Screening and Site Adaptability Evaluation of Qi-Nan Clones (Aquilaria sinensis) in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.2. Measurement of Growth Characters
2.3. Statistical Analysis
2.4. Estimate the Genetic Parameters
2.5. The AMMI Model, WAASB Stability Index, and GGE Biplot
3. Results
3.1. Analysis of Variance for Growth Traits
3.2. Growth Performance of Different Clones and in Different Test Sites
3.3. Estimating the Genetic Parameters
3.4. Correlation Analysis between Growth Traits and Environmental Factors
3.5. AMMI Model Analysis
3.6. WAASB Stability Index Analysis
3.7. GGE Biplot Analysis
4. Discussion
4.1. Growth of Qi-Nan Clones
4.2. Genetic Parameters for the Growth of Qi-Nan Clones
4.3. Evaluation of Qi-Nan Clones
4.4. Evaluations of Site Adaptability for Qi-Nan Clones
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, W.; Chen, H.; Wang, H.; Mei, W.; Dai, H. Natural Products in Agarwood and Aquilaria Plants: Chemistry, Biological Activities and Biosynthesis. Nat. Prod. Rep. 2021, 38, 528–565. [Google Scholar] [CrossRef]
- Gao, M.; Han, X.; Sun, Y.; Chen, H.; Yang, Y.; Liu, Y.; Meng, H.; Gao, Z.; Xu, Y.; Zhang, Z.; et al. Overview of Sesquiterpenes and Chromones of Agarwood Originating from Four Main Species of the Genus Aquilaria. RSC Adv. 2019, 9, 4113–4130. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Z.; Wang, M.; Wei, J.; Chen, H.; Gao, Z.; Sui, C.; Luo, H.; Zhang, X.; Yang, Y.; et al. Identification of Genes Related to Agarwood Formation: Transcriptome Analysis of Healthy and Wounded Tissues of Aquilaria sinensis. BMC Genom. 2013, 14, 227. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Liu, P.; Lv, F.; Zhang, Y.; Yang, Y.; Wei, J. Genetic Relationship and Source Species Identification of 58 Qi-Nan Germplasms of Aquilaria Species in China That Easily Form Agarwood. PLoS ONE 2022, 17, e0270167. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Liu, P.; Liu, Y.; Kang, Y.; Yang, Y.; Zhang, Y.; Gao, Z.; Yu, M.; Feng, J.; Lv, F.; et al. Chi-Nan Agarwood Germplasms Constitute a New Chemotype of Aquilaria sinensis (Lour.) Spreng. Ind. Crops Prod. 2022, 187, 115494. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Feng, J.; Chen, D.; Yang, Y.; Liu, P.; Yu, Z.; Wei, J. Remarkable Phytochemical Characteristics of Chi-Nan Agarwood Induced from New-Found Chi-Nan Germplasm of Aquilaria Sinensis Compared with Ordinary Agarwood. Int. J. Anal. Chem. 2021, 2021, 5593730. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, Z.; Liu, X.; Hong, Z.; Zhang, P.; Xu, D. Comparative Morphological, Anatomical and Physiological Analyses Explain the Difference of Wounding-Induced Agarwood Formation between Ordinary Agarwood Nongrafted Plants and Five Grafted Qi-Nan Clones (Aquilaria sinensis). Forests 2022, 13, 1618. [Google Scholar] [CrossRef]
- Li, X.; Fang, X.; Cui, Z.; Hong, Z.; Liu, X.; Li, G.; Hu, H.; Xu, D. Anatomical, Chemical and Endophytic Fungal Diversity of a Qi-Nan Clone of Aquilaria sinensis (Lour.) Spreng with Different Induction Times. Front. Plant Sci. 2024, 15, 1320226. [Google Scholar] [CrossRef]
- Zhang, P.; Li, X.; Cui, Z.; Xu, D. Morphological, Physiological, Biochemical and Molecular Analyses Reveal Wounding-Induced Agarwood Formation Mechanism in Two Types of Aquilaria sinensis (Lour.) Spreng. Ind. Crops Prod. 2022, 178, 114603. [Google Scholar] [CrossRef]
- Fang, X.; Li, X.; Zhang, Q.; Hu, H.; Hong, Z.; Liu, X.; Cui, Z.; Xu, D. Physiological and Endophytic Fungi Changes in Grafting Seedlings of Qi-Nan Clones (Aquilaria sinensis). Forests 2024, 15, 106. [Google Scholar] [CrossRef]
