How the Spruce Ageing Process Affects Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wood Properties of Spruce Wood
2.2. Wood Density of Spruce Wood
2.3. Compressive Strength of Spruce Wood
2.4. Bending Strength of Spruce Wood
2.5. Modulus of Elasticity of Wood in Bending
2.6. Statistical Analyses
3. Results
3.1. Wood Density of Spruce Wood
3.2. Compressive Strength of Spruce Wood
3.3. Bending Strength of Spruce Wood
3.4. Modulus of Elasticity of Wood in Bending
3.5. Correlation of Tested Wood Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lachowicz, H. Influence of location and age on the value of wood strength coefficients for silver birch (Betula pendula Roth.). Sylwan 2011, 155, 535–545. [Google Scholar]
- Mańkowki, P.; Krzosek, S.; Andres, B. The susceptibility of Scots pine heartwood from various polish forestry regions to the brown rot fungus Coniophora puteana (Schumach.) P. Karst. Drewno 2020, 63, 206. [Google Scholar]
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Bernadzki, E. The age structure and the wood rot of old pine stands. Sylwan 2003, 5, 3–12. [Google Scholar]
- Vacek, Z.; Prokůpková, A.; Vacek, S.; Cukor, J.; Bílek, L.; Gallo, J.; Bulušek, D. Silviculture as a tool to support stability and diversity of forests under climate change: Study from Krkonoše Mountains. Cent. Eur. For. J. 2020, 66, 116–129. [Google Scholar] [CrossRef]
- Vacek, Z.; Vacek, S.; Cukor, J. European forests under global climate change: Review of tree growth processes, crises and management strategies. J. Environ. Manag. 2023, 332, 117353. [Google Scholar] [CrossRef]
- Zeidler, A.; Borůvka, V.; Brabec, P.; Tomczak, K.; Bedřich, J.; Vacek, Z.; Cukor, J.; Vacek, S. The possibility of using non-native spruces for Norway Spruce wood replacement—A case study from the Czech Republic. Forests 2024, 15, 255. [Google Scholar] [CrossRef]
- Cukor, J.; Vacek, Z.; Vacek, S.; Linda, R.; Podrázský, V. Biomass productivity, forest stability, carbon balance, and soil transformation of agricultural land afforestation: A case study of suitability of native tree species in the submontane zone in Czechia. Catena 2022, 210, 105893. [Google Scholar] [CrossRef]
- Borecki, T.; Orzechowski, M.; Stępień, E.; Wójcik, R. Expected impact of climate change on forest ecosystems and its consequences in forest management planning. Sylwan 2017, 161, 531–538. [Google Scholar]
- Shukla, P.R.; Skeg, J.; Buendia, E.C.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas Fluxes in Terrestrial; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L. Decline of spruce (Picea abies) in forests of Belarus. Russ. J. Ecol. 2016, 47, 241–248. [Google Scholar] [CrossRef]
- Toth, D.; Maitah, M.; Maitah, K.; Jarolínová, V. The impacts of calamity logging on the development of spruce wood prices in czech forestry. Forests 2020, 11, 283. [Google Scholar] [CrossRef]
- Jyske, T.; Harri Mäkinen, H.; Saranpää, P. Wood density within Norway Spruce stems. Silva Fenn. 2008, 42, 439–455. [Google Scholar] [CrossRef]
- Netherer, S.; Schopf, A. Potential effects of climate change on insect herbivores in European forests—General aspects and the pine processionary moth as specific example. For. Ecol. Manag. 2010, 259, 831–838. [Google Scholar] [CrossRef]
- Brzeziecki, B.; Keczyński, A.; Zajączkowski, J.; Drozdowski, S.; Gawron, L.; Buraczyk, W.; Bielak, K.; Szeligowski, H.; Dzwonkowski, M. Threatened tree species of the Białowieża National Park (the Strict Reserve). Sylwan 2012, 156, 252–261. [Google Scholar]
- Drozdowski, S.; Brzeziecki, B.; Żybura, H.; Żybura, B.; Gawron, L.; Buraczyk, W.; Zajączkowski, J.; Bolibok, L.; Szeligowski, H.; Bielak, K.; et al. Long−term dynamics of old−growth stands in the managed part of the Białowieża Forest: Increasing and declining tree species. Sylwan 2012, 156, 663–671. [Google Scholar]
- Mauer, O.; Palátová, E. Decline of Norway spruce in the Krkonoše Mts. J. For. Sci. 2010, 56, 361–372. [Google Scholar] [CrossRef]
- Šrámek, V.; Vejpustková, M.; Novotný, R.; Hellebrandová, K. Yellowing of Norway spruce stands in the Silesian Beskids–damage extent and dynamics. J. For. Sci. 2008, 54, 55–63. [Google Scholar] [CrossRef]
