Mixed Coniferous Broad-Leaved Forests as Road Shelter Forests: Increased Urban Traffic Noise Reduction Effects and Economic Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Average Crown Mass of Road Shelter Forests
2.3. Average Surface Density of Road Shelter Forests
2.3.1. Calculation of Average Mass Surface Density for PFs
2.3.2. Calculation of Average Mass Surface Density for the MCBLF
2.4. Noise Reduction and Additional Noise Reduction in Road Shelter Forest
2.5. Economic Benefits of Shelter Forest Noise Reduction
2.6. Model Application
2.7. Statistical Analysis
3. Results
3.1. Stand Characteristics of Shelter Forest Belts
3.2. Effects of Shelter Forests’ Characteristics on Noise Reduction
3.2.1. Influence of Forest Width on Noise Reduction
3.2.2. Influence of Average Forest Height on Noise Reduction
3.2.3. Influence of Shelter Forest Structure and Type on Noise Reduction
3.2.4. Influence of Crown Shape on Noise Reduction
3.2.5. Influence of Average Mass Density on Noise Reduction
3.2.6. Influence of Cumulative Mass Surface Density and Additional Noise Reduction
3.3. Noise Reduction at Different Frequencies by Shelter Forest Width
3.4. Economic Benefits of Shelter Forest on Noise Reduction
4. Discussion
4.1. Impact of Road Shelter Forest on Noise Reduction
4.2. Economic Benefits of Noise Reduction by Road Shelter Forest
4.3. Influence of Shelter Forest Noise Reduction on Residents
4.4. Applicability of This Research
4.5. Limitations and Implications of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González, D.M.; Morillas, J.M.B.; Rey-Gozalo, G. Effects of noise on pedestrians in urban environments where road traffic is the main source of sound. Sci. Total Environ. 2023, 857, 159406. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, B. How has consumers’ willingness to pay for the environmental value of new energy vehicles changed? Based on comparative surveys in 2016 and 2023. Res. Int. Bus. Financ. 2024, 72, 102508. [Google Scholar] [CrossRef]
- Jain, N.; Kourampi, I.; Umar, T.P.; Almansoor, Z.R.; Anand, A.; Rehman, M.E.U.; Jain, S.; Reinis, A. Global population surpasses eight billion: Are we ready for the next billion? AIMS Public Health 2023, 10, 849. [Google Scholar] [CrossRef] [PubMed]
- Nelson-Olivieri, J.R.; Layden, T.J.; Antunez, E.; Khalighifar, A.; Lasky, M.; Laverty, T.M.; Sanchez, K.A.; Shannon, G.; Starr, S.; Verahrami, A.K. Inequalities in noise will affect urban wildlife. Nat. Ecol. Evol. 2024, 8, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, S.E.; Shriver, W.G. Effects of traffic noise on occupancy patterns of forest birds. Conserv. Biol. 2011, 25, 406–411. [Google Scholar] [CrossRef]
- Yadav, A.; Parida, M.; Choudhary, P.; Kumar, B. Investigating important and necessary conditions to analyse traffic noise levels at intersections in mid-sized cities. J. Environ. Manag. 2024, 355, 120515. [Google Scholar] [CrossRef] [PubMed]
- Hammer, M.S.; Swinburn, T.K.; Neitzel, R.L. Environmental noise pollution in the United States: Developing an effective public health response. Environ. Health Perspect. 2014, 122, 115–119. [Google Scholar] [CrossRef]
- Barber, J.R.; Crooks, K.R.; Fristrup, K.M. The costs of chronic noise exposure for terrestrial organisms. Trends Ecol. Evol. 2010, 25, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Klompmaker, J.O.; Hoek, G.; Bloemsma, L.D.; Wijga, A.H.; van den Brink, C.; Brunekreef, B.; Lebret, E.; Gehring, U.; Janssen, N.A. Associations of combined exposures to surrounding green, air pollution and traffic noise on mental health. Environ. Int. 2019, 129, 525–537. [Google Scholar] [CrossRef]
- Pal, A.; Kumar, V.; Saxena, N. Noise attenuation by green belts. J. Sound Vib. 2000, 234, 149–165. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Vermandere, E.; Lauwereys, M. Road traffic noise annoyance mitigation by green window view: Optimizing green quantity and quality. Urban For. Urban Green. 2023, 88, 128072. [Google Scholar] [CrossRef]
- De Carvalho, R.M.; Szlafsztein, C.F. Urban vegetation loss and ecosystem services: The influence on climate regulation and noise and air pollution. Environ. Pollut. 2019, 245, 844–852. [Google Scholar] [CrossRef]
