Establishment of a Highly Efficient Micropropagation System of Aquilaria crassna Pierre ex Lecomte
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Induction of Axillary Buds and Shoot Tips
2.3. Shoot Multiplication of Subculture
2.4. Rooting
2.5. Culture Conditions
2.6. Acclimatization and Transplantation
2.7. Statistical Analysis
3. Results
3.1. Axillary Buds and Shoot Tip Buds Induction
3.2. Subculture of Axillary Buds
3.3. Rooting Culture
3.4. Hardening and Acclimatization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalra, R.; Kaushik, N. A review of chemistry, quality and analysis of infected agarwood tree (Aquilaria sp.). Phytochem. Rev. 2017, 16, 1045–1079. [Google Scholar] [CrossRef]
- Wongwada, E.; Pingyoda, C.; Saesonga, T.; Waranuchb, N.; Wisuitiprotc, W.; Sritularakd, B.; Temkitthawona, P.; Ingkaninan, K. Assessment of the bioactive components, antioxidant, antiglycation and anti-inflammatory properties of Aquilaria crassna Pierre ex Lecomte leaves. Ind. Crop Prod. 2019, 138, 111448. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wei, J.H.; Gao, Z.H.; Zhang, Z.; Lyu, J.C. A review of quality assessment and grading for agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Takamatsu, S.; Ito, M. Agarotetrol as an index for evaluating agarwood in crude drug products. J. Nat. Med. 2022, 76, 857–864. [Google Scholar] [CrossRef]
- Pharmacopoeia Committee of P. R. China. Pharmacopoeia of People’s Republic of China; China Medical Science and Technology Press: Beijing, China, 2020. [Google Scholar]
- Red List. The IUCN Red List of Threatened Species. 2017. Available online: http://www.iucnredlist.org/search (accessed on 11 October 2023).
- Dong, M.Y.; Jiao, L.C.; Jiang, X.M.; Zhang, S.J.; LI, G.Y.; Yin, Y.F. Resources, Identification and Utilization of Agarwood. China Wood Ind. 2016, 30, 20–24. [Google Scholar]
- Van Minh, T. Application of tissue culture techniques in woody species conservation, Improvement and Development in Vietnam: Agarwood (Aquilaria crassna Pierre ex LeComte) via Shoot-tip Culture. In Proceedings of the Second International Symposium on Biotechnology of Tropical and Subtropical Species, Taipei, Taiwan, 5–9 November 2001; ISHS: Leuven, Belgium, 2005; Volume 692, pp. 37–42. [Google Scholar]
- Kadhimi, A.A.; Alhasnawi, A.N.; Mohamad, A.; Yusoff, W.M.W.; Zain, C.R.B.C.M. Tissue culture and some of the factors affecting them and the micropropagation of strawberry. Life Sci. J. 2014, 11, 484–493. [Google Scholar]
- Twaij, B.M.; Jazar, Z.H.; Hasan, M.N. Trends in the use of tissue culture, applications and future aspects. Int. J. Plant Biol. 2020, 11, 8385. [Google Scholar] [CrossRef]
- Luo, Z.W.; Janssen, B.J.; Snowden, K.C. The molecular and genetic regulation of shoot branching. Plant Physiol. 2021, 187, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Leyse, O. Auxin, cytokinin and the control of shoot branching. Ann. Bot. 2011, 107, 1203–1212. [Google Scholar] [CrossRef]
- Yan, Y.Y.; Shi, Q.H.; Gong, B. S-nitrosoglutathione reductase-mediated nitric oxide affects axillary buds outgrowth of Solanum lycopersicum L. by regulating auxin and cytokinin signaling. Plant Cell Physiol. 2021, 62, 458–471. [Google Scholar] [CrossRef]
- Martins, M.; Sarmento, D.; Oliveira, M.M. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep. 2004, 23, 492–496. [Google Scholar] [CrossRef]
- Goyal, A.K.; Pradhan, S.; Basistha, B.C.; Sen, A. Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech 2015, 5, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Aruna, V.; Kiranmai, C.; Karuppusamy, S.; Pullaiah, T. Micropropagation of three varieties of Caralluma adscendens via nodal explants. J. Plant Biochem. Biot. 2009, 18, 121–123. [Google Scholar] [CrossRef]