- Cañas-Gutiérrez, G.P.; Sepulveda-Ortega, S.; López-Hernández, F.; Navas-Arboleda, A.A.; Cortés, A.J. Inheritance of Yield Components and Morphological Traits in Avocado Cv. Hass from “Criollo” “Elite Trees” via Half-Sib Seedling Rootstocks. Front. Plant Sci. 2022, 13, 843099. [Google Scholar] [CrossRef] [PubMed]
- Studnicki, M.; Kang, M.S.; Iwańska, M.; Oleksiak, T.; Wójcik-Gront, E.; Mądry, W. Consistency of Yield Ranking and Adaptability Patterns of Winter Wheat Cultivars between Multi-Environmental Trials and Farmer Surveys. Agronomy 2019, 9, 245. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants 2023, 12, 3769. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Suontama, M.; Burdon, R.D.; Dungey, H.S. Genotype by Environment Interactions in Forest Tree Breeding: Review of Methodology and Perspectives on Research and Application. Tree Genet. Genomes 2017, 13, 60. [Google Scholar] [CrossRef]
- Ma, C.; Liu, C.; Ye, Z. Influence of Genotype × Environment Interaction on Yield Stability of Maize Hybrids with AMMI Model and GGE Biplot. Agronomy 2024, 14, 1000. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, X.; Gu, W.; Wang, L.; Li, W.; Gao, Y.; Wu, L.; Guo, X.; Tigabu, M.; Xia, D.; et al. Genetic Stability of Larix Olgensis Provenances Planted in Different Sites in Northeast China. For. Ecol. Manag. 2021, 485, 118988. [Google Scholar] [CrossRef]
- Zhang, Q.; Pei, X.; Lu, X.; Zhao, C.; Dong, G.; Shi, W.; Wang, L.; Li, Y.; Zhao, X.; Tigabu, M. Variations in Growth Traits and Wood Physicochemical Properties among Pinus Koraiensis Families in Northeast China. J. For. Res. 2022, 33, 1637–1648. [Google Scholar] [CrossRef]
- Jiang, L.; Pei, X.; Hu, Y.; Chiang, V.L.; Zhao, X. Effects of Environment and Genotype on Growth Traits in Poplar Clones in Northeast China. Euphytica 2021, 217, 169. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, Q.; Yin, P.; Li, H.; Li, X.; Wu, L.; Li, Y.; Hu, Y.; Zhao, X. Variation and Stability Analysis of Growth Traits of Poplar Clones in the Seedling Stage in Northeast China. J. For. Res. 2023, 34, 1107–1116. [Google Scholar] [CrossRef]
- Pei, X.; Jiang, L.; Ahmed, A.K.M.; Yu, H.; Chong, R.; You, X.; Zhao, X. Growth Variations and Stability Analyses of Seven Poplar Clones at Three Sites in Northeast China. J. For. Res. 2021, 32, 1673–1680. [Google Scholar] [CrossRef]
- Liepe, K.J.; Van Der Maaten, E.; Van Der Maaten-Theunissen, M.; Kormann, J.M.; Wolf, H.; Liesebach, M. Ecotypic Variation in Multiple Traits of European Beech: Selection of Suitable Provenances Based on Performance and Stability. Eur. J. For. Res. 2024, 143, 831–845. [Google Scholar] [CrossRef]
- Dias, A.; Gaspar, M.J.; Carvalho, A.; Pires, J.; Lima-Brito, J.; Silva, M.E.; Louzada, J.L. Within- and between-Tree Variation of Wood Density Components in Pinus nigra at Six Sites in Portugal. Ann. For. Sci. 2018, 75, 58. [Google Scholar] [CrossRef]
- De Araujo, M.J.; De Paula, R.C.; Campoe, O.C.; Carneiro, R.L. Adaptability and Stability of Eucalypt Clones at Different Ages across Environmental Gradients in Brazil. For. Ecol. Manage. 2019, 454, 117631. [Google Scholar] [CrossRef]
- Lebot, V.; Ranaivoson, L. Eucalyptus Genetic Improvement in Madagascar. For. Ecol. Manage. 1994, 63, 135–152. [Google Scholar] [CrossRef]
- Akbarpour, O.; Dehghani, H.; Sorkhi, B.; Gauch, J. Evaluation of Genotype×environment Interaction in Barley (Hordeum vulgare L.) Based on AMMI Model Using Developed SAS Program. J. Agric. Sci. Technol. 2014, 16, 909–920. Available online: https://jast.modares.ac.ir/article-23-1523-en.html (accessed on 1 July 2024).
