Multidimensional Exploration of Wood Extractives: A Review of Compositional Analysis, Decay Resistance, Light Stability, and Staining Applications
Abstract
:1. Introduction
2. Wood Extractives
2.1. Source and Distribution
2.2. Solvent Extraction
Species | Location | Method | Time | Solvent | Yield | Reference |
---|---|---|---|---|---|---|
Tectona grandis L. f. | Heartwood | Soak | 12 H | Ethanol | 9.17% | Brocco [112] |
Boil | 2.5 H | Water | 6.56% | |||
Pterocarpus macrocarpus Kurz. | Heartwood | Soxhlet | 24 H | 70% acetone | 13.68% | Zhang [113] |
Water | 9.96% | |||||
Dioxane | 13.31% | |||||
Acacia confusa Merr. | Heartwood | Soak | 21 D | 70% acetone | 9.2% | Chang [114] |
Toluene/ethanol (2/1, v/v) | 2.6% | |||||
Cunninghamia lanceolata (Lamb.) Hook. | Bark | Soak | 2 H | 1% NaOH | 21.26% | Peng [52] |
Water | 2.46% | |||||
Soxhlet | 7 H | 95% ethanol | 5.04% | |||
Burkea africana | Heartwood | Soxhlet | 16 H | Diethyl ether | 3.1% | Neya [38] |
Acetone | 14.8% | |||||
Toluene/ethanol (2/1, v/v) | 18.1% | |||||
Pterocarpus santalinus | Bark | Soxhlet | - | Methanol | 1.05% | Kumar [60] |
Acetone | 2.59% | |||||
Methanol/water (70:30) | 2.85% | |||||
Methanol/acetone/water (40:40:20) | 4.39% | |||||
Boil | 2 H | Water | 26.22% | |||
Neobalanocarpus heimii P.S. Ashton | Bark | Soxhlet | 5 H | Toluene/industrial methylated spirit (2:1) | 23.50% | Kadir [77] |
Heartwood | 9.16% | |||||
Prunus africana (Hook.f.) Kalkman | Heartwood | Soxhlet | 15 H | Hexane | 0.3% | Mburu [115] |
Dichloromethane | 1.1% | |||||
Toluene/ethanol (2:1 v/v) | 4.4% | |||||
Acetone | 3.4% | |||||
Water | 4.8% | |||||
Palaquium gutta (Hook.f.)/ Pometia pinnata J.R. Forster & J.G. Forster | Heartwood | Soxhlet | 6 H | Petroleum ether | 6.15% (P.g) 5.55% (P.p) | Kadir [116] |
Absolute ethanol | 8.87% (P.g) 6.39% (P.p) | |||||
Absolute methanol | 9.12% (P.g) 7.44% (P.p) | |||||
Quercus vulcanica Boiss. | Bark Sapwood Heartwood | Soxhlet | 12 H | Cyclohexane | 2.0% (Bark) 0.22% (Sap) 0.42% (Heart) | Balaban [67] |
12 H | Ethanol/benzene (1/2, v/v) (1. step), ethanol (2. step) | 8.35% (Bark) 4.56% (Sap) 6.13% (Heart) | ||||
Olea europaea L. | Bark | ASE | - | Ethanol/water (70:30 v/v) | 21% | Faraone [83] |
Wood | 9% | |||||
Acacia mangium Willd. | Bark | Soak | - | Acetone/H2O (7/3) | 37.9% | Makino [117] |
Acacia auriculiformis A. Cunn. ex Benth. | 28.6% | |||||
Acacia mearnsii De Wild. | 52.7% | |||||
Salix rorida Lacksch. | 34.9% | |||||
Thujopsis dolabrata (L. f.) Siebold & Zucc. | 17.8% | |||||
Triplochiton scleroxylon K.Schum. | Heartwood | Soxhlet | 12 H | Dichloromethane (1. step), Acetone (2. step), Toluene/ethanol (2:1, v/v) (3. step), Water (4. step) | 4.4% | Saha [93] |
Baillonella toxisperma Pierre | 16.6% | |||||
Distemonanthus benthamianus Baill. | 16.1% | |||||
Pterocarpus soyauxii Taub. | 16.7% | |||||
Erythrophleum ivorense A. Chev. | 17.7% | |||||
Cinnamomum sp. | Heartwood | Orbital shaker | 8 H | Absolute methanol | 10.9% | Kadir [27] |
Canarium littorale Blume | 2.83% | |||||
Eugenia griffithii Duthie | 5.57% | |||||
Scorodocarpus borneensis (Baill.) | 2.98% | |||||
Cupressus sempervirens L./ Cupressus arizonica Greene | Xylem | Soxhlet | - | Ethanol–toluene | 6.74% (C.s) 10.44% (C.a) | Terzopoulou [80] |
Bark | 14.09% (C.s) 27.59% (C.a) | |||||
Picea abies L. | Needles | Supercritical CO2 | - | CO2 | 3.3% | Bukhanko [118] |
Branches | 2.4% | |||||
Bark | 5.3% | |||||
Juniperus virginiana L./ Juniperus occidentalis Hook./ Juniperus ashei J. Buchholz | Heartwood | ASE | - | Hexane | 4.78% (J.v) 4.26% (J.o) 6.60% (J.a) | Tumen [119] |
Methanol | 9.56% (J.v) 7.32% (J.o) 11.27% (J.a) | |||||
Ethanol | 7.94% (J.v) 6.24% (J.o) 10.34% (J.a) | |||||
Castanea sativa Mill | Xylem | ASE | - | Ethanol/water (70:30, v/v) | 12.5% | D’Auria [120] |
Soxhlet | 7 H | Ethanol/toluene (1:2, v/v) | 7.4% | |||
Autoclave | 20 M | H2O | 4.2% | |||
Pterocarpus angolensis/ Pterocarpus macarocarpus Kurz/Pterocarpus soyauxii | Heartwood | Hot reflux | 8 H | Water | 10.06% (P.a) 14.31% (P.m) 7.44% (P.s) | Cai [121] |
70% ethanol | 20.15% (P.a) 28.39%/ (P.m) 28.59% (P.s) |
2.3. Component Analysis
2.3.1. Aliphatic Compounds
2.3.2. Terpenoid Compounds
2.3.3. Aromatic Compounds
3. Decay Resistance of Extracts
3.1. Evaluation of the Decay Resistance of Extracts
3.1.1. Evaluation of Decay Resistance of Extracted and Unextracted Wood
3.1.2. Inhibition Assessment of Extracts in Agar Plate
3.1.3. Antimicrobial Assessment of Extract-Impregnated Non-Durable Wood
3.2. Analysis of Decay-Resistant Components of Extracts
3.3. Principle of Corrosion Resistance of Extracts
3.3.1. Inhibition of Fungal Degradation Enzymes
3.3.2. Disrupts the Cell Wall and Cell Membrane of Fungi
3.3.3. Inhibit Protein and Nucleic Acid Biosynthesis
3.4. Applications and Challenges
4. Photostability of Extracts
4.1. Photochemical Reactions in Wood
4.2. The Role of Extracts in Photo-Radiation
4.3. Photoprotective Mechanism of Extracts
4.4. Applications and Challenges
5. Staining of Extracts
6. Conclusions and Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Kirker, G.; Winandy, J. Above Ground Deterioration of Wood and Wood-Based Materials. In ACS Symposium Series; Schultz, T.P., Goodell, B., Nicholas, D.D., Eds.; American Chemical Society: Washington, DC, USA, 2014; Volume 1158, pp. 113–129. ISBN 978-0-8412-3004-0. [Google Scholar]
- Brischke, C.; Alfredsen, G. Wood-Water Relationships and Their Role for Wood Susceptibility to Fungal Decay. Appl. Microbiol. Biotechnol. 2020, 104, 3781–3795. [Google Scholar] [CrossRef] [PubMed]
- Tomak, E.D.; Ustaomer, D.; Ermeydan, M.A.; Yildiz, S. An Investigation of Surface Properties of Thermally Modified Wood during Natural Weathering for 48 Months. Measurement 2018, 127, 187–197. [Google Scholar] [CrossRef]
- Mahltig, B.; Swaboda, C.; Roessler, A.; Böttcher, H. Functionalising Wood by Nanosol Application. J. Mater. Chem. 2008, 18, 3180. [Google Scholar] [CrossRef]
- Kropat, M.; Hubbe, M.A.; Laleicke, F. Natural, Accelerated, and Simulated Weathering of Wood: A Review. BioResources 2020, 15, 9998–10062. [Google Scholar] [CrossRef]
- Broda, M. Natural Compounds for Wood Protection against Fungi—A Review. Molecules 2020, 25, 3538. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-Y.; Huang, L.-H.; Hse, C.-Y.; Qin, T.-F. Chemical Compositions, Infrared Spectroscopy, and X-ray Diffractometry Study on Brown-Rotted Woods. Carbohydr. Polym. 2011, 85, 560–564. [Google Scholar] [CrossRef]