- Ramadevi, T.; Ugraiah, A.; Pullaiah, T. in vitro shoot multiplication from nodal explants of Boucerosia diffusa wight—Anendemic medicinal plant. Indian J. Biotechnol. 2012, 11, 344–347. [Google Scholar]
- Raomai, S.; Kumaria, S.; Tandon, P. in vitro propagation of Homalomena aromatica Schott., an endangered aromatic medicinal herb of Northeast India. Physiol. Mol. Biol. Plants 2013, 19, 297–300. [Google Scholar] [CrossRef]
- Gantait, S.; Mahanta, M. Hyperhydricity-induced changes among in vitro regenerants of gerbera. S. Afr. J. Bot. 2022, 149, 496–501. [Google Scholar] [CrossRef]
- Abdalla, N.; El-Ramady, H.; Seliem, M.K.; El-Mahrouk, M.E.; Taha, N.; Bayoumi, Y.; Shalaby, T.A.; Dobránszki, J. An academic and technical overview on plant micropropagation challenges. Horticulturae 2022, 8, 677. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Maloupa, E.; Grigoriadou, K. in vitro direct organogenesis of the medicinal single-mountain local prioritized vulnerable Greek endemic Achillea occulta under different medium variants. Not. Bot. Horti Agrobot. 2023, 51, 13124. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K.F. Seed germination, micropropagation from adult and juvenile origin explants and address of hyperhydricity of the Cretan endemic herb Calamintha cretica. Not. Bot. Horti Agrobot. 2020, 48, 1504–1518. [Google Scholar] [CrossRef]
- Vlachou, G.; Papafotiou, M.; Bertsouklis, K. Studies on seed germination and micropropagation of Clinopodium nepeta: A medicinal and aromatic plant. HortScience 2019, 54, 1558–1564. [Google Scholar] [CrossRef]
- Polivanova, O.B.; Bedarev, V.A. Hyperhydricity in plant tissue culture. Plants 2022, 11, 3313. [Google Scholar] [CrossRef] [PubMed]
- Kevers, C.; Franck, T.; Strasser, R.J.; Dommes, S.; Gaspar, T. Hyperhydricity of micropropagated shoots: A typically stress-induced change of physiological state. Plant Cell Tissue Organ Cult. 2004, 77, 181–191. [Google Scholar] [CrossRef]
- Ivanova, M.; van Staden, J. Effect of ammonium ions and cytokinins on hyperhydricity and multiplication rate of in vitro regenerated shoots of Aloe polyphylla. Plant Cell Tissue Organ Cult. 2008, 92, 227–231. [Google Scholar] [CrossRef]
- Ivanova, M.; Staden, J.V. Influence of gelling agent and cytokinins on the control of hyperhydricity in Aloe polyphylla. Plant Cell Tissue Org. 2011, 104, 13–21. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, F.; Kong, X.; Tian, J.; Wu, Z.; Wu, Z. Effects of multiple factors on hyperhydricity of Allium sativum L. Sci. Hortic. 2017, 217, 285–296. [Google Scholar] [CrossRef]
- Mamedes-Rodrigues, T.C.; Batista, D.S.; Napoleão, T.A.; Fortini, E.A.; Cruz, A.C.F.; Costa, M.G.C.; Otoni, W.C. Regulation of cell wall development in Brachypodium distachyon in vitro as affected by cytokinin and gas exchange. Plant Cell Tissue Organ Cult. 2019, 136, 207–219. [Google Scholar] [CrossRef]
- Martini, A.N.; Vlachou, G.; Papafotiou, M. Effect of explant origin and medium plant growth regulators on in vitro shoot proliferation and rooting of Salvia tomentosa, a native sage of the Northeastern Mediterranean Basin. Agron. J. 2022, 12, 1889. [Google Scholar] [CrossRef]
- Papafotiou, M.; Vlachou, G.; Martini, A.N. Investigation of the effects of the explant type and different plant growth regulators on micropropagation of five mediterranean Salvia spp. native to Greece. Horticulturae 2023, 9, 96. [Google Scholar] [CrossRef]
- Kataeva, N.V.; Alexandrova, I.G.; Butenko, R.G.; Dragavtceva, E.V. Effect of applied and internal hormones on vitrification and apical necrosis of different plants cultured in vitro. Plant Cell Tissue Organ Cult. 1991, 27, 149–154. [Google Scholar] [CrossRef]
- Ivanova, M.; Novak, O.; Strnad, V.; van Staden, J. Endogenous cytokinins in shoots of Aloe polyphylla cultured in vitro in relation to hyperhydricity, exogenous cytokinins and gelling agents. Plant Growth Regul. 2006, 50, 219–230. [Google Scholar] [CrossRef]