- Correia, I.; Alía, R.; Yan, W.; David, T.; Aguiar, A.; Almeida, M.H. Genotype × Environment Interactions in Pinus Pinaster at Age 10 in a Multienvironment Trial in Portugal: A Maximum Likelihood Approach. Ann. For. Sci. 2010, 67, 612. [Google Scholar] [CrossRef]
- Mafouasson, H.N.A.; Gracen, V.; Yeboah, M.A.; Ntsomboh-Ntsefong, G.; Tandzi, L.N.; Mutengwa, C.S. Genotype-by-Environment Interaction and Yield Stability of Maize Single Cross Hybrids Developed from Tropical Inbred Lines. Agronomy 2018, 8, 62. [Google Scholar] [CrossRef]
- Pupin, S.; Silva, P.H.M.; Piotto, F.A.; Miranda, A.C.; Zaruma, D.U.G.; Sebbenn, A.M.; Moraes, M.L.T. Genotype x Environment Interaction, Stability, and Adaptability in Progenies of Eucalyptus urophylla S.T. BLAKE Using the AMMI Model. Silvae Genet. 2018, 67, 51–56. [Google Scholar] [CrossRef]
- Crossa, J. Statistical Analyses of Multilocation Trials. In Advances in Agronomy; Brady, N.C., Ed.; Academic Press: Cambridge, MA, USA, 1990; Volume 44, pp. 55–85. [Google Scholar] [CrossRef]
- Rodrigues, P.C.; Malosetti, M.; Gauch, H.G., Jr.; van Eeuwijk, F.A. A Weighted AMMI Algorithm to Study Genotype-by-Environment Interaction and QTL-by-Environment Interaction. Crop Sci. 2014, 54, 1555–1570. [Google Scholar] [CrossRef]
- de Oliveira, R.L.; Von Pinho, R.G.; Balestre, M.; Ferreira, D.V. Evaluation of Maize Hybrids and Environmental Stratification by the Methods AMMI and GGE Biplot. Crop Breed. Appl. Biotechnol. 2010, 10, 247–253. [Google Scholar] [CrossRef]
- Sousa, L.B.; Hamawaki, O.T.; Nogueira, A.P.O.; Batista, R.O.; Oliveira, V.M.; Hamawaki, R.L. Evaluation of Soybean Lines and Environmental Stratification Using the AMMI, GGE Biplot, and Factor Analysis Methods. Gen. Mole Resea. 2015, 14, 12660–12674. [Google Scholar] [CrossRef] [PubMed]
- Alwala, S.; Kwolek, T.; McPherson, M.; Pellow, J.; Meyer, D. A Comprehensive Comparison between Eberhart and Russell Joint Regression and GGE Biplot Analyses to Identify Stable and High Yielding Maize Hybrids. Field Crops Res. 2010, 119, 225–230. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C.; da Silva, J.A.G.; Sari, B.G.; Diel, M.I. Mean Performance and Stability in Multi-Environment Trials II: Selection Based on Multiple Traits. Agron. J. 2019, 111, 2961–2969. [Google Scholar] [CrossRef]
- Mohammadi, R.; Jafarzadeh, J.; Armion, M.; Hatamzadeh, H.; Roohi, E. Clustering Stability Methods towards Selecting Best Performing and Stable Durum Wheat Genotypes. Euphytica. 2023, 219, 109. [Google Scholar] [CrossRef]
- Nataraj, V.; Bhartiya, A.; Singh, C.P.; Devi, H.N.; Deshmukh, M.P.; Verghese, P.; Singh, K.; Mehtre, S.P.; Kumari, V.; Maranna, S.; et al. WAASB-based Stability Analysis and Simultaneous Selection for Grain Yield and Early Maturity in Soybean. Agron. J. 2021, 113, 3089–3099. [Google Scholar] [CrossRef]