- Monrroy, M.; Ortega, I.; Ramírez, M.; Baeza, J.; Freer, J. Structural Change in Wood by Brown Rot Fungi and Effect on Enzymatic Hydrolysis. Enzym. Microb. Technol. 2011, 49, 472–477. [Google Scholar] [CrossRef]
- Qi, J.; Li, F.; Jia, L.; Zhang, X.; Deng, S.; Luo, B.; Zhou, Y.; Fan, M.; Xia, Y. Fungal Selectivity and Biodegradation Effects by White and Brown Rot Fungi for Wood Biomass Pretreatment. Polymers 2023, 15, 1957. [Google Scholar] [CrossRef]
- Goodell, B.; Winandy, J.E.; Morrell, J.J. Fungal Degradation of Wood: Emerging Data, New Insights and Changing Perceptions. Coatings 2020, 10, 1210. [Google Scholar] [CrossRef]
- Sista Kameshwar, A.K.; Qin, W. Comparative Study of Genome-Wide Plant Biomass-Degrading CAZymes in White Rot, Brown Rot and Soft Rot Fungi. Mycology 2018, 9, 93–105. [Google Scholar] [CrossRef]
- Scheffer, T.C. Natural Resistance of Wood to Microbial Deterioration. Annu. Rev. Phytopathol. 1966, 4, 147–168. [Google Scholar] [CrossRef]
- Durmaz, S.; Özgenç, Ö.; Boyacı, İ.H.; Yıldız, Ü.C.; Erişir, E. Examination of the Chemical Changes in Spruce Wood Degraded by Brown-Rot Fungi Using FT-IR and FT-Raman Spectroscopy. Vib. Spectrosc. 2016, 85, 202–207. [Google Scholar] [CrossRef]
- Oliveira, J.T.D.S.; Souza, L.C.D.; Della Lucia, R.M.; Souza Júnior, W.P.D. Influência Dos Estrativos Na Resistências Ao Apodrecimento de Seis Espécies de Madeira. Rev. Árvore 2005, 29, 819–826. [Google Scholar] [CrossRef]
- Feist, W.C.; Hon, D.N.-S. Chemistry of Weathering and Protection. In The Chemistry of Solid Wood; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1984; Volume 207, pp. 401–451. ISBN 978-0-8412-0796-7. [Google Scholar]
- Derbyshire, H.; Miller, E.R. The Photodegradation of Wood during Solar Irradiation: Part I: Effects on the Structural Integrity of Thin Wood Strips. Holz Als Roh Werkst. 1981, 39, 341–350. [Google Scholar] [CrossRef]
- Oltean, L.; Teischinger, A.; Hansmann, C. Wood Surface Discolouration Due to Simulated Indoor Sunlight Exposure. Holz Als Roh Werkst. 2008, 66, 51–56. [Google Scholar] [CrossRef]
- Tolvaj, L.; Faix, O. Artificial Ageing of Wood Monitored by DRIFT Spectroscopy and CIE L*a*b* Color Measurements. 1. Effect of UV Light. Holzforschung 1995, 49, 397–404. [Google Scholar] [CrossRef]
- Hon, D.N.-S.; Chang, S. Surface Degradation of Wood by Ultraviolet Light. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2227–2241. [Google Scholar] [CrossRef]
- Jirous-Rajkovic, V.; Turkulin, H.; Miller, E.R. Depth Profile of UV-Induced Wood Surface Degradation. Surf. Coat. Int. Part B Coat. Trans. 2004, 87, 241–247. [Google Scholar] [CrossRef]
- Kataoka, Y.; Kiguchi, M. Depth Profiling of Photo-Induced Degradation in Wood by FT-IR Microspectroscopy. J. Wood Sci. 2001, 47, 325–327. [Google Scholar] [CrossRef]
- Andrady, A.L.; Hamid, H.; Torikai, A. Effects of Solar UV and Climate Change on Materials. Photochem. Photobiol. Sci. 2011, 10, 292–300. [Google Scholar] [CrossRef]
- Ouadou, Y.; Aliouche, D.; Thevenon, M.-F.; Djillali, M. Characterization and Photodegradation Mechanism of Three Algerian Wood Species. J. Wood Sci. 2017, 63, 288–294. [Google Scholar] [CrossRef]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J. Heartwood Formation and Natural Durability—A Review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar]
- Mai, C.; Zhang, K. Wood Chemistry. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 179–279. ISBN 978-3-030-81315-4. [Google Scholar]
- Spicer, R. Senescence in Secondary Xylem: Heartwood Formation as an Active Developmental Program. In Vascular Transport in Plants; Holbrook, N.M., Zwieniecki, M.A., Eds.; Physiological Ecology; Academic Press: Burlington, MA, USA, 2005; pp. 457–475. ISBN 978-0-12-088457-5. [Google Scholar]
- Kadir, R.; Hassan, B. Toxicity and Repellent Effects of Wood Extractives of Five Malaysian Wood Species on Asian Subterranean Termite Coptotermes gestroi Wasmann. Eur. J. Wood Prod. 2020, 78, 1249–1262. [Google Scholar] [CrossRef]
- Alfredsen, G.; Solheim, H.; Slimestad, R. Antifungal Effect of Bark Extracts from Some European Tree Species. Eur. J. For. Res. 2008, 127, 387–393. [Google Scholar] [CrossRef]
- Anish, M.C.; Giridhar, B.N.; Nair, S.; Anantha, N.S.; Pandey, K.K. Influences of Extractives and Thermal Modification on the UV Resistance of Albizia Lebbeck Wood. Wood Mater. Sci. Eng. 2023, 18, 540–548. [Google Scholar] [CrossRef]
- Bosshard, H.H. On the Formation of Facultatively Colored Heartwood in Beilschmiedia tawa. Wood Sci. Technol. 1968, 2, 1–12. [Google Scholar] [CrossRef]
- Bossu, J.; Beauchêne, J.; Estevez, Y.; Duplais, C.; Clair, B. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl. PLoS ONE 2016, 11, e0150777. [Google Scholar] [CrossRef]
- Salamon, M.; Kozak, A. Shrinkage of Sapwood and Heartwood of Young Douglas-Fir Trees. For. Prod. J. 1968, 18, 90–94. [Google Scholar]
- Benhamou, N.; Rey, P. Stimulateurs Des Défenses Naturelles Des Plantes: Une Nouvelle Stratégie Phytosanitaire Dans Un Contexte d’écoproduction Durable.: I. Principes de La Résistance Induite. Phytoprotection 2012, 92, 1–23. [Google Scholar] [CrossRef]
- Hawley, L.F.; Fleck, L.C.; Richards, C.A. The Relation between Durability and Chemical Composition in Wood. Ind. Eng. Chem. 1924, 16, 699–700. [Google Scholar] [CrossRef]
- Kokutse, A.D.; Stokes, A.; Baillères, H.; Kokou, K.; Baudasse, C. Decay Resistance of Togolese Teak (Tectona grandis L.f) Heartwood and Relationship with Colour. Trees 2006, 20, 219–223. [Google Scholar] [CrossRef]
- Chávez-Salgado, L.; Vandenbossche, V.; Vilarem, G. Tectona grandis Linn. f. Secondary Metabolites and Their Bioactive Potential: A Review. iForest 2022, 15, 112–120. [Google Scholar] [CrossRef]
- Rodríguez Anda, R.; Koch, G.; Richter, H.-G.; Fuentes Talavera, F.J.; Silva Guzmán, J.A.; Satyanarayana, K.G. Formation of Heartwood, Chemical Composition of Extractives and Natural Durability of Plantation-Grown Teak Wood from Mexico. Holzforschung 2019, 73, 547–557. [Google Scholar] [CrossRef]
- Neya, B.; Hakkou, M.; Petrissans, M.; Gerardin, P. On the Durability of Burkea africana Heartwood: Evidence of Biocidal and Hydrophobic Properties Responsible for Durability. Ann. For. Sci. 2004, 61, 277–282. [Google Scholar] [CrossRef]
- Kirker, G.T.; Blodgett, A.B.; Arango, R.A.; Lebow, P.K.; Clausen, C.A. The Role of Extractives in Naturally Durable Wood Species. Int. Biodeterior. Biodegrad. 2013, 82, 53–58. [Google Scholar] [CrossRef]