- Zhu, E.; Gao, H.; Chen, L.; Yao, J.; Liu, T.; Sha, M. Interactions between coastal protection forest ecosystems and human activities: Quality, service and resilience. Ocean Coast. Manag. 2024, 254, 107190. [Google Scholar] [CrossRef]
- Tang, J.; Fang, J.; Lu, J.; Guo, J.; Li, P. Progress in research on the evaluation of forest ecosystem service function value. Anhui Agric. Sci. 2010, 38, 17665–17666+17677. (In Chinese) [Google Scholar]
- Mize, C.; Brandle, J.R.; Schoeneberger, M.; Bentrup, G. Ecological development and function of shelterbelts in temperate North America. In Toward Agroforestry Design: An Ecological Approach; Springer: Berlin/Heidelberg, Germany, 2008; pp. 27–54. [Google Scholar]
- Hernández, R.C.; Camerin, F. The Application of ecosystem assessments in land use planning: A case study for supporting decisions toward ecosystem protection. Futures 2024, 161, 103399. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Yan, F.; Wang, X.; Li, H.; Jiang, L. Construction of a comprehensive evaluation system for road greening tree species in coastal cities. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 187. (In Chinese) [Google Scholar]
- Longato, D.; Cortinovis, C.; Balzan, M.; Geneletti, D. Identifying suitable policy instruments to promote nature-based solutions in urban plans. Cities 2024, 154, 105348. [Google Scholar] [CrossRef]
- Tudor, E.M.; Kristak, L.; Barbu, M.C.; Gergeľ, T.; Němec, M.; Kain, G.; Réh, R. Acoustic properties of larch bark panels. Forests 2021, 12, 887. [Google Scholar] [CrossRef]
- Attenborough, K.; Taherzadeh, S. Sound propagation through forests and tree belts. Proc. Inst. Acoust. 2016, 38, 114–125. [Google Scholar]
- Li, M.; Meng, Q.; Kang, J. Sound Attenuation by Trunks in the Ground with thick Snow. In Proceedings of the International Congress on Acoustics, Gyeongju, Republic of Korea, 24–28 October 2022; pp. 1–5. [Google Scholar]
- Redzuan, I.; Darus, N.; Haron, Z.; Abidin, N.; Galip, N.; Kassim, A. Tradescantia Zebrina as New Creeping Plant for Good Sound Absorption Performance. J. Phys. Conf. Ser. 2024, 2721, 012008. [Google Scholar] [CrossRef]
- Li, M.; Van Renterghem, T.; Kang, J.; Verheyen, K.; Botteldooren, D. Sound absorption by tree bark. Appl. Acoust. 2020, 165, 107328. [Google Scholar] [CrossRef]
- Bucur, V. Urban Forest Acoustics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Liu, L.; Han, B.; Tan, D.; Wu, D.; Shu, C. The Value of Ecosystem Traffic Noise Reduction Service Provided by Urban Green Belts: A Case Study of Shenzhen. Land 2023, 12, 786. [Google Scholar] [CrossRef]
- Ozer, S.; Irmak, M.A.; Yilmaz, H. Determination of roadside noise reduction effectiveness of Pinus sylvestris L. and Populus nigra L. in Erzurum, Turkey. Environ. Monit. Assess. 2008, 144, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.L. Study on the Noise Reduction Effect of Urban Green Forest Belt in Beijing in Four Seasons. Master’s Thesis, Beijing Forestry University, Beijing, China, 2012. (In Chinese). [Google Scholar]
- Van Renterghem, T.; Huyghe, F.; Verheyen, K. Effect of tree species and season on the ability of forest floors to abate environmental noise. Appl. Acoust. 2021, 184, 108349. [Google Scholar] [CrossRef]
- Xu, C.; Han, B.; Lu, F.; Wu, T. Assessing the traffic noise reduction effect of roadside green space using LiDAR point cloud data in Shenzhen, China. Forests 2022, 13, 765. [Google Scholar] [CrossRef]
- Schäffer, B.; Brink, M.; Schlatter, F.; Vienneau, D.; Wunderli, J.M. Residential green is associated with reduced annoyance to road traffic and railway noise but increased annoyance to aircraft noise exposure. Environ. Int. 2020, 143, 105885. [Google Scholar] [CrossRef] [PubMed]
- Samara, T.; Tsitsoni, T. The effects of vegetation on reducing traffic noise from a city ring road. Noise Control Eng. J. 2011, 59, 68–74. [Google Scholar] [CrossRef]
- Harris, R.A.; Cohn, L.F. Use of vegetation for abatement of highway traffic noise. J. Urban Plan. Dev. 1985, 111, 34–48. [Google Scholar] [CrossRef]
- Gaudon, J.M.; McTavish, M.J.; Hamberg, J.; Cray, H.A.; Murphy, S.D. Noise attenuation varies by interactions of land cover and season in an urban/peri-urban landscape. Urban Ecosyst. 2022, 25, 811–818. [Google Scholar] [CrossRef]
- Milosevic, R.K.; Novakovic-Vukovic, M.R. Effect of artificially established broadleaf stands on traffic noise attenuation. Fresenius Environ. Bull. 2017, 26, 1397–1402. [Google Scholar]