- Liang, D.; Zhang, X.; Wang, C.; Wang, X.; Li, K.; Liu, G.; Zhao, X.; Qu, G.-Z. Evaluation of Betula Platyphylla Families Based on Growth and Wood Property Traits. For. Sci. 2018, 64, 663–670. [Google Scholar] [CrossRef]
- Ryan, M.G.; Stape, J.L.; Binkley, D.; Alvares, C.A. Cross-Site Patterns in the Response of Eucalyptus Plantations to Irrigation, Climate and Intra-Annual Weather Variation. For. Ecol. Manage. 2020, 475, 118444. [Google Scholar] [CrossRef]
- Baye, T. Genotypic and Phenotypic Variability in Vernonia Galamensis Germplasm Collected from Eastern Ethiopia. J. Agric. Sci. 2002, 139, 161–168. [Google Scholar] [CrossRef]
- Yue, H.; Li, H.; Xu, L.; Bu, J.; Wei, J.; Chen, S.; Peng, H.; Xie, J.; Shang, S.; Jiang, X. Analysis of Genotype-Environment Interactions of Silage Maize Cultivars under Environmental Trials. Bangladesh J. Bot. 2020, 49, 55–63. [Google Scholar] [CrossRef]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Mehareb, E.M.; Osman, M.A.M.; Attia, A.E.; Bekheet, M.A.; Abo Elenen, F.F.M. Stability Assessment for Selection of Elite Sugarcane Clones across Multi-Environment Based on AMMI and GGE-Biplot Models. Euphytica 2022, 218, 95. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, J.; Yang, Y.; Lin, Y. One Compound Approach Combining Factor-Analytic Model with AMMI and GGE Biplot to Improve Multi-Environment Trials Analysis. J. For. Res. 2020, 31, 123–130. [Google Scholar] [CrossRef]
- Gill, H.S.; Halder, J.; Zhang, J.; Brar, N.K.; Rai, T.S.; Hall, C.; Bernardo, A.; Amand, P.S.; Bai, G.; Olson, E.; et al. Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat. Front. Plant Sci. 2021, 12, 709545. [Google Scholar] [CrossRef] [PubMed]
- da Silva, P.H.M.; Araujo, M.J.; Lee, D.J.; Bush, D.; Baroni, G.R.; de Paula, R.C. Adaptability and Stability of Novel Eucalypt Species and Provenances across Environments in Brazil at Two Assessment. New For. 2022, 53, 779–796. [Google Scholar] [CrossRef]
- Nabeshima, E.; Kubo, T.; Hiura, T. Variation in Tree Diameter Growth in Response to the Weather Conditions and Tree Size in Deciduous Broad-Leaved Trees. For. Ecol. Manage. 2010, 259, 1055–1066. [Google Scholar] [CrossRef]
- Souza, T.D.S.; Ramalho, M.A.P.; Lima, B.M.D.; Rezende, G.D.S.P. Performance of Eucalyptus Clones According to Environmental Conditions. Sci. For. 2017, 45, 601–610. [Google Scholar] [CrossRef]
- Zhao, X.; Bian, X.; Li, Z.; Wang, X.; Yang, C.; Liu, G.; Jiang, J.; Kentbayev, Y.; Kentbayeva, B.; Yang, C. Genetic Stability Analysis of Introduced Betula pendula, Betula kirghisorum, and Betula pubescens Families in Saline-Alkali Soil of Northeastern China. Scand. J. For. Res. 2014, 29, 639–649. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, G.; Liu, J. Isolation and Screening of Fungi for Enhanced Agarwood Formation in Aquilaria sinensis Trees. PLoS ONE 2024, 19, e0304946. [Google Scholar] [CrossRef]