- Kirker, G.T.; Blodgett, A.B.; Lebow, S.; Clausen, C.A. Transferable Durability: Enhancing Decay Resistance of Non-Durable Species with Extractives from Durable Wood Species. In Proceedings of the IRG Annual Meeting, The International Research Group on Wood Protection, Section 1, Biology; IRG/WP 13-10808; IRG Secretariat: Stockholm, Sweden, 2013; pp. 1–12. 12p. [Google Scholar]
- Kirker, G.T.; Bishell, A.B.; Lebow, P.K. Laboratory Evaluations of Durability of Southern Pine Pressure Treated with Extractives from Durable Wood Species. J. Econ. Entomol. 2016, 109, 259–266. [Google Scholar] [CrossRef]
- Sablík, P.; Giagli, K.; Pařil, P.; Baar, J.; Rademacher, P. Impact of Extractive Chemical Compounds from Durable Wood Species on Fungal Decay after Impregnation of Nondurable Wood Species. Eur. J. Wood Prod. 2016, 74, 231–236. [Google Scholar] [CrossRef]
- Diouf, P.-N.; Merlin, A.; Perrin, D. Antioxidant Properties of Wood Extracts and Colour Stability of Woods. Ann. For. Sci. 2006, 63, 525–534. [Google Scholar] [CrossRef]
- Timar, M.C.; Varodi, A.M.; Gurău, L. Comparative Study of Photodegradation of Six Wood Species after Short-Time UV Exposure. Wood Sci. Technol. 2016, 50, 135–163. [Google Scholar] [CrossRef]
- Pandey, K.K. A Note on the Influence of Extractives on the Photo-Discoloration and Photo-Degradation of Wood. Polym. Degrad. Stab. 2005, 87, 375–379. [Google Scholar] [CrossRef]
- Nzokou, P.; Kamdem, D.P. Influence of Wood Extractives on the Photo-discoloration of Wood Surfaces Exposed to Artificial Weathering. Color Res. Appl. 2006, 31, 425–434. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, H.-T.; Wu, C.-L.; Chang, S.-T. Influences of Extractives on the Photodegradation of Wood. Polym. Degrad. Stab. 2010, 95, 516–521. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, H.-T.; Wu, C.-L.; Lin, H.-Y.; Chang, S.-T. Stabilizing Effect of Extractives on the Photo-Oxidation of Acacia confusa Wood. Polym. Degrad. Stab. 2010, 95, 1518–1522. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, S.-T. Wood Photostabilization Roles of the Condensed Tannins and Flavonoids from the EtOAc Fraction in the Heartwood Extract of Acacia confusa. Wood Sci. Technol. 2018, 52, 855–871. [Google Scholar] [CrossRef]
- Chang, T.-C.; Hsiao, N.-C.; Yu, P.-C.; Chang, S.-T. Exploitation of Acacia confusa Heartwood Extract as Natural Photostabilizers. Wood Sci. Technol. 2015, 49, 811–823. [Google Scholar] [CrossRef]
- Kocaefe, D.; Saha, S. Comparison of the Protection Effectiveness of Acrylic Polyurethane Coatings Containing Bark Extracts on Three Heat-Treated North American Wood Species: Surface Degradation. Appl. Surf. Sci. 2012, 258, 5283–5290. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Chen, P.; Wang, W.; Cao, J. Enhancing Weathering Resistance of Wood by Using Bark Extractives as Natural Photostabilizers in Polyurethane-Acrylate Coating. Prog. Org. Coat. 2020, 145, 105665. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Durmaz, S.; Şahin, S.; Boyaci, İ.H. Evaluation of the Weathering Resistance of Waterborne Acrylic- and Alkyd-Based Coatings Containing HALS, UV Absorber, and Bark Extracts on Wood Surfaces. J. Coat. Technol. Res. 2020, 17, 461–475. [Google Scholar] [CrossRef]
- Singh, T.; Singh, A.P. A Review on Natural Products as Wood Protectant. Wood Sci. Technol. 2012, 46, 851–870. [Google Scholar] [CrossRef]
- Zhu, T.; Sheng, J.; Chen, J.; Ren, K.; Wu, Z.; Wu, H.; Li, J.; Lin, J. Staining of Wood Veneers with Anti-UV Property Using the Natural Dye Extracted from Dalbergia cohinchinensis. J. Clean. Prod. 2021, 284, 124770. [Google Scholar] [CrossRef]
- Ong, G.; Kasi, R.; Subramaniam, R. A Review on Plant Extracts as Natural Additives in Coating Applications. Prog. Org. Coat. 2021, 151, 106091. [Google Scholar] [CrossRef]
- Tolvaj, L. Measurement and Data Evaluation of Wood Colour and Gloss. In Optical Properties of Wood: Measurement Methods and Result Evaluations; Tolvaj, L., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 51–90. ISBN 978-3-031-46906-0. [Google Scholar]
- Zhou, Q.; Rather, L.J.; Ali, A.; Wang, W.; Zhang, Y.; Rizwanul Haque, Q.M.; Li, Q. Environmental Friendly Bioactive Finishing of Wool Textiles Using the Tannin-Rich Extracts of Chinese Tallow (Sapium sebiferum L.) Waste/Fallen Leaves. Dye. Pigment. 2020, 176, 108230. [Google Scholar] [CrossRef]
- Zhu, T.; Ren, K.; Sheng, J.; Zhang, Q.; Li, J.; Lin, J. Natural Dye Extracted from Dalbergia cochinchinensis Residue with Water Fastness, Mildew Resistance and Permeability Properties for Wood Staining. Wood Sci. Technol. 2022, 56, 969–988. [Google Scholar] [CrossRef]
- Kumar, R.; Ray, S.; Pandey, K.K.; Muthukumar, A. Potential Use of Pterocarpus santalinus Bark Extracts as UV-Protective Coats on Hevea brasiliensis Wood. ACS Sustain. Chem. Eng. 2023, 11, 9965–9978. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Petitcolas, E.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.A. Impact of Ultrasound on Solid–Liquid Extraction of Phenolic Compounds from Maritime Pine Sawdust Waste. Kinetics, Optimization and Large Scale Experiments. Ultrason. Sonochem. 2016, 28, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Francezon, N.; Stevanovic, T. Integrated Process for the Production of Natural Extracts from Black Spruce Bark. Ind. Crops Prod. 2017, 108, 348–354. [Google Scholar] [CrossRef]
- Ravetti Duran, R.; Muhr, L.; Barth, D. Extraction Processes of High Added Value Molecules from Wood Waste: Overview and Comparison of Processes for an Eco-Friendly Recovery from Paper Industry by-Product. Ind. Crops Prod. 2024, 213, 118403. [Google Scholar] [CrossRef]
- Santos, M.B.; Sillero, L.; Gatto, D.A.; Labidi, J. Bioactive Molecules in Wood Extractives: Methods of Extraction and Separation, a Review. Ind. Crops Prod. 2022, 186, 115231. [Google Scholar] [CrossRef]
- Lu, W.; Qiu, Z.; An, Y. A preliminary study on the ultrastructural changes of larch wood during the drying process. J. Jilin For. Univ. 1988, 4, 7–13. [Google Scholar]
- Han, T.; Lu, M.; Cui, S.; Liu, S.; Avramidis, S.; Qian, J. How Does Ultrasound Contribute to the Migration of Extractives inside Ailanthus altissima Wood? Ultrason. Sonochem. 2023, 101, 106708. [Google Scholar] [CrossRef]
- Balaban, M.; Uçar, G. Extractives and Structural Components in Wood and Bark of Endemic Oak Quercus vulcanica Boiss. Holzforschung 2001, 55, 478–486. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Przybylski, R. Antioxidant Activity of Phenolic Components Present in Barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. Trees. Food Chem. 2007, 104, 1106–1114. [Google Scholar] [CrossRef]