- Hosseini, S.A.O.; Zandi, S.; Fallah, A.; Nasiri, M. Effects of geometric design of forest road and roadside vegetation on traffic noise reduction. J. For. Res. 2016, 27, 463–468. [Google Scholar] [CrossRef]
- Cui, Z.H.; Lü, Y.J.; Yang, X.Y. Analysis of urban-rural gradient evolution of soundscapes in the metropolitan area of Nanjing. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2023, 47, 199–206. (In Chinese) [Google Scholar]
- Zhu, Y.F.; Wang, H.; Qin, S.H.; Yang, Y.; Wang, Y.C. Study on the cooling effect of parks in Nanjing based on multi-source data. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2024, 48, 285. (In Chinese) [Google Scholar]
- Chen, N.L.; Nie, Y. Economic analysis of the ecological value of urban forests in Nanjing. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2007, 31, 129–133. [Google Scholar]
- Fang, C.-F.; Ling, D.-L. Guidance for noise reduction provided by tree belts. Landsc. Urban Plan. 2005, 71, 29–34. [Google Scholar] [CrossRef]
- Tai, F.J. Environmental impact prediction and evaluation of urban rail transit projects. Adv. Environ. Prot. 2024, 14, 317. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Ren, X.X.; Hu, W. Forest ecosystem service function and its value assessment in China. Sci. For. 2011, 47, 145–153.26. (In Chinese) [Google Scholar]
- Chen, L.; Xie, G.D.; Gai, L.Q.; Pei, S.; Zhang, C.S.; Zhang, B.; Xiao, Y. Study on noise abatement service function of road green space—A case study of Beijing. J. Nat. Resour. 2011, 26, 1526–1534. (In Chinese) [Google Scholar]
- He, W.; Rong, S.; Wang, J.; Zhao, Y.; Liang, Y.; Huang, J.; Meng, L.; Feng, Y.; Xue, L. Different crystalline manganese dioxide and biochar co-conditioning aerobic composting: Reduced ammonia volatilization and improved organic fertilizer quality. J. Hazard. Mater. 2024, 465, 133127. [Google Scholar] [CrossRef]
- Chen, D.; Ai, Y.; Li, P.; Dong, Y.; Li, H.; Wang, C.; Jiang, X.; Li, S.; Shen, Y.; Dai, A. Effects of biofertilizer and water-saving irrigation interactions on the leaf photosynthesis and plant growth of tomatoes. Int. J. Agric. Biol. Eng. 2024, 17, 177–185. [Google Scholar]
- Chen, D.; Feng, Y.; Liu, Y.; Hu, J.; Li, S.; Ma, J.; Lu, X.; Jiang, X.; Sun, S.; Yang, Z. Effects of urea-N and CO2 coupling fertilization on the growth, photosynthesis, yield and anthocyanin content of hydroponic purple cabbage Brassica campestris ssp. chinensis. Int. J. Agric. Biol. Eng. 2023, 16, 123–131. [Google Scholar] [CrossRef]
- Baldauf, R. Roadside vegetation design characteristics that can improve local, near-road air quality. Transp. Res. Part D Transp. Environ. 2017, 52, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Embleton, T. Sound propagation in homogeneous deciduous and evergreen woods. J. Acoust. Soc. Am. 1963, 35, 1119–1125. [Google Scholar] [CrossRef]
- Fang, C.-F.; Ling, D.-L. Investigation of the noise reduction provided by tree belts. Landsc. Urban Plan. 2003, 63, 187–195. [Google Scholar] [CrossRef]
- Zhao, N.; Prieur, J.-F.; Liu, Y.; Kneeshaw, D.; Lapointe, E.M.; Paquette, A.; Zinszer, K.; Dupras, J.; Villeneuve, P.J.; Rainham, D.G. Tree characteristics and environmental noise in complex urban settings—A case study from Montreal, Canada. Environ. Res. 2021, 202, 111887. [Google Scholar] [CrossRef]
- Attenborough, K.; Van Renterghem, T. Predicting Outdoor Sound; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Clark, I.A. A Study of Bio-Inspired Canopies for the Reduction of Roughness Noise. Master’s Thesis, Virginia Tech, Blacksburg, VA, USA, 2015. [Google Scholar]
- Zhang, Q.F.; Zheng, S.J.; Xia, L.; Wu, H.; Zhang, M.; Li, M. Noise reduction function of plant communities in urban green space in Shanghai and its influencing factors. Chin. J. Appl. Ecol. 2007, 18, 2295–2300. (In Chinese) [Google Scholar]
- Li, Z.M. Preliminary study on noise reduction effect of highway green belt. Tianjin Sci. Technol. 2015, 42, 66–67. (In Chinese) [Google Scholar]
- Dobson, M.; Ryan, J. Trees and Shrubs for Noise Control. Arboricultural Advisory and Information Servic. 2000. Available online: https://www.trees.org.uk/Trees.org.uk/files/8c/8c69f212-a82e-424b-96d1-c8ff6dc02403.pdf (accessed on 22 September 2024).
