Estimation of the Aboveground Biomass of Forests in Complex Mountainous Areas Using Regression Kriging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.2.1. Landsat Image Preprocessing
2.2.2. Acquisition of Measurement Data
2.2.3. Extension Plot Data Preprocessing
2.3. Extraction and Selection of Feature Variables
Variable | Feature Variable | Reference |
---|---|---|
Spectral Variable | Band reflectance (Band i, i = 1, 2, … 7) | [46] |
Normalized difference vegetation index (NDVI) | [47] | |
Red–green vegetation index (RGVI) | [48] | |
Atmospherically resistant vegetation index (ARVI) | [44] | |
Enhanced vegetation index (EVI) | [49] | |
Visible atmospherically resistant index (VARI) | [48] | |
Modified soil-adjusted vegetation index (MSAVI) | [44] | |
Soil-adjusted vegetation index (SAVI) | [44] | |
Transformed Normalized Difference Vegetation Index(TNDVI) | [44] | |
Difference Vegetation Index (DVI) | [44] | |
Texture feature | Mean | [50] |
Contrast | [50] | |
Variance | [50] | |
Dissimilarity | [50] | |
Homogeneity | [50] | |
Entropy | [50] | |
Correlation | [50] | |
Second moment | [50] |
2.4. Model Selection
2.5. Parameters of the Prediction Model Using Regression Kriging
2.6. Accuracy Assessment
3. Results
3.1. Relevance and Materiality Analysis
3.2. Comparison of Raw AGB Estimation Results
3.3. Regression-Kriging-Based AGB Estimation
4. Discussion
4.1. Comparison of the Performance of Different Machine Learning Models
4.2. Comparison of Forest AGB Spatial Mapping
4.3. Analysis of the Consistency of the Research Results
4.4. Shortcomings and Prospects
5. Conclusions
- (1)
- The random forest model outperformed support vector regression and backpropagation neural networks in estimating AGB in mixed forests, demonstrating a higher coefficient of determination and a lower root mean square error;
- (2)
- The residual-based kriging regression prediction combined with Landsat 9 improved the accuracy of AGB prediction. Additionally, regression kriging effectively expanded the estimated range of AGB values, addressing the issues of underestimating high AGB values and overestimating low AGB values.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, N.; Zhou, L.; Zhuang, J.; Wang, Y.; Zhou, W.; Chen, J.; Song, J.; Ding, J.; Chi, Y. Integration analysis of the carbon sources and sinks in terrestrial ecosystems, China. Acta Ecol. Sin. 2021, 41, 7648–7658. [Google Scholar]
- Fang, J.; Liu, G.; Xu, S. Biomass and Net Production of Forest Vegetation in China. Acta Ecol. Sin. 1996, 16, 497–508. [Google Scholar]
- Cao, H.; Qiu, X.; He, T. Review on Development of Forest Biomass Remote Sensing Satellites. Acta Opt. Sin. 2022, 42, 402–409. [Google Scholar]
- He, H.; Guo, Z.; Xiao, W. Application of remote sensing in forest aboveground biomass estimation. Chin. J. Ecol. 2007, 26, 1317–1322. [Google Scholar]
- Beaudoin, A.; Hall, R.J.; Castilla, G.; Filiatrault, M.; Villemaire, P.; Skakun, R.; Guindon, L. Improved k-NN Mapping of Forest Attributes in Northern Canada Using Spaceborne L-Band SAR, Multispectral and LiDAR Data. Remote Sens. 2022, 14, 1181. [Google Scholar] [CrossRef]
- Jucker, T.; Caspersen, J.; Chave, J.; Antin, C.; Barbier, N.; Bongers, F.; Dalponte, M.; van Ewijk, K.Y.; Forrester, D.I.; Haeni, M.; et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 2017, 23, 177–190. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, X.; Ouyang, Z.; Avitabile, V.; Qi, J.; Chen, J.; Giannico, V. Estimating aboveground biomass in subtropical forests of China by integrating multisource. Remote Sens. Environ. 2019, 232, 111341. [Google Scholar] [CrossRef]