- Silvério, F.O.; Barbosa, L.C.A.; Maltha, C.R.A.; Fidêncio, P.H.; Cruz, M.P.; Veloso, D.P.; Milanez, A.F. Effect of Storage Time on the Composition and Content of Wood Extractives in Eucalyptus Cultivated in Brazil. Bioresour. Technol. 2008, 99, 4878–4886. [Google Scholar] [CrossRef] [PubMed]
- Charalambous, D.; Eliades, N.-G.H.; Christoforou, M.; Kakouri, E.; Kanakis, C.; Tarantilis, P.A.; Pantelidou, M. Chemical Characterization, Antioxidant and Antimicrobial Properties of Different Types of Tissue of Cedrus Brevifolia Henry Extracts. Molecules 2022, 27, 2717. [Google Scholar] [CrossRef]
- Heim, L.; Brancheriau, L.; Marchal, R.; Boutahar, N.; Lotte, S.; Denaud, L.; Badel, E.; Meghar, K.; Candelier, K. Variation Analyses of Extractive Contents by NIR-Spectroscopy Bring out the Differences between Agroforestry and Forestry Walnut (Juglans Regia × nigra) Trees. Holzforschung 2022, 76, 781–790. [Google Scholar] [CrossRef]
- Umezawa, T. Chemistry of Extractives. In Wood and Cellulosic Chemistry, Revised, and Expanded; Hon, D.N.S., Shiraishi, N., Eds.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-17533-6. [Google Scholar]
- Brémaud, I.; Amusant, N.; Minato, K.; Gril, J.; Thibaut, B. Effect of Extractives on Vibrational Properties of African Padauk (Pterocarpus Soyauxii Taub.). Wood Sci. Technol. 2011, 45, 461–472. [Google Scholar] [CrossRef]
- Gierlinger, N.; Jacques, D.; Schwanninger, M.; Wimmer, R.; Pâques, L.E. Heartwood Extractives and Lignin Content of Different Larch Species (Larix Sp.) and Relationships to Brown-Rot Decay-Resistance. Trees 2004, 18, 230–236. [Google Scholar] [CrossRef]
- Gérard, J. Gutta Percha, Ironwood et Lancewood. Trois nouveaux bois précieux Nord-australiens. Bois For. Des Trop. 1991, 228, 63–73. [Google Scholar]
- Willför, S.; Holmbom, B. Isolation and Characterisation of Water Soluble Polysaccharides from Norway Spruce and Scots Pine. Wood Sci. Technol. 2004, 38, 173–179. [Google Scholar] [CrossRef]
- Kadir, R.; Hale, M.D. Antioxidant Potential and Content of Phenolic Compounds in Extracts of Twelve Selected Malaysian Commercial Wood Species. Eur. J. Wood Prod. 2017, 75, 615–622. [Google Scholar] [CrossRef]
- Huang, Z.; Hashida, K.; Makino, R.; Kawamura, F.; Shimizu, K.; Kondo, R.; Ohara, S. Evaluation of Biological Activities of Extracts from 22 African Tropical Wood Species. J. Wood Sci. 2009, 55, 225–229. [Google Scholar] [CrossRef]
- Kebbi-Benkeder, Z.; Colin, F.; Dumarçay, S.; Gérardin, P. Quantification and Characterization of Knotwood Extractives of 12 European Softwood and Hardwood Species. Ann. For. Sci. 2015, 72, 277–284. [Google Scholar] [CrossRef]
- Terzopoulou, P.; Kamperidou, V.; Lykidis, C. Cypress Wood and Bark Residues Chemical Characterization and Utilization as Fuel Pellets Feedstock. Forests 2022, 13, 1303. [Google Scholar] [CrossRef]
- Piccand, M.; Bianchi, S.; Halaburt, E.I.; Mayer, I. Characterization of Extractives from Biomasses of the Alpine Forests and Their Antioxidative Efficacy. Ind. Crops Prod. 2019, 142, 111832. [Google Scholar] [CrossRef]
- Miranda, I.; Lima, L.; Quilhó, T.; Knapic, S.; Pereira, H. The Bark of Eucalyptus sideroxylon as a Source of Phenolic Extracts with Anti-Oxidant Properties. Ind. Crops Prod. 2016, 82, 81–87. [Google Scholar] [CrossRef]
- Faraone, I.; Russo, D.; Bruno, M.R.; Todaro, L.; D’Auria, M.; Milella, L. Focus on Olea europaea L. Pruning By-products: Extraction Techniques, Biological Activity, and Phytochemical Profile. Biofuels Bioprod. Biorefining 2021, 15, 1835–1849. [Google Scholar] [CrossRef]
- Vek, V.; Keržič, E.; Poljanšek, I.; Eklund, P.; Humar, M.; Oven, P. Wood Extractives of Silver Fir and Their Antioxidant and Antifungal Properties. Molecules 2021, 26, 6412. [Google Scholar] [CrossRef]
- Miranda, I.; Sousa, V.; Ferreira, J.; Pereira, H. Chemical Characterization and Extractives Composition of Heartwood and Sapwood from Quercus Faginea. PLoS ONE 2017, 12, e0179268. [Google Scholar] [CrossRef]
- Wimmer, R.; Gierlinger, N. Radial Distribution of Heartwood Extractives and Lignin in Mature European Larch. Wood Fiber Sci. 2004, 36, 387–394. [Google Scholar]
- Horiba, H.; Nakagawa, T.; Zhu, Q.; Ashour, A.; Watanabe, A.; Shimizu, K. Biological Activities of Extracts from Different Parts of Cryptomeria japonica. Nat. Prod. Commun. 2016, 11, 1337–1342. [Google Scholar] [CrossRef]
- Fu, T.; Elie, N.; Brunelle, A. Radial Distribution of Wood Extractives in European Larch Larix decidua by TOF-SIMS Imaging. Phytochemistry 2018, 150, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Arruda, F.; Janeiro, A.; Medeiros, J.; Baptista, J.; Madruga, J.; Lima, E. Biological Activities of Organic Extracts and Specialized Metabolites from Different Parts of Cryptomeria japonica (Cupressaceae)—A Critical Review. Phytochemistry 2023, 206, 113520. [Google Scholar] [CrossRef] [PubMed]
- Mbakidi-Ngouaby, H.; Pinault, E.; Gloaguen, V.; Costa, G.; Sol, V.; Millot, M.; Mambu, L. Profiling and Seasonal Variation of Chemical Constituents from Pseudotsuga menziesii Wood. Ind. Crops Prod. 2018, 117, 34–49. [Google Scholar] [CrossRef]
- Arisandi, R.; Takahashi, K.; Nirsatmanto, A.; Sunarti, S.; Rimbawanto, A.; Putri, A.I.; Kartikawati, N.K.; Haryjanto, L.; Herawan, T.; Lestari, F.; et al. Analysis of Lipophilic Constituents Related to Heartwood Formation in Young Swietenia mahagoni (L.) Jacq Trees. J. Korean Wood Sci. Technol. 2024, 52, 13–30. [Google Scholar] [CrossRef]
- Soon, L.K.; Chiang, L.K. Influence of Different Extraction Solvents on Lipophilic Extractives of Acacia Hybrid in Different Wood Portions. Asian J. Appl. Sci. 2012, 5, 107–116. [Google Scholar] [CrossRef]
- Saha Tchinda, J.-B.; Ndikontar, M.K.; Fouda Belinga, A.D.; Mounguengui, S.; Njankouo, J.M.; Durmaçay, S.; Gerardin, P. Inhibition of Fungi with Wood Extractives and Natural Durability of Five Cameroonian Wood Species. Ind. Crops Prod. 2018, 123, 183–191. [Google Scholar] [CrossRef]
- Oktavianawati, I.; Santoso, M.; Fatmawati, S. Metabolite Profiling of Borneo’s Gonystylus bancanus through Comprehensive Extraction from Various Polarity of Solvents. Sci. Rep. 2023, 13, 15215. [Google Scholar] [CrossRef]
- Lipeh, S.; Schimleck, L.; Mankowski, M.E.; McDonald, A.G.; Morrell, J.J. ATR-FTIR Study of Alaska Yellow Cedar Extractives and Relationship with Their Natural Durability. Forests 2021, 12, 1692. [Google Scholar] [CrossRef]
- Syahidah; Sanusi, D. Characterization of the Polarity of Cempedak Wood Extractive (Artocarpus integer (Thunb) Merr. IOP Conf. Ser. Earth Environ. Sci. 2020, 575, 012127. [Google Scholar] [CrossRef]