- Jia, B.; Sun, H.; Shugart, H.H.; Xu, Z.; Zhang, P.; Zhou, G. Growth Variations of Dahurian Larch Plantations across Northeast China: Understanding the Effects of Temperature and Precipitation. J. Environ. Manage. 2021, 292, 112739. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, A.; Chakraborty, N.R.; Wheeler, C.; Agarwal, P.K.; Ghosh, A. Genetic Variability, Character Association and Divergence Studies in Jatropha curcas for Improvement in Oil Yield. Trees 2016, 30, 1163–1180. [Google Scholar] [CrossRef]
- Stovall, J.P.; Carlson, C.A.; Seiler, J.R.; Fox, T.R.; Yanez, M.A. Growth and Stem Quality Responses to Fertilizer Application by 21 Loblolly Pine Clones in the Virginia Piedmont. For. Ecol. Manag. 2011, 261, 362–372. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, W.; Lu, N.; Wang, Z.; Wang, N.; Zhai, W.; Kong, L.; Qu, G.; Wang, Q.; Wang, J. Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa Bungei and Catalpa fargesii f. Duclouxii. Forests 2019, 10, 57. [Google Scholar] [CrossRef]
- Scheiner, S.M.; Goodnight, C.J. The Comparison of Phenotypic Plasticity and Genetic Variation in Populations of the Grass Danthonia Spicata. Evolution 1984, 38, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Xiao, Z.; Zhao, G.; Zhao, X.; Sun, X.; Zhang, Y.; Wang, F.; Li, S.; Zhao, X.; Qu, G.-Z. Variation Analyses of Growth and Wood Properties of Larix olgensis Clones in China. J. For. Res. 2017, 28, 687–697. [Google Scholar] [CrossRef]
- Huang, R.; Wang, R.; Wei, R.; Yan, S.; Wu, G.; Zheng, H. Selection for Both Growth and Wood Properties in Chinese Fir Breeding Parents Based on a 6-Year Grafted Clone Test. Forests 2023, 14, 1774. [Google Scholar] [CrossRef]
- Sotelo Montes, C.; Hernández, R.E.; Beaulieu, J.; Weber, J.C. Genetic Variation in Wood Color and Its Correlations with Tree Growth and Wood Density of Calycophyllum Spruceanum at an Early Age in the Peruvian Amazon. New For. 2008, 35, 57–73. [Google Scholar] [CrossRef]
- Omrani, A.; Omrani, S.; Khodarahmi, M.; Shojaei, S.H.; Illés, Á.; Bojtor, C.; Mousavi, S.M.N.; Nagy, J. Evaluation of Grain Yield Stability in Some Selected Wheat Genotypes Using AMMI and GGE Biplot Methods. Agronomy 2022, 12, 1130. [Google Scholar] [CrossRef]
- Braga, R.C.; Paludeto, J.G.Z.; Souza, B.M.; Aguiar, A.V.; Pollnow, M.F.M.; Carvalho, A.G.M.; Tambarussi, E.V. Genetic Parameters and Genotype × Environment Interaction in Pinus taeda Clonal Tests. For. Ecol. Manag. 2020, 474, 118342. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, Z.; Jin, G.; Zheng, Y.; Zhou, Z.; Sun, L.; Tong, H. Genetic Parameters and Genotype by Environment Interactions Influencing Growth and Productivity in Masson Pine in East and Central China. For. Ecol. Manag. 2021, 487, 118991. [Google Scholar] [CrossRef]