- Svoboda, M.; Fraver, S.; Janda, P.; Bače, R.; Zenáhlíková, J. Natural development and regeneration of a Central European montane spruce forest. For. Ecol. Manag. 2010, 260, 707–714. [Google Scholar] [CrossRef]
- Brůna, J.; Wild, J.; Svoboda, M.; Heurich, M.; Müllerova, J. Impacts and underlying factors of landscape-scale, historical disturbance of mountain forest identified using archival documents. For. Ecol. Manag. 2013, 305, 294–306. [Google Scholar] [CrossRef]
- Pötzelsberger, E.; Spiecker, H.; Neophytou, C.; Mohren, F.; Gazda, A.; Hasenauer, H. Growing non-native trees in european forests brings benefits and opportunities but also has its risks and limits. Curr. For. Rep. 2020, 6, 339–353. [Google Scholar] [CrossRef]
- Vacek, Z.; Cukor, J.; Vacek, S.; Linda, R.; Prokůpková, A.; Podrázský, V. Production potential, biodiversity and soil properties of forest reclamations: Opportunities or risk of introduced coniferous tree species under climate change? Eur. J. For. Res. 2021, 140, 1243–1266. [Google Scholar] [CrossRef]
- Wimmer, R.; Grabner, M. A comparsion of tree-ring features in Picea abies as correlated with climate. JAWA J. 2000, 21, 403–416. [Google Scholar]
- James, K.R.; Haritos, N.; Ades, P.K. Mechanical stability of trees under dynamic loads. Am. J. Bot. 2006, 93, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Šilinskas, B.; Varnagirytė-Kabašinskienė, I.; Aleinikovas, M.; Beniušienė, L.; Aleinikovienė, J.; Škėma, M. Scots Pine and Norway Spruce Wood Properties at Sites with Different Stand Densities. Forests 2020, 11, 587. [Google Scholar] [CrossRef]
- Treacy, M.; Dhubháin, A.N.; Evertsen, J. The influence of microfibril angle on modulus of elasticity and modulus of rupture in four provenances of Irish grown Sitka spruce (Picea sitchensis (Bong.) Carr). J. Inst. Wood Sci. 2000, 15, 211–220. [Google Scholar]
- Mclean, J.P.; Evans, R.; Moore, J.R. Predicting the longitudinal modulus of elasticity of Sitka spruce from cellulose orientation and abundance. Holzforschung 2010, 64, 495–500. [Google Scholar] [CrossRef]
- Moore, J. Wood Properties and Uses of Sitka Spruce in Britain; Research Report-Forestry Commission: Edinburgh, UK, 2011. [Google Scholar]
- Jelonek, T.; Klimek, K.; Kopaczyk, J.; Wieruszewski, M.; Arasimowicz-Jelonek, M.; Tomczak, A.; Grzywiński, W. Influence of the tree decay duration on mechanical stability of Norway spruce wood (Picea abies (L.) Karst.). Forests 2020, 11, 980. [Google Scholar] [CrossRef]
- Verkasalo, E.; Leban, J.M. MOE and MOR in static bending of small clear specimens of Scots pine, Norway spurce and European fir from Finland and France and their prediction for the comparison of wood quality. Pap. Ja Puu 2002, 84, 332–340. [Google Scholar]
- Bacher, M.; Krzosek, S. Modulus of elasticity tension/bending ratio of polish grown pine (Pinus sylvestris L.) and spruce (Picea abies Karst.) timber. Ann. Warsaw Univ. Life Sci. SGGW. For. Wood Technol. 2013, 82, 31–38. [Google Scholar]
- Mclean, J.P. Wood Properties of Four Genotypes of Sitka Spruce. Ph.D. Thesis, Department of Analytical and Environmental Chemistry, University of Glasgow, Glasgow, UK, 2008. [Google Scholar]
- Kraft, G. Beiträge zur Lehre von den Durchforstungen, Schlagstellungen und Lichtungshieben; Klindworth: Hannover, Germany, 1884; pp. 85–130. [Google Scholar]
- Van Laar, A.; Akça, A. Forest Mensuration; Springer: Dordrecht, The Netherlands, 2007; pp. 95–147. [Google Scholar]
- ISO 13061-2:2014; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens. Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-17:2017; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens Part 17: Determination of Ultimate Stress in Compression Parallel to Grain. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 3129:2019; Wood-Sampling Methods and General Requirements for Physical and Mechanical Testing of Small Clear Wood Specimens. International Organization for Standardization: Geneva, Switzerland, 2019.