- Hanafi, H.; Irawan, C.; Rochaeni, H.; Sulistiawaty, L.; Roziafanto, A.N.; Supriyono, S. Phytochemical Screening, LC-MS Studies and Antidiabetic Potential of Methanol Extracts of Seed Shells of Archidendron bubalinum (Jack) I.C. Nielson (Julang Jaling) from Lampung, Indonesia. Pharmacogn. J. 2018, 10, s77–s82. [Google Scholar] [CrossRef]
- Bactiar, C.F.; Fahami, N.A.M. LC-MS Analysis of Phytocomponents in the Methanol Extract of Piper sarmentosum Leaves. Pharmacogn. J. 2019, 11, 1071–1076. [Google Scholar] [CrossRef]
- Sayuti, M. Pengaruh Perbedaan Metode Ekstraksi, Bagian Dan Jenis Pelarut Terhadap Rendemen Dan Aktifitas Antioksidan Bambu Laut (Isis Hippuris). Technol. Sci. Eng. J. 2017, 1, 166–174. [Google Scholar]
- Gullón, B.; Gullón, P.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Optimization of Solvent Extraction of Antioxidants from Eucalyptus globulus Leaves by Response Surface Methodology: Characterization and Assessment of Their Bioactive Properties. Ind. Crops Prod. 2017, 108, 649–659. [Google Scholar] [CrossRef]
- Otero-Pareja, M.; Casas, L.; Fernández-Ponce, M.; Mantell, C.; Ossa, E. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Evaluation of the Substances Currently on the List in the Annex to Commission Directive 96/3/EC as Acceptable Previous Cargoes for Edible Fats and Oils—Part I of III. EFSA J. 2011, 9, 2482. [Google Scholar] [CrossRef]
- Vázquez, G.; Fontenla, E.; Santos, J.; Freire, M.S.; González-Álvarez, J.; Antorrena, G. Antioxidant Activity and Phenolic Content of Chestnut (Castanea sativa) Shell and Eucalyptus (Eucalyptus globulus) Bark Extracts. Ind. Crops Prod. 2008, 28, 279–285. [Google Scholar] [CrossRef]
- Shabir, G.; Anwar, F.; Sultana, B.; Khalid, Z.M.; Afzal, M.; Khan, Q.M.; Ashrafuzzaman, M. Antioxidant and Antimicrobial Attributes and Phenolics of Different Solvent Extracts from Leaves, Flowers and Bark of Gold Mohar [Delonix regia (Bojer Ex Hook.) Raf.]. Molecules 2011, 16, 7302–7319. [Google Scholar] [CrossRef] [PubMed]
- Kačík, F.; Veľková, V.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Reinprecht, L. Release of Terpenes from Fir Wood during Its Long-Term Use and in Thermal Treatment. Molecules 2012, 17, 9990–9999. [Google Scholar] [CrossRef]
- Queffelec, J.; Beraud, W.; Dolores Torres, M.; Domínguez, H. Advances in Obtaining Ready to Use Extracts with Natural Solvents. Sustain. Chem. Pharm. 2024, 38, 101478. [Google Scholar] [CrossRef]
- Hofmann, T.; Nebehaj, E.; Stefanovits-Bányai, É.; Albert, L. Antioxidant Capacity and Total Phenol Content of Beech (Fagus sylvatica L.) Bark Extracts. Ind. Crops Prod. 2015, 77, 375–381. [Google Scholar] [CrossRef]
- Yamamoto, K.; Hong, L.T. Location of Extractives and Decay Resistance in Some Malaysian Hardwood Species. J. Trop. For. Sci. 1989, 2, 61–70. [Google Scholar]
- Sládková, A.; Benedeková, M.; Stopka, J.; Šurina, I.; Ház, A.; Strižincová, P.; Čižová, K.; Škulcová, A.; Burčová, Z.; Kreps, F.; et al. Yield of Polyphenolic Substances Extracted from Spruce (Picea abies) Bark by Microwave-Assisted Extraction. BioResources 2016, 11, 9912–9921. [Google Scholar] [CrossRef]
- Venkatesan, T.; Choi, Y.-W.; Kim, Y.-K. Impact of Different Extraction Solvents on Phenolic Content and Antioxidant Potential of Pinus densiflora Bark Extract. BioMed Res. Int. 2019, 2019, 3520675. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.; Hemming, J.; Reunanen, M.; Eklund, P.; Pineiro, E.C.; Poljanšek, I.; Oven, P.; Willför, S. Evaluation of Selective Extraction Methods for Recovery of Polyphenols from Pine. Holzforschung 2013, 67, 843–851. [Google Scholar] [CrossRef]
- Brocco, V.F.; Paes, J.B.; Costa, L.G.D.; Brazolin, S.; Arantes, M.D.C. Potential of Teak Heartwood Extracts as a Natural Wood Preservative. J. Clean. Prod. 2017, 142, 2093–2099. [Google Scholar] [CrossRef]
- Zhang, P.; Wei, Y.; Liu, Y.; Chen, Y.; Gao, J.; Fan, Y. Extraction of Chromogenic Component from Pterocarpus macrocarpus Kurz. Heartwood and Its Effect on Wood Color. Chem. Ind. For. Prod. 2018, 38, 77–84. [Google Scholar] [CrossRef]
- Chang, C.-W.; Lee, J.-J.; Lu, K.-T. The Effects of Adding Heartwood Extractives from Acacia confusa on the Lightfastness Improvement of Refined Oriental Lacquer. Polymers 2021, 13, 4085. [Google Scholar] [CrossRef] [PubMed]
- Mburu, F.; Dumarçay, S.; Gérardin, P. Evidence of Fungicidal and Termicidal Properties of Prunus africana Heartwood Extractives. Holzforschung 2007, 61, 323–325. [Google Scholar] [CrossRef]
- Kadir, R.; Sarif, M.; Awang, K.; Jamil, M.; Fardid Khan Naysir, N.M. Efficiency of Palaquium gutta and Pometia pinnata Heartwood Extracts on the Protection of Hevea Brasiliensis against Asian Subterranean Termites, Coptotermes Gestroi (Wasmann). Arthropod-Plant Interact. 2023, 17, 373–388. [Google Scholar] [CrossRef]
- Makino, R.; Ohara, S.; Hashida, K. Radical Scavenging Characteristics of Condensed Tannins from Barks of Various Tree Species Compared with Quebracho Wood Tannin. Holzforschung 2011, 65, 651–657. [Google Scholar] [CrossRef]
- Bukhanko, N.; Attard, T.; Arshadi, M.; Eriksson, D.; Budarin, V.; Hunt, A.J.; Geladi, P.; Bergsten, U.; Clark, J. Extraction of Cones, Branches, Needles and Bark from Norway Spruce (Picea abies) by Supercritical Carbon Dioxide and Soxhlet Extractions Techniques. Ind. Crops Prod. 2020, 145, 112096. [Google Scholar] [CrossRef]
- Tumen, I.; Eller, F.J.; Clausen, C.A.; Teel, J.A. Antifungal Activity of Heartwood Extracts from Three Juniperus Species. BioResources 2012, 8, 12–20. [Google Scholar] [CrossRef]
- D’Auria, M.; Mecca, M.; Bruno, M.R.; Todaro, L. Extraction Methods and Their Influence on Yield When Extracting Thermo-Vacuum-Modified Chestnut Wood. Forests 2021, 12, 73. [Google Scholar] [CrossRef]
- Cai, M. Study on Decay-Resistant Mechanism and Antifungal Anticorrosion Performance of Extraction Liquid from Padauk Wood. Master’s Thesis, Anhui Agricultural University, Hefei, China, 2017. [Google Scholar]
- Bouras, M.; Grimi, N.; Bals, O.; Vorobiev, E. Impact of Pulsed Electric Fields on Polyphenols Extraction from Norway Spruce Bark. Ind. Crops Prod. 2016, 80, 50–58. [Google Scholar] [CrossRef]
- Vek, V.; Hofmann, T.; Rajczi, E.V.; Osolnik, U.; Poljanšek, I.; Oven, P. Effect of Accelerated Extraction and Sonication on the Antioxidant Capacity of Wood and Bark Extracts of Wet-Hearted Silver Fir (Abies alba Mill.). Eur. J. Wood Prod. 2024. [Google Scholar] [CrossRef]
- Meullemiestre, A.; Maache-Rezzoug, Z.; Chemat, F.; Rezzoug, S.-A. Optimization of Solvent Free Microwave Extraction of Natural Antioxidant from Wood Waste. J. Mater. Environ. Sci. 2017, 8, 2608. [Google Scholar]