- Olivoto, T.; Lúcio, A.D.C.; da Silva, J.A.G.; Marchioro, V.S.; de Souza, V.Q.; Jost, E. Mean Performance and Stability in Multi-Environment Trials I: Combining Features of AMMI and BLUP Techniques. Agron. J. 2019, 111, 2949–2960. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643–653. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Wang, J.; Yun, X.; Qu, F.; Sun, C.; Wang, Q. Genotype by Environment Interaction for Grain Yield in Foxtail Millet (Setarai italica) Using AMMI Model and GGE Biplot. Plant Growth Regul. 2023, 99, 101–112. [Google Scholar] [CrossRef]
- Saeidnia, F.; Majidi, M.M.; Dehghani, M.R.; Saeidi, G.; Mirlohi, A. Drought Tolerance and Stability of Native Iranian and Foreign Tall Fescue Genotypes: Comparison of AMMI and GGE Biplot Analyses. Agron. J. 2022, 114, 2180–2185. [Google Scholar] [CrossRef]
- Bertoldo, J.G.; Coimbra, J.L.M.; Nodari, R.O.; Guidolin, A.F.; Hemp, S.; Barili, L.D.; Vale, N.M.; Rozzeto, D.S. Stratification of the State of Santa Catarina in Macro-Environments for Bean Cultivation. Crop. Breed. Appl. Biotechnol. 2009, 9, 335–343. [Google Scholar] [CrossRef]
- Taheripourfard, Z.; Izadi-Darbandi, A.; Ghazvini, H.; Ebrahimi, M.; Mortazavian, S.M.M.; Abdipour, M. Identifying Superior Barley (Hordeum vulgare L.) Genotypes Using GGE-Biplot across Warm and Moderate Environments under Irrigated Conditions in Iran. Crop Breed. J. 2017, 7, 23–35. [Google Scholar] [CrossRef]
- Midmore, D.J.; Cartwright, P.M.; Fischer, R.A. Wheat in Tropical Environments. II. Crop Growth and Grain Yield. Field Crops Res. 1984, 8, 207–227. [Google Scholar] [CrossRef]
Test Site | Longitude | Latitude | Altitude (m) | Frost-Free Season (days) | Mean Annual Precipitation (mm) | Mean Annual Temperature (°C) | Mean Annual Sunshine Duration (h) |
---|---|---|---|---|---|---|---|
Yangjiang (YJ) | 112°09′24″ E | 21°59′23″ N | 16 | 358 | 1886 | 22.3 | 2012 |
Foshan (FS) | 112°44′58″ E | 22°43′24″ N | 85 | 356 | 1572 | 21.6 | 1629 |
Chenmai (CM) | 110°01′58″ E | 19°52′13″ N | 38.66 | 365 | 1786 | 23.8 | 2059 |
Pingxiang (PX) | 106°55′12″ E | 22°03′20″ N | 251 | 344 | 1500 | 21.5 | 1614 |
Zhangzhou (ZZ) | 117°21′03″ E | 24°21′37″ N | 446 | 319 | 1736 | 21.3 | 1764 |
Sites | Source of Variations | Tree Height | Ground Diameter | |||||
---|---|---|---|---|---|---|---|---|
DF | SS | MS | F | SS | MS | F | ||
ME | Clone | 24 | 194.00 | 8.08 | 65.743 ** | 1617.02 | 67.40 | 92.497 ** |
Site | 4 | 622.90 | 155.73 | 1266.871 ** | 2203.53 | 550.90 | 756.299 ** | |
Clone: Site | 96 | 167.70 | 1.75 | 14.208 ** | 786.50 | 8.20 | 11.248 ** | |
Residuals | 4329 | 518.31 | 0.12 | 2998.19 | 0.70 | |||
CM | Clone | 24 | 205.05 | 8.54 | 73.566 ** | 1010.72 | 42.11 | 54.700 ** |
Residuals | 983 | 111.03 | 0.11 | 746.91 | 0.77 | |||
FS | Clone | 24 | 35.24 | 1.47 | 22.432 ** | 355.33 | 14.81 | 29.414 ** |
Residuals | 665 | 43.53 | 0.07 | 334.74 | 0.50 | |||
PX | Clone | 24 | 15.79 | 0.66 | 4.819 ** | 155.20 | 6.47 | 6.702 ** |