- Tang, X.G.; Liu, D.W.; Wang, Z.M.; Jia, M.M.; Dong, Z.Y. Estimation of forest aboveground biomass based on remote sensing data: A review. Chin. J. Ecol. 2012, 31, 1311–1318. [Google Scholar]
- Timothy, D.; Mutanga, O.; Shoko, C.; Adelabu, S.A.; Bangira, T. Remote sensing of aboveground forest biomass: A review. Trop. Ecol. 2016, 57, 125–132. [Google Scholar]
- Feng, Q.; Chen, E.; Li, Z.; Li, L.; Zhao, L. Forest Above-Ground Biomass Estimation Method for Rugged Terrain Based on Airborne P-Band PolSAR Data. Sci. Silvae Sin. 2016, 52, 10–22. [Google Scholar]
- Thiel, C.; Schmullius, C. The potential of ALOS PALSAR backscatter and InSAR coherence fo.r forest growing stock volume estimation in Central Siberia. Remote Sens. Environ. 2016, 173, 258–273. [Google Scholar] [CrossRef]
- Shao, G.; Stark, S.C.; de Almeida, D.R.; Smith, M.N. Towards high throughput assessment of canopy dynamics: The estimation of leaf area structure in Amazonian forests with multitemporal multi-sensor airborne lidar. Remote Sens. Environ. 2019, 221, 1–13. [Google Scholar] [CrossRef]
- Ehlers, D.; Wang, C.; Coulston, J.; Zhang, Y.; Pavelsky, T.; Frankenberg, E.; Woodcock, C.; Song, C. Mapping forest aboveground biomass using multisource remotely sensed data. Remote Sens. 2022, 14, 1115. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—A literature review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Yang, T.; Wang, C.; Li, G.; Luo, S.; Xi, X.; Gao, S.; Zeng, H. Forest canopy height mapping in China based on satellite-based lidar GLAS and optical MODIS data. Sci. Sin. Terrae 2014, 44, 2487–2498. [Google Scholar]
- Wu, C.; Shen, H.; Wang, K.; Shen, A.; Deng, J.; Gan, M. Landsat imagery-based above ground biomass estimation and change investigation related to human activities. Sustainability 2016, 8, 159. [Google Scholar] [CrossRef]
- Roy, P.S.; Ravan, S.A. Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest. J. Biosci. 1996, 21, 535–561. [Google Scholar] [CrossRef]
- Jingcheng, L. Development and Application of Key Technologies for Stand Factor Measurement and Statisties. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Cao, L. Estimation of Forest Stock Volume in Yanqing District Based on Sentinel-2 Images. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
- Hu, R.; Chen, X.; Chen, J.; Zhang, S.; Kuang, Y.; Yu, H.; Ji, H.; Zhao, X.; Yi, S.; Meng, B.; et al. MODIS NDVI saturation assessment of alpine meadow grassland biomass estimation using remote sensing:a case study in the eastern edge of the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2024, 44, 6357–6372. [Google Scholar]
- Longtao, C. Full-link forest echo simulation of domestic spaceborne LiDAR and study on inversion of forest structure parameters. Acta Geod. Cartogr. Sin. 2023, 52, 2223. [Google Scholar]
- Dai, N.; Xu, W.; Xiao, Q.; Wang, Q.; Ma, F.; Liang, H.; Duan, X. Estimation of wilted grass biomass by satellite remote sensing data in winter on Qinghai-Tibet Plateau. Acta Ecol. Sin. 2023, 43, 6033–6044. [Google Scholar]
- Di Cosmo, L.; Gasparini, P.; Tabacchi, G. A national-scale, stand-level model to predict total above-ground tree biomass from growing stock volume. For. Ecol. Manag. 2016, 361, 269–276. [Google Scholar] [CrossRef]
- Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms. Forests 2019, 10, 1073. [Google Scholar] [CrossRef]