- Keržič, E.; Humar, M.; Oven, P.; Vek, V. Development of Extraction Methodology for Identification of Extractive-Compounds Indexing Natural Durability of Selected Wood Species. Wood Mater. Sci. Eng. 2023, 18, 1940–1950. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Lee, S.; Kang, S.-S.; Shin, H.-S. Selected Commercial Plants: A Review of Extraction and Isolation of Bioactive Compounds and Their Pharmacological Market Value. Trends Food Sci. Technol. 2018, 82, 89–109. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent Advances in Subcritical Water and Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- N’Guessan, J.L.L.; Niamké, B.F.; Yao, N.J.C.; Amusant, N. Wood Extractives: Main Families, Functional Properties, Fields of Application and Interest of Wood Waste. For. Prod. J. 2023, 73, 194–208. [Google Scholar] [CrossRef]
- Bisht, S.S.; Mishra, K.; Pandey, K.K.; Chandra, G.; Nayak, M.M.; Shashikala, S. Chromatographic and Spectrophotometric Analysis of Heartwood Extracts of Four Pterocarpus Species. Wood Sci. Technol. 2022, 56, 459–476. [Google Scholar] [CrossRef]
- Wang, S.-N.; Zhang, F.-D.; Huang, A.-M.; Zhou, Q. Distinction of Four Dalbergia Species by FTIR, 2nd Derivative IR, and 2D-IR Spectroscopy of Their Ethanol-Benzene Extractives. Holzforschung 2016, 70, 503–510. [Google Scholar] [CrossRef]
- Valette, N.; Perrot, T.; Sormani, R.; Gelhaye, E.; Morel-Rouhier, M. Antifungal Activities of Wood Extractives. Fungal Biol. Rev. 2017, 31, 113–123. [Google Scholar] [CrossRef]
- Sjöström, E. Chapter 5—EXTRACTIVES. In Wood Chemistry, 2nd ed.; Sjöström, E., Ed.; Academic Press: San Diego, CA, USA, 1993; pp. 90–108. ISBN 978-0-08-092589-9. [Google Scholar]
- Rustan, A.C.; Drevon, C.A. Fatty Acids: Structures and Properties. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2005; ISBN 978-0-470-01617-6. [Google Scholar]
- Ramos Azevedo Oliveira, G.; Dos Santos Grasel, F.; De Pinho, G.P.; Oliveira Silvério, F. Comparison of Chemical Composition of Lipophilic Extracts from Acacia mearnsii De Wild. Wood of Different Ages. Ind. Crops Prod. 2020, 147, 112200. [Google Scholar] [CrossRef]
- Arisandi, R.; Ashitani, T.; Takahashi, K.; Marsoem, S.N.; Lukmandaru, G. Lipophilic Extractives of the Wood and Bark from Eucalyptus pellita F. Muell Grown in Merauke, Indonesia. J. Wood Chem. Technol. 2020, 40, 146–154. [Google Scholar] [CrossRef]
- Ristinmaa, A.S.; Tafur Rangel, A.; Idström, A.; Valenzuela, S.; Kerkhoven, E.J.; Pope, P.B.; Hasani, M.; Larsbrink, J. Resin Acids Play Key Roles in Shaping Microbial Communities during Degradation of Spruce Bark. Nat. Commun. 2023, 14, 8171. [Google Scholar] [CrossRef]
- Gutiérrez, A.; Río, J.C.D.; González-Vila, F.J.; Martín, F. Chemical Composition of Lipophilic Extractives from Eucalyptus globulus Labill. Wood. Holzforschung 1999, 53, 481–486. [Google Scholar] [CrossRef]
- Coelho, D.; Marques, G.; Gutiérrez, A.; Silvestre, A.J.D.; Del Río, J.C. Chemical Characterization of the Lipophilic Fraction of Giant Reed (Arundo donax) Fibres Used for Pulp and Paper Manufacturing. Ind. Crops Prod. 2007, 26, 229–236. [Google Scholar] [CrossRef]
- De Angelis, M.; Romagnoli, M.; Vek, V.; Poljanšek, I.; Oven, P.; Thaler, N.; Lesar, B.; Kržišnik, D.; Humar, M. Chemical Composition and Resistance of Italian Stone Pine (Pinus pinea L.) Wood against Fungal Decay and Wetting. Ind. Crops Prod. 2018, 117, 187–196. [Google Scholar] [CrossRef]
- Perveen, S. Introductory Chapter: Terpenes and Terpenoids. In Terpenes and Terpenoids; Perveen, S., Al-Taweel, A., Eds.; IntechOpen: London, UK, 2018; ISBN 978-1-78984-776-5. [Google Scholar]
- Zhang, X.; Zheng, M.; Fu, A.; Li, Q.; Chen, C.; Zhu, H.; Zhang, Y. Natural Sesquiterpenoids, Diterpenoids, Sesterterpenoids, and Triterpenoids with Intriguing Structures from 2017 to 2022. Chin. J. Chem. 2023, 41, 3115–3132. [Google Scholar] [CrossRef]
- Ninkuu, V.; Zhang, L.; Yan, J.; Fu, Z.; Yang, T.; Zeng, H. Biochemistry of Terpenes and Recent Advances in Plant Protection. IJMS 2021, 22, 5710. [Google Scholar] [CrossRef] [PubMed]
- Rowell, R.M.; Pettersen, R.; Han, J.S.; Rowell, J.S.; Tshabalala, M.A. Cell Wall Chemistry. In Handbook of Wood Chemistry and Wood Composites; Rowell, R.M., Ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-0-429-10909-6. [Google Scholar]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef] [PubMed]
- Masyita, A.; Mustika Sari, R.; Dwi Astuti, A.; Yasir, B.; Rahma Rumata, N.; Emran, T.B.; Nainu, F.; Simal-Gandara, J. Terpenes and Terpenoids as Main Bioactive Compounds of Essential Oils, Their Roles in Human Health and Potential Application as Natural Food Preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef]
- Ghaffari, T.; Kafil, H.S.; Asnaashari, S.; Farajnia, S.; Delazar, A.; Baek, S.C.; Hamishehkar, H.; Kim, K.H. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Pinus Eldarica Grown in Northwestern Iran. Molecules 2019, 24, 3203. [Google Scholar] [CrossRef]
- Aminudin, N.I.; Ridzuan, M.; Susanti, D.; Zainal Abidin, Z.A. Biotransformation of Sesquiterpenoids: A Recent Insight. J. Asian Nat. Prod. Res. 2022, 24, 103–145. [Google Scholar] [CrossRef] [PubMed]
- Ben Sghaier, M.; Skandrani, I.; Nasr, N.; Franca, M.-G.D.; Chekir-Ghedira, L.; Ghedira, K. Flavonoids and Sesquiterpenes from Tecurium Ramosissimum Promote Antiproliferation of Human Cancer Cells and Enhance Antioxidant Activity: A Structure–Activity Relationship Study. Environ. Toxicol. Pharmacol. 2011, 32, 336–348. [Google Scholar] [CrossRef]
- Harman-Ware, A.E.; Sykes, R.; Peter, G.F.; Davis, M. Determination of Terpenoid Content in Pine by Organic Solvent Extraction and Fast-GC Analysis. Front. Energy Res. 2016, 4, 2. [Google Scholar] [CrossRef]
- Norton, R.E.; Hamm, J.; Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany. J. Am. Inst. Conserv. 2004, 43, 285. [Google Scholar] [CrossRef]
- Keeling, C.I.; Bohlmann, J. Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers against Insects and Pathogens*. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Wang, J.; Ni, J.; Xu, P. Synthetic biology for the synthesis of aromatic natural products: A review. Chin. J. Biotechnol. 2021, 37, 2010–2025. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Hu, W.; Xie, L.; Liu, N.; Liu, H.; Fan, L. Research progress on phenolic acid compounds in cell walls. J. Anhui Agric. Sci. 2014, 42, 12020–12022+12034. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 2009, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Yeo, J. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef]