- Ow, L.F.; Ghosh, S. Urban cities and road traffic noise: Reduction through vegetation. Appl. Acoust. 2017, 120, 15–20. [Google Scholar] [CrossRef]
- Lampartová, I.; Schneider, J.; Vyskot, I.; Rajnoch, M.; Litschmann, T. Impact of protective shelterbelt microclimate characteristics. Ekológia 2015, 34, 101–110. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Zhang, Y.X.; Zhang, Q.; Bi, C.X.; Zhu, H.M. Analysis of the impact of urban road green belt on reducing traffic noise—A case study of Panhe Street in Tai a City. Mod. Gard. 2024, 47, 9–11. (In Chinese) [Google Scholar]
- Su, K.; Cao, R.; Wang, Q.; Peng, Z.; He, Y. Noise Reduction Prediction of Urban Road Green Belt Based on Road Service Level. Environ. Eng. Manag. J. 2023, 22, 2109–2116. [Google Scholar] [CrossRef]
- Wang, H.Q. Landscape effect and noise reduction performance evaluation of new sound barrier in Fuquan Expressway (section of coastal Technology Road). Fujian Transp. Sci. Technol. 2024, 2, 75–78. (In Chinese) [Google Scholar]
- Shen, J.Z.; Hong, W.J.; Xu, Y.J.; Xu, P.; Zhang, J. Study on noise reduction effect of highway greening forest belt. Green Sci. Technol. 2017, 22, 27–30. (In Chinese) [Google Scholar]
- Zhang, J.; Zhang, J. Research on Noise Reduction Effect of Green Belts on Expressway. In Study of Ecological Engineering of Human Settlements; Springer: Berlin/Heidelberg, Germany, 2020; pp. 337–345. [Google Scholar]
- Lei, J.; Li, S.; Jin, Z.; Fan, J.; Wang, H.; Fan, D.; Zhou, H.; Gu, F.; Qiu, Y.; Xu, B. Comprehensive eco-environmental effects of the shelter-forest ecological engineering along the Tarim Desert Highway. Chin. Sci. Bull. 2008, 53, 190–202. [Google Scholar] [CrossRef]
- GB 3096-2008; Environmental Quality Standards for Noise. Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2008. (In Chinese)
- Khaine, I.; Woo, S.Y. An overview of interrelationship between climate change and forests. For. Sci. Technol. 2015, 11, 11–18. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, X.C.; Wu, Y.L.; Gu, X.; Wang, L. Study on noise reduction effects of highway shelterbelts in summer and winter. Highway 2009, 7, 355–358. (In Chinese) [Google Scholar]
- Stephenson, R.; Vulkan, G. Traffic noise. J. Sound Vib. 1968, 7, 247–262. [Google Scholar] [CrossRef]
Rank | Crown Shapes | Regular Shapes | Crown Volume | Shelter Forests |
---|---|---|---|---|
1 | conical crown | Cedrus deodara (Roxb.) G. Don. | ||
2 | inverted conical crown | The Third Ring Road: Prunus serrulate Lindl.; G312: MCBLF | ||
3 | spherical conical crown | (h is the height of the crown ball; h0 is the height of the spherical conical crown) | The Third Ring Road: Zelkova serrata (Thunb.) Makino Prunus cerasifera Ehrhar f. | |
4 | near-spherical crown | The Third Ring Road: Ilex chinensis Sims | ||
5 | ovoid crown | (a or b is the largest crown width in east–west and north–south directions) | G312: MCBLF |