- PN-EN 380:1998; Timber Structures—Test Methods—General Principles for Static Load Testing. European Committee for Standardization: Brussels, Belgium, 1998.
- ASTM D143-94; Standard Test Methods for Small Clear Specimens of Timber. ASTM International: West Conshohocken, PA, USA, 2000.
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Neumann, M.; Mues, V.; Moreno, A.; Hasenauer, H.; Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 2017, 23, 4788–4797. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, T. Evaluation of the age dependent variation of wood properties based on the eigenvalue distribution of near infrared spectra. Chem. Int. Lab. Syst. 2022, 225, 104576. [Google Scholar] [CrossRef]
- Zobel, B.J.; Van Buijtenen, J.P. Wood Variation: Its Causes and Control; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Dinwoodie, J.M. Timber: Its Nature and Behaviour; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Gu, H.; Zink-Sharp, A.; Sell, J. Hypothesis on the role of cell wall structure in differential transverse shrinkage of wood. Holz Als Roh-Und Werkst. 2001, 59, 436–442. [Google Scholar] [CrossRef]
- Hématy, K.; Höfte, H. Cellulose and cell elongation. The expanding cell. Plant. Cell. Monogr. 2007, 6, 33–56. [Google Scholar]
- Krauss, A. Ultrastrukturalne uwarunkowania wybranych właściwości mechanicznych drewna sosny i świerku. Rozpr. Nauk. UP Pozn. 2010, 406, 1–115. [Google Scholar]
- Astley, R.J.; Harrington, J.J.; Stol, K.A. Mechanical modelling of wood microstructure, an engineering approach. IPENZ Trans. 1997, 24, 21–29. [Google Scholar]
- Winandy, J.; Rowell, R. The Chemistry of Wood Strength. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Xi, E. Dynamic relationship between mechanical properties and chemical composition distribution of wood cell walls. Wood Res. 2018, 63, 179–192. [Google Scholar]
- Shinozaki, K.; Yoda, K.; Hozumi, K.; Kira, T. A quantitative analysis of plant form-the pipe model theory: I. Basic analyses. Jpn. J. Ecol. 1964, 14, 97–105. [Google Scholar]
- Shinozaki, K.; Yoda, K.; Hozumi, K.; Kira, T. A quantitative analysis of plant form-the pipe model theory: II. Further evidence of the theory and its application in forest ecology. Jpn. J. Ecol. 1964, 14, 133–139. [Google Scholar]
- Jelonek, T.; Pazdrowski, W.; Arasimowicz, M.; Tomczak, A.; Walkowiak, R.; Szaban, J. The applicability of the pipe model theory in trees of Scots pine (Pinus sylvestris L.) of Poland. J. For. Sci. 2008, 54, 519–531. [Google Scholar] [CrossRef]
- Lehnebach, R.; Beyer, R.; Letort, V.; Heuret, P. The pipe model theory half a century on: A review. Ann. Bot. 2018, 121, 773–795. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.H.; Brown, C.L. Trees: Structure and Function; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Jackson, G.E.; Irvine, J.; Grace, J. Xylem cavitation in Scots pine and Sitka spruce saplings during water stress. Tree Physiol. 1995, 15, 783–790. [Google Scholar] [CrossRef]