- Ji, Y.J.; Yang, C.R.; Zhang, W.F.; Zeng, P.; Zhang, F.X.; Qu, Y.N. Forest above ground biomass estimation using airborneP band polarimetric SAR data. J. Zhejiang A F Univ. 2022, 39, 971–980. [Google Scholar]
- Freeman, E.A.; Moisen, G.G.; Coulston, J.W.; Wilson, B.T. Random forests and stochastic gradient boosting for predicting tree canopy cover: Comparing tuning processes and model performance. Can. J. For. Res. 2016, 46, 323–339. [Google Scholar] [CrossRef]
- Yao, J.; Yang, L.; Chen, T.; Song, C. Consecutive monitoring of the poyang lake wetland by integrating sentinel-2 with sentinel-1 and landsat 8 data. Remote Sens. Technol. Appl. 2021, 36, 760–776. [Google Scholar]
- Diggle, P.J.; Tawn, J.A.; Moyeed, R.A. Model-Based Geostatistics; Springer: New York, NY, USA, 2007; Volume 21, p. Xiii+228. [Google Scholar]
- Moasheri, S.A.; Tabatabai, S.M.; Sarani, N.; Alai, Y. Estimation Spatial distribution of Sodium adsorption ratio (SAR) in Groundwater’s Using ANN and Geostatistics Methods, the case of Birjand Plain, Iran. In Proceedings of the International Conference on Latest Computational Technologies(ICLCT’2012), Bangkok, Thailand, 17 March 2012. [Google Scholar]
- Tian, X.; Zhang, X. Estimation of forest aboveground biomass by remote sensing. J. Beijing For. Univ. 2021, 43, 137–148. [Google Scholar]
- Li, Y.; Li, M.; Liu, Z.; Li, C. Combining Kriging Interpolation to Improve the Accuracy of Forest Aboveground Biomass Estimation using Remote Sensing Data. IEEE Access 2020, 8, 128124–128139. [Google Scholar] [CrossRef]
- Yaw, O.S.V.; Radim, V.; Karel, N.; Vít, Š.; Věra, F.; Kateřina, N.H.; Luboš, B.; Lenka, P. Spatial Distribution of Forest Soil Base Elements (Ca, Mg and K): A Regression Kriging Prediction for Czechia. Forests 2024, 15, 1123. [Google Scholar] [CrossRef]
- Xin, S.D.; Yan, Y.X.; Jiang, L.C. Stand biomass model for Pinus koraiensis plantation based on different additive methods in Heilongjiang Province, China. Ying Yong Sheng Tai Xue Bao 2020, 31, 3322–3330. [Google Scholar]
- Wang, M.; Fan, C.; Gao, B.; Ren, Z.; Li, F. A spatial random forest interpolation method with semi-variogram. Chin. J. Eco-Agric. 2022, 30, 451–457. [Google Scholar]
- iPlant. Available online: https://www.iplant.cn/info/%E6%9D%89%E6%9C%A8 (accessed on 12 September 2024).
- iPlant. Available online: https://www.iplant.cn/info/%E6%9F%B3%E6%9D%89?t=p (accessed on 12 September 2024).
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1981, 8, 84–106. [Google Scholar] [CrossRef]
- Technical Regulations for Continuous Forest Inventory. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=A02801294956EBB4E05397BE0A0AB6FE (accessed on 12 September 2024).
- Piermattei, L.; Karel, W.; Wang, D.; Wieser, M.; Mokroš, M.; Surový, P.; Koreň, M.; Tomaštík, J.; Pfeifer, N.; Hollaus, M. Terrestrial Structure from Motion Photogrammetry for Deriving Forest Inventory Data. Remote Sens. 2019, 11, 950. [Google Scholar] [CrossRef]
- Jiang, F.; Sun, H.; Li, C.; Ma, K.; Chen, S.; Long, J.; Ren, L. Retrieving the forest aboveground biomass by combining the red edge bands of Sentinel-2 and GF-6. Acta Ecol. Sin. 2021, 41, 8222–8236. [Google Scholar]
- Yu, S.; Ye, Q.; Zhao, Q.; Li, Z.; Zhang, M.; Zhu, H.; Zhao, Z. Effects of driving factors on forest aboveground biomass (AGB) in China’s Loess Plateau by using spatial regression models. Remote Sens. 2022, 14, 2842. [Google Scholar] [CrossRef]
- Hao, Q.; Huang, C. A review of forest aboveground biomass estimation based on remote sensing data. Chin. J. Plant Ecol. 2023, 47, 1356–1374. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 1973, 610–621. [Google Scholar] [CrossRef]