Residuals | 571 | 77.94 | 0.13 | 551.11 | 0.96 | |||
YJ | Clone | 24 | 111.96 | 4.66 | 40.446 ** | 859.90 | 35.83 | 59.674 ** |
Residuals | 1174 | 135.41 | 0.12 | 704.93 | 0.60 | |||
ZZ | Clone | 24 | 15.86 | 0.66 | 4.133 ** | 125.71 | 5.24 | 5.969 ** |
Residuals | 562 | 89.87 | 0.15 | 493.20 | 0.87 |
Clones/Sites | Tree Height (m) | Ground Diameter (cm) | 1-Year Survival Rate (%) | 3-Year Preservation Rate (%) |
---|---|---|---|---|
G01 | 2.11 ± 0.42 k | 4.06 ± 0.83 l | 87.11 ± 17.77 abc | 68.01 ± 25.51 cde |
G02 | 2.60 ± 0.56 cdef | 5.29 ± 1.21 efg | 91.57 ± 12.04 abc | 82.02 ± 17.55 abc |
G03 | 2.47 ± 0.55 fghi | 5.63 ± 1.19 d | 90.57 ± 10.81 abc | 78.59 ± 21.51 abcd |
G04 | 2.64 ± 0.58 bcde | 5.74 ± 1.36 cd | 89.14 ± 14.21 abc | 81.43 ± 15.54 abc |
G05 | 2.72 ± 0.58 abc | 6.06 ± 1.31 b | 90.35 ± 12.25 abc | 83.13 ± 14.67 abc |
G06 | 2.47 ± 0.38 fghi | 4.98 ± 0.93 hi | 85.22 ± 15.23 abc | 79.78 ± 20.19 abcd |
G07 | 2.53 ± 0.63 defgh | 5.18 ± 1.04 fgh | 88.67 ± 16.02 abc | 75.67 ± 26.95 abcde |
G08 | 2.55 ± 0.56 defg | 4.85 ± 1.12 ij | 94.67 ± 9.07 ab | 87.56 ± 13.75 ab |
G09 | 2.53 ± 0.61 defgh | 5.5 ± 1.52 def | 89.22 ± 13.77 abc | 77.33 ± 23.42 abcd |
G10 | 2.68 ± 0.56 abcd | 5.94 ± 1.32 bc | 95.44 ± 6.19 a | 88.56 ± 15.96 a |
G11 | 2.80 ± 0.78 a | 6.7 ± 1.69 a | 88.56 ± 18.6 abc | 82.67 ± 21.68 abc |
G12 | 2.39 ± 0.54 hij | 4.87 ± 1.11 ij | 83.89 ± 19.87 abc | 71.44 ± 32.51 abcde |
G13 | 2.76 ± 0.80 ab | 5.58 ± 1.46 de | 87.67 ± 12.15 abc | 76.22 ± 15.25 abcd |
G14 | 2.41 ± 0.54 ghij | 5.31 ± 1.22 efg | 83.89 ± 16.7 abc | 74.33 ± 21.50 abcde |
G15 | 2.59 ± 0.66 cdef | 5.31 ± 1.56 efg | 81.88 ± 19.62 abcd | 62.03 ± 21.24 defg |
G16 | 2.45 ± 0.52 fghij | 4.68 ± 0.98 j | 85.48 ± 16.14 abc | 70.81 ± 21.56 abcde |
G17 | 2.31 ± 0.41 j | 4.61 ± 0.99 jk | 82.56 ± 23.51 abc | 69.44 ± 27.06 bcde |
G18 | 1.88 ± 0.33 l | 3.86 ± 0.88 l | 78.31 ± 23.48 cd | 49.94 ± 18.55 fg |
G19 | 1.93 ± 0.40 l | 3.95 ± 0.73 l | 84.39 ± 16.9 abc | 57.90 ± 23.7 efg |
G20 | 2.50 ± 0.51 efghi | 5.23 ± 1.06 fgh | 87.89 ± 11.05 abc | 76.31 ± 13.66 abcd |
G21 | 2.65 ± 0.76 bcde | 5.74 ± 1.37 cd | 84.67 ± 14.72 abc | 75.44 ± 16.57 abcde |
G22 | 2.31 ± 0.52 j | 5.25 ± 1.09 fgh | 85.07 ± 22.24 abc | 70.38 ± 23.93 abcde |
G23 | 2.06 ± 0.34 k | 4.36 ± 0.86 k | 69.75 ± 23.45 d | 48.22 ± 19.95 g |
G24 | 2.36 ± 0.70 ij | 5.30 ± 1.38 efg | 80.86 ± 19.80 bcd | 62.57 ± 25.02 defg |
G25 | 2.38 ± 0.49 ij | 4.99 ± 1.26 ghi | 83.81 ± 18.05 abc | 65.78 ± 23.86 cdef |
CM | 3.23 ± 0.68 a | 6.57 ± 1.54 a | 94.42 ± 5.13 a | 90.82 ± 8.08 a |
FS | 2.14 ± 0.34 d | 4.66 ± 0.99 c | 74.49 ± 24.20 c | 58.67 ± 26.96 d |
PX | 2.10 ± 0.39 d | 4.6 ± 1.07 cd | 77.82 ± 16.41 c | 51.36 ± 33.43 d |
YJ | 2.61 ± 0.46 b | 5.57 ± 1.14 b | 90.40 ± 13.25 b | 81.93 ± 15.27 b |
ZZ | 2.20 ± 0.44 c | 4.50 ± 1.05 d | 90.00 ± 14.82 b | 71.33 ± 24.01 c |