- Rosner, S.; Karlsson, B.; Konnerth, J.; Hansmann, C. Shrinkage processes in standard-size Norway spruce wood specimens with different vulnerability to cavitation. Tree Physiol. 2009, 29, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Boisvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Adam, H.D.; Zeppel, M.J.B.; Anderegg, W.R.L.; Hartmann, H.; Landhäusser, S.M.; Tissue, D.T.; Huxman, T.E.; Hudson, P.J.; Franz, T.E.; Allen, C.D.; et al. A multispecies synthesis of physiological mechanisms in drought−induced tree mortality. Nat. Ecol. Evol. 2017, 1, 1285–1291. [Google Scholar] [CrossRef]
- Roloff, A. Bäume. Lexikon der praktischen Baumbiologie; WILEY_VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Martin-Benito, D.; Anchukaitis, K.J.; Evans, M.N.; Del Río, M.; Beeckman, H.; Cańellas, I. Effects of drought on xylem anatomy and water−use efficiency of two co−occurring pine species. Forests 2017, 8, 322. [Google Scholar] [CrossRef]
- Rosner, S. Wood density as a proxy for vulnerability to cavitation: Size matters. J. Plant Hydr. 2017, 4, e001. [Google Scholar] [CrossRef]
- Jacobsen, A.; Pratt, B.; Ewers, F.; Davis, S. Cavitation resistance among 26 Chaparral species of Southern California. Ecol. Monographs. 2007, 77, 99–115. [Google Scholar] [CrossRef]
- Choat, B.; Jansen, S.; Brodribb, T.J.; Cochard, H.; Delzon, S.; Bhaskar, R.; Bucci, S.J.; Field, T.S.; Gleason, S.M.; Hacke, U.G.; et al. Global convergence in the vulnerability of forests to drought. Nature 2012, 491, 752–755. [Google Scholar] [CrossRef]
- Cochard, H.; Delzon, S. Hydraulic failure and repair are not routine in trees. Ann. For. Sci. 2013, 70, 659–661. [Google Scholar] [CrossRef]
- Bruchwald, A.; Dmyterko, E.; Bałazy, R. Risk model of tree stand damage by winds and its evaluation based on damage caused by cyclone ‘Xaver’. For. Syst. 2018, 27, 2. [Google Scholar] [CrossRef]
- Domec, J.C.; Warren, J.M.; Meinzer, F.C.; Lachenbruch, B. Safety for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA J. 2009, 30, 101–120. [Google Scholar] [CrossRef]
- Rosner, S.; Světlík, J.; Andreassen, K.; Børja, I.; Dalsgaard, L.; Evans, R.; Karlsson, B.; Tollefsrud, M.M.; Solberg, S. Wood density as a screening trait for drought sensitivity in Norway spruce. Can. J. For. Res. 2014, 44, 154–161. [Google Scholar] [CrossRef]
- Schniewind, A.P. Horizontal specifi c gravity variation in tree stems in relations to their support function. For. Sci. 1962, 8, 111–118. [Google Scholar]
- Mencuccini, M.; Grace, J.; Fioravanti, M. Biomechanical and hydraulic determinants of tree structure in Scots pine: Anatomical characteristics. Tree Physiol. 1997, 17, 105–113. [Google Scholar] [CrossRef]
- Sperry, J.S.; Hacke, U.G.; Pittermann, J. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot. 2006, 93, 1490–1500. [Google Scholar] [CrossRef]
Plot | Tree Number | Height [m] | DBH [cm] | Average Age of Sample Trees | Stand Quality Class | GPS |
---|---|---|---|---|---|---|
(WGS-84) | ||||||
1/Warcino Forest District | 1 | 31.3 | 43.0 | 124 | I | N: 54.2427, E: 16.9768 |
2 | 30.2 | 41.5 | ||||
3 | 29.2 | 39.5 | ||||