- Jingni, Y. The research onHigh Resolution Texture Information of Remote Sensing in Forest Volume Estimate. Master’s Thesis, Xi’an University of Technology, Xian, China, 2017. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Jiang, F.; Kutia, M.; Ma, K.; Chen, S.; Long, J.; Sun, H. Estimating the aboveground biomass of coniferous Forest in Northeast China using spectral variables, land surface temperature and soil moisture. Sci. Total Environ. 2021, 785, 147335. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Jensen, J.R.; Lulla, K. Introductory digital image processing: A remote sensing perspective. Pearson Prentice Hall, Upper Saddle River. Geocarto Int. 2005, 2, 65. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Manjunath, B.S.; Ma, W.Y. Texture features for browsing and retrieving of large image data. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 117–128. [Google Scholar]
- Zhang Peng Ma Qingxun Lu Jie Ji Jinliang Li, Z. Application of machine learning algorithms in estimation of above-ground biomass of forest. Bull. Surv. Mapp. 2021, 12, 28–32. [Google Scholar]
- Yuhang, G. Study on Aboveground Carbon Storage Model of Eucalyptus in GaofengForest Farm Based on Landsat 8 and Machine Learn. Master’s Thesis, Beijing Forestry University, Beijing, China, 2022. [Google Scholar]
- Sa, R.; Nie, Y.; Chumachenko, S.; Fan, W. Biomass Estimation and Saturation Value Determination Based on Multi-Source Remote Sensing Data. Remote Sens. 2024, 16, 2250. [Google Scholar] [CrossRef]
- Yan, X.; Li, J.; Smith, A.R.; Yang, D.; Ma, T.; Su, Y.; Shao, J. Evaluation of machine learning methods and multi-source remote sensing data combinations to construct forest above-ground biomass models. Int. J. Digit. Earth 2023, 16, 4471–4491. [Google Scholar] [CrossRef]
- Tanase, M.A.; Panciera, R.; Lowell, K.; Tian, S.; García-Martín, A.; Walker, J.P. Sensitivity of L-Band Radar Backscatter to Forest Biomass in Semiarid Environments: A Comparative Analysis of Parametric and Nonparametric Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4671–4685. [Google Scholar] [CrossRef]
- Bahadur, K.Y.; Qijing, L.; Pradip, S.; Damodar, G.; Hari, A. Estimation of Above-Ground Forest Biomass in Nepal by the Use of Airborne LiDAR, and Forest Inventory Data. Land 2024, 13, 213. [Google Scholar] [CrossRef]
- Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Reprint of: Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. Int. J. Appl. Earth Obs. Geoinf. 2012, 17, 102–110. [Google Scholar] [CrossRef]
- Hoover, C.M.; Ducey, M.J.; Colter, R.A.; Yamasaki, M. Evaluation of alternative approaches for landscape-scale biomass estimation in a mixed-species northern forest. For. Ecol. Manag. 2018, 409, 552–563. [Google Scholar] [CrossRef]
- Li, H.P.; Xu, H.; Zhang, C.; Ou, G.L.; Sun, X.L. Remote Sensing stimation of Pinus yunnanensis Natural Forest Biomass based on Random Forest Model. J. West China For. Sci. 2022, 51, 60–66. [Google Scholar]
- Yingchang, L. Optimized Method for Forest Aboveground Biomass Estimation basedon Remote Sensing Data and Its Spatiotemporal Analysis. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2021. [Google Scholar]
- Jiang, F.; Sun, H.; Chen, E.; Wang, T.; Cao, Y.; Liu, Q. Above-Ground Biomass Estimation for Coniferous Forests in Northern China Using Regression Kriging and Landsat 9 Images. Remote Sens. 2022, 14, 5734. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Ocean. 1985, 90, 8995–9005. [Google Scholar] [CrossRef]