Basic Characteristics | C. deodara (Roxb.) G. Don. | P. serrulate Lindl. | Z. serrata (Thunb.) Makino | I. chinensis Sims | P. cerasifera Ehrhar f. | MCBLF |
---|---|---|---|---|---|---|
Forest belt structure | PF | PF | PF | PF | PF | MCBLF |
Forest form | evergreen needle-leaved | deciduous broad-leaved | deciduous broad-leaved | evergreen broad-leaved | deciduous broad-leaved | mixed of needle-broad |
Crown shape | conical | inverted conical | spherical conical | near spherical | spherical conical | mixed shape |
Forest width (m) | 60 | 60 | 60 | 70 | 70 | 62 |
Lines of trees | 21 | 31 | 21 | 35 | 25 | 32 |
Rows of trees | 8 | 7 | 5 | 7 | 7 | / |
Average height (m) | 6.4 | 3.2 | 6 | 5.3 | 4.5 | 12.5 |
DBH (cm) | 6.6 | 5.4 | 7.8 | 8.5 | 8.3 | 11.4 |
Tree spacing (m) | 3.0 | 2.0 | 3.0 | 2.0 | 2.0 | 2.3 |
Crown diameter (m) | 2.7 | 2.2 | 4.5 | 2.3 | 2.5 | 2.3 |
Forest Belt Type | Average Mass M0 (g) | Height under Branch (m) | Crown Volume (m3) | Average Mass Density (kg m−3) |
---|---|---|---|---|
C. deodara (Roxb.) G. Don. | 12.03 | 0.80 | 10.68 | 0.97 |
P. serrulate Lindl. | 9.51 | 0.70 | 3.17 | 1.01 |
Z. serrata (Thunb.) Makino | 5.00 | 2.00 | 22.14 | 0.90 |
I. chinensis Sims | 9.02 | 2.50 | 6.37 | 1.17 |
P. cerasifera Ehrhar f. | 5.85 | 1.10 | 6.16 | 0.86 |
MCBLF | 8.05 | 2.30 | 40.29 | 1.21 |
Forests Width (m) | C. deodara (Roxb.) G. Don. | P. serrulate Lindl. | Z. serrata (Thunb.) Makino | I. chinensis Sims | P. cerasifera Ehrhar f. | MCBLF |
---|---|---|---|---|---|---|
10 | 0.98 | 1.01 | 0.90 | 1.17 | 0.86 | 1.13 |
20 | 0.98 | 1.02 | 0.90 | 1.17 | 0.87 | 0.96 |
30 | 0.98 | 1.01 | 0.90 | 1.17 | 0.86 | 1.10 |
40 | 0.98 | 1.01 | 0.90 | 1.17 | 0.86 | 1.13 |
50 | 0.98 | 1.01 | 0.90 | 1.17 | 0.86 | 1.18 |
60 | 0.98 | 1.01 | 0.90 | 1.17 | 0.86 | 1.25 |
Noise Type | H-Pollution | M-Pollution | L-Pollution | Better | Superb |
---|---|---|---|---|---|
Leq (A) | >74.0 | 72.1~74.0 | 70.1~72.0 | 68.1~70.0 | ≤68.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, Y.; Hu, H.; Feng, Y. Mixed Coniferous Broad-Leaved Forests as Road Shelter Forests: Increased Urban Traffic Noise Reduction Effects and Economic Benefits. Forests 2024, 15, 1714. https://doi.org/10.3390/f15101714
Liu J, Wu Y, Hu H, Feng Y. Mixed Coniferous Broad-Leaved Forests as Road Shelter Forests: Increased Urban Traffic Noise Reduction Effects and Economic Benefits. Forests. 2024; 15(10):1714. https://doi.org/10.3390/f15101714
Chicago/Turabian StyleLiu, Jiaxuan, Yulun Wu, Haibo Hu, and Yuanyuan Feng. 2024. "Mixed Coniferous Broad-Leaved Forests as Road Shelter Forests: Increased Urban Traffic Noise Reduction Effects and Economic Benefits" Forests 15, no. 10: 1714. https://doi.org/10.3390/f15101714
APA StyleLiu, J., Wu, Y., Hu, H., & Feng, Y. (2024). Mixed Coniferous Broad-Leaved Forests as Road Shelter Forests: Increased Urban Traffic Noise Reduction Effects and Economic Benefits. Forests, 15(10), 1714. https://doi.org/10.3390/f15101714