- Da Silva, A.P.G.; Sganzerla, W.G.; John, O.D.; Marchiosi, R. A Comprehensive Review of the Classification, Sources, Biosynthesis, and Biological Properties of Hydroxybenzoic and Hydroxycinnamic Acids. Phytochem. Rev. 2023. [Google Scholar] [CrossRef]
- Umezawa, T. Diversity in Lignan Biosynthesis. Phytochem. Rev. 2003, 2, 371–390. [Google Scholar] [CrossRef]
- Wang, L.-X.; Wang, H.-L.; Huang, J.; Chu, T.-Z.; Peng, C.; Zhang, H.; Chen, H.-L.; Xiong, Y.-A.; Tan, Y.-Z. Review of Lignans from 2019 to 2021: Newly Reported Compounds, Diverse Activities, Structure-Activity Relationships and Clinical Applications. Phytochemistry 2022, 202, 113326. [Google Scholar] [CrossRef]
- Suzuki, S.; Umezawa, T. Biosynthesis of Lignans and Norlignans. J. Wood Sci. 2007, 53, 273–284. [Google Scholar] [CrossRef]
- Zálešák, F.; Bon, D.J.-Y.D.; Pospíšil, J. Lignans and Neolignans: Plant Secondary Metabolites as a Reservoir of Biologically Active Substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef]
- Poupon, E.; Bruneton, J. Pharmacognosie-Phytochimie-Plantes Médicinales, 5th ed.; Technique & Doc: Paris, France, 2016; ISBN 978-2-7430-2165-8. [Google Scholar]
- Thulasidas, P.K.; Bhat, K.M. Chemical Extractive Compounds Determining the Brown-Rot Decay Resistance of Teak Wood. Holz Als Roh Werkst. 2007, 65, 121–124. [Google Scholar] [CrossRef]
- Vyas, P.; Yadav, D.K.; Khandelwal, P. Tectona grandis (Teak)—A Review on Its Phytochemical and Therapeutic Potential. Nat. Prod. Res. 2019, 33, 2338–2354. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, B.; Ammazzalorso, A.; Fantacuzzi, M.; Giampietro, L.; Maccallini, C.; Amoroso, R. Anticancer Activity of Stilbene-Based Derivatives. ChemMedChem 2017, 12, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Zheng, R.; Lu, J.; Li, X.; Wang, D.; Cai, X.; Ren, X.; Kong, Q. Trends in the Potential of Stilbenes to Improve Plant Stress Tolerance: Insights of Plant Defense Mechanisms in Response to Biotic and Abiotic Stressors. J. Agric. Food Chem. 2024, 72, 7655–7671. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G.R. Overview of Dietary Flavonoids: Nomenclature, Occurrence and Intake. J. Nutr. 2003, 133, 3248S–3254S. [Google Scholar] [CrossRef] [PubMed]
- Winkel-Shirley, B. Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of Plant Defense against Insect Herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef]
- Bate-Smith, E.C. Astringent Tannins of Acer Species. Phytochemistry 1977, 16, 1421–1426. [Google Scholar] [CrossRef]
- Ajuziogu, G.C.; Ugwu, L.U.; Ojua, E.O. Termicidal Properties of Wood Extractive Partitions as a Prospective Eco-Friendly Wood Preservatives. J. Indian Acad. Wood Sci. 2019, 16, 67–72. [Google Scholar] [CrossRef]
- Tascioglu, C.; Yalcin, M.; Sen, S.; Akcay, C. Antifungal Properties of Some Plant Extracts Used as Wood Preservatives. Int. Biodeterior. Biodegrad. 2013, 85, 23–28. [Google Scholar] [CrossRef]
- Pometti, C.L.; Palanti, S.; Pizzo, B.; Charpentier, J.-P.; Boizot, N.; Resio, C.; Saidman, B.O. Durability of Five Native Argentine Wood Species of the Genera Prosopis and Acacia Decayed by Rot Fungi and Its Relationship with Extractive Content. Biodegradation 2010, 21, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, B.; Park, K.-C.; Kim, Y.; Kim, T.; Kim, M.-S.; Choi, S.-E.; Park, S.-Y. Biological Activities in Sapwood and Heartwood Extractives from Paulownia Tomentosa. Forests 2023, 14, 2171. [Google Scholar] [CrossRef]
- Anderson, A.B.; Scheffer, T.C.; Duncan, C.G. The Chemistry of Decay Resistance and Its Decrease with Heartwood Aging in Incense Cedar (Libocedrus decurrens Torrey). Holzforschung 1963, 17, 1–5. [Google Scholar] [CrossRef]
- Hillis, W.E. Heartwood and Tree Exudates; Springer Series in Wood Science; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1987; Volume 4, ISBN 978-3-642-72536-4. [Google Scholar]
- Schultz, J.C.; Hunter, M.D.; Appel, H.M. Antimicrobial Activity of Polyphenols Mediates Plant-Herbivore Interactions. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Springer: Boston, MA, USA, 1992; pp. 621–637. ISBN 978-1-4613-6540-2. [Google Scholar]
- Smith, A.L.; Campbell, C.L.; Walker, D.B.; Hanover, J.W. Extracts from Black Locust as Wood Preservatives: Extraction of Decay Resistance from Black Locust Heartwood. Holzforschung 1989, 43, 293–296. [Google Scholar] [CrossRef]
- Hassan, B.; Mankowski, M.E.; Kirker, G.; Ahmed, S.; Bishell, A. Ex-Situ Performance of Extracts from Naturally Durable Heartwood Species and Their Potential as Wood Preservatives. Eur. J. Wood Prod. 2019, 77, 869–878. [Google Scholar] [CrossRef]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J.; Tsunoda, K. Effects of Heartwood Extractive Fractions of Thuja plicata and Chamaecyparis nootkatensis on Wood Degradation by Termites or Fungi. J. Wood Sci. 2006, 52, 147–153. [Google Scholar] [CrossRef]
- De Ligne, L.; Van Den Bulcke, J.; Baetens, J.M.; De Baets, B.; Wang, G.; De Windt, I.; Beeckman, H.; Van Acker, J. Unraveling the Natural Durability of Wood: Revealing the Impact of Decay-Influencing Characteristics Other than Fungicidal Components. Holzforschung 2021, 75, 368–378. [Google Scholar] [CrossRef]
- Vovchuk, C.S.; González Garello, T.; Careaga, V.P.; Fazio, A.T. Promising Antifungal Activity of Cedrela fissilis Wood Extractives as Natural Biocides against Xylophagous Fungi for Wood Artwork of Cultural Heritage. Coatings 2024, 14, 237. [Google Scholar] [CrossRef]
- Lv, H.; Wang, Y.; Qu, M.; Zhang, Y.; Song, Z.; Su, X.; Xu, B. Anti-Fungal Activity of Dalbergia Retusa Extract on Gloeophyllum trabeum. Front. Plant Sci. 2022, 13, 906041. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.; Li, S. Antifungal Activities of China-Fir Heartwood Extracts Against Wood Decay Fungi. J. Northeast For. Univ. 2012, 40, 120–122+150. [Google Scholar] [CrossRef]
- Kadir, R.; Hale, M. Biocidal Potential of the Extractives of Four Malaysian Timbers against Subterranean Termites and Wood Decay Fungi. Eur. J. Wood Prod. 2019, 77, 147–155. [Google Scholar] [CrossRef]
- Li, S.; Wang, L.; Liu, L.; Huang, Q.; Bu, Z.; Wang, Z. Inhibitory effects of heartwood extracts from four decay-resistant tree species to white and brown rot fungi. J. Agric. Univ. Hebei 2009, 32, 76–80. [Google Scholar]
- Wu, J.-F.; Zhuang, X.-F.; Yuan, H.; Li, Q.; Wang, W.; Li, J.-Q.; Lin, J.-G. Antifungal Ability and Decay Resistance of Fokienia hodginsii Heartwood Extract and Its Inhibitory Effect on Gloeophyllum trabeum. BioResources 2020, 15, 2784–2799. [Google Scholar] [CrossRef]