- Krawczyk, B. Learning from imbalanced data: Open challenges and future directions. Prog. Artif. Intell. 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Khan, A.; Bhat, M.A. Assessing the Effect of Terrain on Support Vector Regression Model Performance. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102515. [Google Scholar]
- Gonzalez, A.; Naderpour, M. Assessing the Generalization Capability of Neural Networks in Non-Stationary Environmental Data. Environ. Model. Softw. 2021, 145, 105190. [Google Scholar]
- Tian, P.; Ren, Y.; Chen, Y. Research Progress on Identification and Extraction Methods of Soil and Water Conservation Measures. Soil Water Conserv. 2024, 5, 1–9. [Google Scholar]
- Zhou, Y.; Xie, B.; Li, M. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: A case study from north Guangdong. J. Nanjing For. Univ. Nat. Sci. Ed. 2024, 48, 169–178. [Google Scholar]
- Li, Y.; Zhang, W.; Cui, J.; Li, C.; Ji, Y. Inversion exploration on forest aboveground biomass of optical and SAR datasupported by parameter optimization method. J. Beijing For. Univ. 2020, 42, 11–19. [Google Scholar]
- Zhu, K.; Song, Y.; Qin, C. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. USA 2019, 116, 3962–3964. [Google Scholar] [CrossRef]
Tree Specias | Number | Minimum | Maximum | Averages | Standard Deviation | Coefficient of Variation (%) |
---|---|---|---|---|---|---|
Cupressus funebris | 239 | 17.1803 | 206.7508 | 56.41 | 30.38 | 53.85 |
Cryptomeria japonica var. sinensis Miquel | 53 | 16.5891 | 69.9303 | 42.5582 | 16.74 | 39.34 |
Cunninghamia lanceolata | 11 | 28.4259 | 82.3241 | 50.3641 | 18.75 | 37.23 |
Mixed | 303 | 16.5891 | 206.7508 | 53.5935 | 28.61 | 52.93 |
Type | Model | Minimum | Maximum | Average | R2 | RMSE |
---|---|---|---|---|---|---|
Cypress | SVR | 48.7978 | 61.0907 | 48.1854 | 0.37 | 10.0716 |
BPNN | 37.9780 | 67.5835 | 50.9663 | 0.53 | 12.3942 | |
RF | 32.5075 | 73.7727 | 52.2949 | 0.63 | 8.6289 | |
Cryptomeria | SVR | 30.1387 | 63.8012 | 41.8848 | 0.40 | 5.2027 |
BPNN | 30.5886 | 64.8047 | 42.0657 | 0.55 | 6.1921 | |
RF | 26.9493 | 65.9728 | 42.6753 | 0.78 | 4.9546 | |
Fir | SVR | 38.2182 | 156.9810 | 53.2810 | 0.46 | 22.9615 |
BPNN | 35.9082 | 157.5713 | 58.3369 | 0.53 | 21.0224 | |
RF | 29.3553 | 160.3625 | 59.8466 | 0.64 | 18.4441 | |
Mixed | SVR | 30.1387 | 81.9725 | 51.2017 | 0.34 | 17.3368 |
BPNN | 30.5886 | 161.5713 | 57.2498 | 0.45 | 21.4712 | |
RF | 26.9493 | 186.9406 | 62.8294 | 0.54 | 21.4136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Yan, L.; Zhou, Z.; Huang, D.; Cai, L.; Du, S.; Yang, Y.; Huang, Y.; Li, Q. Estimation of the Aboveground Biomass of Forests in Complex Mountainous Areas Using Regression Kriging. Forests 2024, 15, 1734. https://doi.org/10.3390/f15101734
Luo Y, Yan L, Zhou Z, Huang D, Cai L, Du S, Yang Y, Huang Y, Li Q. Estimation of the Aboveground Biomass of Forests in Complex Mountainous Areas Using Regression Kriging. Forests. 2024; 15(10):1734. https://doi.org/10.3390/f15101734
Chicago/Turabian StyleLuo, Yining, Lihui Yan, Zhongfa Zhou, Denghong Huang, Lu Cai, Shuanglong Du, Yue Yang, Youyan Huang, and Qianxia Li. 2024. "Estimation of the Aboveground Biomass of Forests in Complex Mountainous Areas Using Regression Kriging" Forests 15, no. 10: 1734. https://doi.org/10.3390/f15101734
APA StyleLuo, Y., Yan, L., Zhou, Z., Huang, D., Cai, L., Du, S., Yang, Y., Huang, Y., & Li, Q. (2024). Estimation of the Aboveground Biomass of Forests in Complex Mountainous Areas Using Regression Kriging. Forests, 15(10), 1734. https://doi.org/10.3390/f15101734