Sites | Traits | PCV (%) | GCV (%) | R |
---|---|---|---|---|
CM | Tree height | 21.94 | 18.71 | 0.96 |
Ground diameter | 24.58 | 20.66 | 0.98 | |
FS | Tree height | 16.56 | 10.76 | 0.90 |
Ground diameter | 21.39 | 14.67 | 0.85 | |
PX | Tree height | 32.09 | 27.06 | 0.80 |
Ground diameter | 23.29 | 10.33 | 0.85 | |
YJ | Tree height | 18.03 | 11.74 | 0.93 |
Ground diameter | 20.48 | 14.99 | 0.98 | |
ZZ | Tree height | 19.97 | 5.24 | 0.50 |
Ground diameter | 23.40 | 8.51 | 0.69 |
Traits | Longitude | Latitude | Altitude | Frost-Free Season | Mean Annual Precipitation | Mean Annual Temperature | Mean Annual Sunshine Duration |
---|---|---|---|---|---|---|---|
Tree height | −0.18 | −0.81 | −0.57 | 0.60 | 0.65 | 0.98 ** | 0.9 * |
Ground diameter | −0.28 | −0.87 | −0.68 | 0.71 | 0.62 | 0.99 ** | 0.89 * |
1-year survival rate | 0.28 | −0.3 | −0.06 | 0.02 | 0.88 * | 0.64 | 0.89 * |
3-year preservation rate | 0.22 | −0.49 | −0.4 | 0.36 | 0.91 * | 0.81 | 0.97 ** |
Clones | Tree Height | Ground Diameter | ||
---|---|---|---|---|
WAASB Value | Ranking | WAASB Value | Ranking | |
G01 | 0.40 | 24 | 0.37 | 22 |
G02 | 0.08 | 4 | 0.16 | 5 |
G03 | 0.22 | 15 | 0.31 | 16 |
G04 | 0.11 | 9 | 0.31 | 15 |
G05 | 0.25 | 18 | 0.34 | 20 |
G06 | 0.10 | 7 | 0.18 | 8 |
G07 | 0.30 | 21 | 0.32 | 17 |
G08 | 0.06 | 1 | 0.11 | 2 |
G09 | 0.45 | 25 | 0.61 | 25 |
G10 | 0.23 | 17 | 0.32 | 18 |
G11 | 0.26 | 19 | 0.21 | 10 |
G12 | 0.08 | 3 | 0.24 | 11 |
G13 | 0.33 | 22 | 0.38 | 23 |
G14 | 0.21 | 14 | 0.18 | 7 |
G15 | 0.08 | 2 | 0.20 | 9 |
G16 | 0.30 | 20 | 0.32 | 19 |
G17 | 0.34 | 23 | 0.35 | 21 |
G18 | 0.09 | 5 | 0.15 | 4 |
G19 | 0.11 | 10 | 0.15 | 3 |
G20 | 0.09 | 6 | 0.29 | 14 |
G21 | 0.14 | 11 | 0.16 | 6 |
G22 | 0.19 | 13 | 0.27 | 12 |
G23 | 0.16 | 12 | 0.27 | 13 |
G24 | 0.11 | 8 | 0.09 | 1 |
G25 | 0.22 | 16 | 0.53 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Xu, D.; Li, X.; Fang, X.; Cui, Z.; Liu, X.; Hao, J.; Su, Y.; Hong, Z. Screening and Site Adaptability Evaluation of Qi-Nan Clones (Aquilaria sinensis) in Southern China. Forests 2024, 15, 1753. https://doi.org/10.3390/f15101753
Hu H, Xu D, Li X, Fang X, Cui Z, Liu X, Hao J, Su Y, Hong Z. Screening and Site Adaptability Evaluation of Qi-Nan Clones (Aquilaria sinensis) in Southern China. Forests. 2024; 15(10):1753. https://doi.org/10.3390/f15101753
Chicago/Turabian StyleHu, Houzhen, Daping Xu, Xiaofei Li, Xiaoying Fang, Zhiyi Cui, Xiaojin Liu, Jian Hao, Yu Su, and Zhou Hong. 2024. "Screening and Site Adaptability Evaluation of Qi-Nan Clones (Aquilaria sinensis) in Southern China" Forests 15, no. 10: 1753. https://doi.org/10.3390/f15101753
APA StyleHu, H., Xu, D., Li, X., Fang, X., Cui, Z., Liu, X., Hao, J., Su, Y., & Hong, Z. (2024). Screening and Site Adaptability Evaluation of Qi-Nan Clones (Aquilaria sinensis) in Southern China. Forests, 15(10), 1753. https://doi.org/10.3390/f15101753