- Žd’árská, M.; Zatloukalová, P.; Benítez, M.; Šedo, O.; Potěšil, D.; Novák, O.; Svačinová, J.; Pešek, B.; Malbeck, J.; Vašíčková, J.; et al. Proteome analysis in arabidopsis reveals shoot- and root-specific targets of cytokinin action and differential regulation of hormonal homeostasis. Plant Physiol. 2013, 161, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, J.; Ji, H.; An, L.; Xia, X. Hyperhydricity-induced ultrastructural and physiological changes in blueberry (Vaccinium spp.). Plant Cell Tissue Organ Cult. 2018, 133, 65–76. [Google Scholar] [CrossRef]
- Gao, H.Y.; Xiuying Xia, X.Y.; An, L.J. Critical roles of the activation of ethylene pathway genes mediated by DNA demethylation in Arabidopsis hyperhydricity. Plant Genome 2022, 15, e20202. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. in vitro rooting of Leguminous plants: Difficulties, alternatives, and strategies for improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif rose: Effects of medium constituents and light on in vitro rooting and acclimatization. Agron. J. 2024, 14, 1120. [Google Scholar] [CrossRef]
- Dobránszki, J.; Teixeira da Silva, J.A. Micropropagation of apple—A review. Biotechnol. Adv. 2010, 28, 462–488. [Google Scholar] [CrossRef] [PubMed]
- Timofeeva, S.N.; Elkonin, L.A.; Tyrnov, V.S. Micropropagation of Laburnum anagyroides Medic. through axillary shoot regeneration. in vitro Cell. Dev. Biol.-Plant 2014, 50, 561–567. [Google Scholar] [CrossRef]
- Kornova, K.; Michailova, J.; Astadjov, N. Application of in vitro techniques for propagation of Rosa Kazanlika Top. (Rosa Damascene Var. Trigintipetala). Biotechnol. Biotechnol. Equip. 2000, 14, 78–81. [Google Scholar] [CrossRef]
- Fadel, D.; Kintzios, S.; Economou, S.A.; Georgia Moschopoulou, G.; Constantinidou, A.H. Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of Spearmint (Mentha spicata L.). Open Hortic. J. 2010, 3, 31–35. [Google Scholar] [CrossRef]
- Sharma, K.; Thakur, M.; Sharma, V. Cost effective in vitro propagation of Gisela 5 cherry rootstock. Indian J. Hort. 2020, 77, 597–602. [Google Scholar] [CrossRef]
- Jung, W.-S.; Chung, I.-M.; Kim, S.-H.; Chi, H.-Y.; Yu, C.Y.; Ghimire, B.K. Direct shoot organogenesis from Lycium chinense Miller leaf explants and assessment of genetic stability using ISSR markers. Agron. J. 2021, 11, 503. [Google Scholar] [CrossRef]
- Parveen, S.; Shahzad, A. TDZ-induced high frequency shoot regeneration in Cassia sophera Linn. via cotyledonary node explants. Physiol. Mol. Biol. Plants 2010, 16, 201–206. [Google Scholar] [CrossRef]
- Shaik, S.; Dewir, Y.H.; Singh, N.; Nicholas, A. Micropropagation and bioreactor studies of the medicinally important plant Lessertia (Sutherlandia frutescens) L. S. Afr. J. Bot. 2010, 76, 180–186. [Google Scholar] [CrossRef]
- Ayuso, M.; García-Pérez, P.; Ramil-Rego, P.; Gallego, P.P.; Barreal, M.E. in vitro culture of the endangered plant Eryngium viviparum as dual strategy for its ex situ conservation and source of bioactive compounds. Plant Cell Tissue Organ Cult. 2019, 138, 427–435. [Google Scholar] [CrossRef]
- Thangjam, R.; Sahoo, L. in vitro regeneration and Agrobacterium tumefaciens-mediated genetic transformation of Parkia timoriana (DC.) Merr: A multipurpose tree legume. Acta Physiol. Plant. 2012, 34, 1207–1215. [Google Scholar] [CrossRef]
- Manzanera, J.A.; Parados, J.A. Micropropagation of juvenile and adult Quercus suber L. Plant Cell Tissue Organ Cult. 1990, 21, 1–8. [Google Scholar] [CrossRef]
- Adlinge, P.M.; Samal, K.C.; Swamy, R.V.K.; Rout, G.R. Rapid in vitro plant regeneration of black Gram (Vigna mungo L. Hepper) Var. Sarala, an important legume crop. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2014, 84, 823–827. [Google Scholar] [CrossRef]