2/Lipka Forest District | 1 | 29.4 | 46.5 | 122 | II | N: 543.4790, E: 17.1799 |
2 | 28.5 | 44.0 | ||||
3 | 27.5 | 42.5 | ||||
3/Bialowieza Forest | 1 | 36.9 | 64.5 | 177 | I | N: 52.6199, E: 23.6184 |
2 | 36.0 | 63.0 | ||||
3 | 34.8 | 60.0 | ||||
4/Bialowieza Forest | 1 | 32.2 | 50.5 | 123 | II | N: 52.6190, E: 23.6008 |
2 | 30.9 | 48.0 | ||||
3 | 29.8 | 47.5 | ||||
5/Bialowieza Forest | 1 | 33.8 | 62.5 | 175 | II | N: 52.6134, E: 23.5856 |
2 | 33.2 | 60.0 | ||||
3 | 32.5 | 58.0 |
q [kg/m3] | ||||||||
---|---|---|---|---|---|---|---|---|
Mean | Confidence −95% | Confidence +95% | Stand Dev. | Minimum | Maximum | Q 25 | Median | Q 75 |
360.29 | 353.76 | 366.81 | 44.24 | 277.11 | 522.93 | 331.86 | 354.78 | 377.51 |
Variable | Mean | Confidence −95% | Confidence +95% | Minimum | Maximum | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|
Rc30% [MPa] | 14.57 | 13.99 | 15.16 | 4.58 | 23.90 | 3.95 | 27.14 |
Rc0% [MPa] | 67.34 | 65.12 | 69.56 | 35.52 | 98.85 | 15.05 | 22.35 |
Rg | Mean | Confidence | Confidence | Minimum | Maximum | Standard Deviation | Coefficient of Variation |
---|---|---|---|---|---|---|---|
−95% | 95% | ||||||
Rg30% [MPa] | 59.81 | 56.70 | 62.80 | 11.20 | 35.10 | 86.20 | 69.70 |
Rg0% [MPa] | 88.51 | 83.00 | 94.00 | 17.70 | 47.30 | 126.40 | 70.10 |
Variable | q [kg/m3] | Rc30% [MPa] | Rc0% [MPa] | Rg0% [MPa] | Rg30% [MPa] | E30% [MPa] | E0% [MPa] |
---|---|---|---|---|---|---|---|
q [kg/m3] | 1.000000 | 0.179389 | 0.092882 | 0.297543 | 0.194907 | 0.350029 | 0.489473 |
Rc30% [MPa] | 0.179389 | 1.000000 | 0.256814 | 0.249535 | 0.244464 | 0.060019 | 0.025485 |
Rc0% [MPa] | 0.092882 | 0.256814 | 1.000000 | 0.966643 | 0.083424 | 0.298453 | 0.221162 |
Rg0% [MPa] | 0.297543 | 0.249535 | 0.966643 | 1.000000 | 0.018171 | 0.273645 | 0.220698 |
Rg30% [MPa] | 0.194907 | 0.244464 | 0.083424 | 0.018171 | 1.000000 | 0.260696 | 0.116186 |
E30% [MPa] | 0.350029 | 0.060019 | 0.298453 | 0.273645 | 0.260696 | 1.000000 | 0.165693 |
E0% [MPa] | 0.489473 | 0.025485 | 0.221162 | 0.220698 | 0.116186 | 0.165693 | 1.000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelonek, T.; Klimek, K.; Naskrent, B.; Tomczak, A.; Grzywiński, W.; Kopaczyk, J.; Szwed, T.; Grabowski, D.; Szaban, J. How the Spruce Ageing Process Affects Wood. Forests 2024, 15, 1737. https://doi.org/10.3390/f15101737
Jelonek T, Klimek K, Naskrent B, Tomczak A, Grzywiński W, Kopaczyk J, Szwed T, Grabowski D, Szaban J. How the Spruce Ageing Process Affects Wood. Forests. 2024; 15(10):1737. https://doi.org/10.3390/f15101737
Chicago/Turabian StyleJelonek, Tomasz, Katarzyna Klimek, Bartłomiej Naskrent, Arkadiusz Tomczak, Witold Grzywiński, Joanna Kopaczyk, Tomasz Szwed, Daniel Grabowski, and Jarosław Szaban. 2024. "How the Spruce Ageing Process Affects Wood" Forests 15, no. 10: 1737. https://doi.org/10.3390/f15101737
APA StyleJelonek, T., Klimek, K., Naskrent, B., Tomczak, A., Grzywiński, W., Kopaczyk, J., Szwed, T., Grabowski, D., & Szaban, J. (2024). How the Spruce Ageing Process Affects Wood. Forests, 15(10), 1737. https://doi.org/10.3390/f15101737