanisms in U2-NET. Forests. 2024; 15(10):1711. https://doi.org/10.3390/f15101711
Chicago/Turabian StyleXiao, Hongtao, Yingfang Zhu, Yurong Sun, Gui Zhang, and Zhiwei Gong. 2024. "Wildfire Spread Prediction Using Attention Mechanisms in U2-NET" Forests 15, no. 10: 1711. https://doi.org/10.3390/f15101711
APA StyleXiao, H., Zhu, Y., Sun, Y., Zhang, G., & Gong, Z. (2024). Wildfire Spread Prediction Using Attention Mechanisms in U2-NET. Forests, 15(10), 1711. https://doi.org/10.3390/f15101711