- Naik, S.K.; Pattnaik, S.; Chand, P.K. in vitro propagation of pomegranate (Punica granatum L. cv. Ganesh) through axillary shoot proliferation from nodal segments of mature tree. Sci. Hortic. 1998, 79, 175–183. [Google Scholar] [CrossRef]
- Lauzer, D.; Vieth, J. Micropropagation of seed-derived plant of Cynara scolymus L., cv. ‘Green globe’. Plant Cell Tissue Organ Cult. 1990, 21, 237–244. [Google Scholar] [CrossRef]
- Kidasi, P.C.; Kilalo, D.C.; Mwang’ombe, A.W. Effect of sterilants and plant growth regulators in regenerating commonly used cassava cultivars at the Kenyan coast. Heliyon 2023, 9, e17263. [Google Scholar] [CrossRef]
- Welehaweria, M.; Sbhatu, D.B. in vitro micropropagation of Aloe elegans Tod. using offshoot cuttings. BMC Res. Notes 2023, 16, 215. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agron. J. 2019, 9, 298. [Google Scholar] [CrossRef]
- Yan, K.; Ma, Y.; Bao, S.; Li, W.; Wang, Y.; Sun, C.; Lu, X.; Ran, J. Exploring the impact of Coconut Peat and Vermiculite on the Rhizosphere Microbiome of pre-basic seed potatoes under soilless cultivation conditions. Microorganisms 2024, 12, 584. [Google Scholar] [CrossRef] [PubMed]
- Salles, J.S.; Costa, E.; de Lima, A.H.F.; Salles, J.S.; Binotti, F.F.D.; Vieira, G.H.D.; Junnyor, W.D.G.; Junnyor, G.; Scaloppi, E.J., Jr. Growth of tamarind seedlings in different levels of shadowing and substrate composition. Chil. J. Agric. Res. 2024, 84, 166–180. [Google Scholar] [CrossRef]
- Sarwar, G.; Anwar, T.; Qureshi, H.; Younus, M.; Hassan, M.W.; Sajid-ur-Rehman, M.; Khalid, F.; Faiza; Zaman, W.; Soufan, W. Optimizing germination: Comparative assessment of various growth media on dragon fruit germination and early growth. BMC Plant Biol. 2024, 24, 533–544. [Google Scholar] [CrossRef]
- Mayo-Prieto, S.; Rodríguez-González, Á.; Lorenzana, A.; Gutiérrezand, S.; Casquero, P.A. Influence of substrates in the development of bean and in pathogenicity of Rhizoctonia solani JG Kühn. Agron. J. 2020, 10, 707. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.Y.; Jiang, Q.B.; Zhong, C.L.; Zhang, J. Effects of substrates and rooting regulators on rooting of cuttings in Manglietia conifera Dandy. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2019, 43, 23–30. [Google Scholar]
Group | Microelements | Macroelements | NAA (mg/L) |
---|---|---|---|
1 | 1/2MS | 1/2MS | 0.05 |
2 | 1MS | 1/2MS | 0.05 |
3 | 1/2MS | 1/5MS | 0.05 |
4 | 1/2MS | 1/4MS | 0.05 |
5 | 1/2MS | 1/2MS | 0.05 |
6 | 1/2MS | 3/4MS | 0.05 |
7 | 1/2MS | 1MS | 0.05 |
8 | 1/2MS | 1/4MS | 0.00 |
9 | 1/2MS | 1/4MS | 0.01 |
10 | 1/2MS | 1/4MS | 0.05 |
11 | 1/2MS | 1/4MS | 0.10 |
12 | 1/2MS | 1/4MS | 0.20 |
Treatment Group | Transplanting Substrate | Survival Rate (%) | Height of Plantlets (cm) | Number of Leaves |
---|---|---|---|---|
1 | yellow subsoil | 56.67 ± 5.77 b | 8.19 ± 0.27 c | 8.00 ± 0.18 c |
2 | vermiculite | 93.33 ± 1.93 a | 15.98 ± 0.40 b | 12.13 ± 0.16 b |
3 | peat soil | 96.67 ± 1.93 a | 18.33 ± 0.66 a | 15.31 ± 0.41 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Chen, Z.; Hu, B.; Zeng, B. Establishment of a Highly Efficient Micropropagation System of Aquilaria crassna Pierre ex Lecomte. Forests 2024, 15, 1774. https://doi.org/10.3390/f15101774
Li X, Chen Z, Hu B, Zeng B. Establishment of a Highly Efficient Micropropagation System of Aquilaria crassna Pierre ex Lecomte. Forests. 2024; 15(10):1774. https://doi.org/10.3390/f15101774
Chicago/Turabian StyleLi, Xiangyang, Zhaoli Chen, Bing Hu, and Bingshan Zeng. 2024. "Establishment of a Highly Efficient Micropropagation System of Aquilaria crassna Pierre ex Lecomte" Forests 15, no. 10: 1774. https://doi.org/10.3390/f15101774
APA StyleLi, X., Chen, Z., Hu, B., & Zeng, B. (2024). Establishment of a Highly Efficient Micropropagation System of Aquilaria crassna Pierre ex Lecomte. Forests, 15(10), 1774. https://doi.org/10.3390/f15101774