- Manhiça, A.A.; Uetimane Júnior, E.; Jebrane, M.; Gillah, P.R. Upgrading the Durability of Perishable Wood Species Using Extractives from Side Streams of Durable Wood Sawmill Operations: A Review. Holzforschung 2023, 77, 753–761. [Google Scholar] [CrossRef]
- Syofuna, A.; Banana, A.Y.; Nakabonge, G. Efficiency of Natural Wood Extractives as Wood Preservatives against Termite Attack. Maderas Cienc. Tecnol. 2012, 14, 155–163. [Google Scholar] [CrossRef]
- Kamdem, D. Fungal Decay Resistance of Aspen Blocks Treated with Heartwood Extracts. For. Prod. J. 1994, 44, 30–32. [Google Scholar]
- Vek, V.; Balzano, A.; Poljanšek, I.; Humar, M.; Oven, P. Improving Fungal Decay Resistance of Less Durable Sapwood by Impregnation with Scots Pine Knotwood and Black Locust Heartwood Hydrophilic Extractives with Antifungal or Antioxidant Properties. Forests 2020, 11, 1024. [Google Scholar] [CrossRef]
- Li, J.; Yang, D.; Su, W. Study on Effect of Larix olgensis var. changpaiensis Extractives on Wood Preservation. Chem. Ind. For. Prod. 2007, 25, 49–52. [Google Scholar]
- Rodrigues, A.M.S.; Stien, D.; Eparvier, V.; Espindola, L.S.; Beauchêne, J.; Amusant, N.; Leménager, N.; Baudassé, C.; Raguin, L. The Wood Preservative Potential of Long-Lasting Amazonian Wood Extracts. Int. Biodeterior. Biodegrad. 2012, 75, 146–149. [Google Scholar] [CrossRef]
- Onuorah, E.O. The Wood Preservative Potentials of Heartwood Extracts of Milicia excelsa and Erythrophleum suaveolens. Bioresour. Technol. 2000, 75, 171–173. [Google Scholar] [CrossRef]
- Rowell, R.M.; Barbour, R.J. (Eds.) Archaeological Wood: Properties, Chemistry, and Preservation; Advances in Chemistry; American Chemical Society: Washington, DC, USA, 1989; Volume 225, ISBN 978-0-8412-1623-5. [Google Scholar]
- Celimene, C.C.; Micales, J.A.; Ferge, L.; Young, R.A. Efficacy of Pinosylvins against White-Rot and Brown-Rot Fungi. Holzforschung 1999, 53, 491–497. [Google Scholar] [CrossRef]
- Belt, T.; Mollerup, F.; Hänninen, T.; Rautkari, L. Inhibitory Effects of Scots Pine Heartwood Extractives on Enzymatic Holocellulose Hydrolysis by Wood Decaying Fungi. Int. Biodeterior. Biodegrad. 2018, 132, 150–156. [Google Scholar] [CrossRef]
- Tomak, E.D.; Ermeydan, M.A. A Natural Flavonoid Treatment of Wood: Artificial Weathering and Decay Resistance. Eur. J. Wood Prod. 2020, 78, 1221–1231. [Google Scholar] [CrossRef]
- Tascioglu, C.; Yalcin, M.; De Troya, T.; Sivrikaya, H. Termiticidal Properties of Some Wood and Bark Extracts Used as Wood Preservatives. BioResources 2012, 7, 2960–2969. [Google Scholar] [CrossRef]
- Nandika, D.; Syamsu, K.; Arinana; Kusumawardhani, D.T.; Fitriana, Y. Bioactivities of Catechin from Gambir (Uncaria gambir Roxb.) against Wood-Decaying Fungi. BioResources 2019, 14, 5646–5656. [Google Scholar] [CrossRef]
- Treutter, D. Significance of Flavonoids in Plant Resistance: A Review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Silveira, A.G.D.; Santini, E.J.; Kulczynski, S.M.; Trevisan, R.; Wastowski, A.D.; Gatto, D.A. Tannic Extract Potential as Natural Wood Preservative of Acacia Mearnsii. An. Acad. Bras. Ciências 2017, 89, 3031–3038. [Google Scholar] [CrossRef]
- Romanis, R. LXXXVIII.—Certain Products from Teak. Preliminary Notice. J. Chem. Soc. Trans. 1887, 51, 868–871. [Google Scholar] [CrossRef]
- Wolcott, G.N. The Permanence of Termite Repellents1. J. Econ. Entomol. 1947, 40, 124–129. [Google Scholar] [CrossRef]
- Sandermann, W.; Simatupang, M.H. Zur Chemie und Biochemie des Teakholzes (Tectona grandis L. fil). Holz Als Roh Werkst. 1966, 24, 190–204. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Li, S.; Freitag, C.; Morrell, J.J. Antifungal Activities of Cunninghamia lanceolata Heartwood Extractives. BioResources 2011, 6, 606–614. [Google Scholar] [CrossRef]
- Hassan, B.; Mankowski, M.E.; Kirker, G.; Ahmed, S. Effects of Heartwood Extractives on Symbiotic Protozoan Communities and Mortality in Two Termite Species. Int. Biodeterior. Biodegrad. 2017, 123, 27–36. [Google Scholar] [CrossRef]
- Hmamouchi, M.; Hamamouchi, J.; Zouhdi, M.; Bessiere, J.M. Chemical and Antimicrobial Properties of Essential Oils of Five Moroccan Pinaceae. J. Essent. Oil Res. 2001, 13, 298–302. [Google Scholar] [CrossRef]
- Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. Natural Durability of Cedrus atlantica Wood Related to the Bioactivity of Its Essential Oil against Wood Decaying Fungi. Maderas Cienc. Tecnol. 2016, 18, 567–576. [Google Scholar] [CrossRef]
- Chittenden, C.; Singh, T. Antifungal Activity of Essential Oils against Wood Degrading Fungi and Their Applications as Wood Preservatives. Int. Wood Prod. J. 2011, 2, 44–48. [Google Scholar] [CrossRef]
- Kartal, S.N.; Hwang, W.-J.; Imamura, Y.; Sekine, Y. Effect of Essential Oil Compounds and Plant Extracts on Decay and Termite Resistance of Wood. Eur. J. Wood Wood Prod. 2006, 64, 455–461. [Google Scholar] [CrossRef]
- Boukari, I.; O’Donohue, M.; Rémond, C.; Chabbert, B. Probing a Family GH11 Endo-β-1,4-Xylanase Inhibition Mechanism by Phenolic Compounds: Role of Functional Phenolic Groups. J. Mol. Catal. B Enzym. 2011, 72, 130–138. [Google Scholar] [CrossRef]
- Lyr, H. Detoxification of Heartwood Toxins and Chlorophenols by Higher Fungi. Nature 1962, 195, 289–290. [Google Scholar] [CrossRef]
- Lyr, H. Enzymatische Detoxifikation Der Kernholztoxine. Flora Oder Allg. Bot. Ztg. 1962, 152, 570–579. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yang, M.; Peng, Y.; Cao, J. Improvement on Dimensional Stability and Mold Resistance of Wood Modified by Tannin Acid and Tung Oil. Holzforschung 2022, 76, 929–940. [Google Scholar] [CrossRef]
- Voda, K.; Boh, B.; Vrtačnik, M.; Pohleven, F. Effect of the Antifungal Activity of Oxygenated Aromatic Essential Oil Compounds on the White-Rot Trametes versicolor and the Brown-Rot Coniophora puteana. Int. Biodeterior. Biodegrad. 2003, 51, 51–59. [Google Scholar] [CrossRef]
- Bryant, B.E.; Fernelius, W.C.; Douglas, B.E. Formation Constants of Metal Complexes of Tropolone and Its Derivatives. I. Tropolone 1. J. Am. Chem. Soc. 1953, 75, 3784–3786. [Google Scholar] [CrossRef]
- Scalbert, A. Tannins in Woods and Their Contribution to Microbial Decay Prevention. In Plant Polyphenols; Hemingway, R.W., Laks, P.E., Eds.; Springer: Boston, MA, USA, 1992; pp. 935–952. ISBN 978-1-4613-6540-2. [Google Scholar]
- Diouf, P.N.; Delbarre, N.; Perrin, D.; Gérardin, P.; Rapin, C.; Jacquot, J.P.; Gelhaye, E. Influence of Tropolone on Poria placenta Wood Degradation. Appl. Environ. Microbiol. 2002, 68, 4377–4382. [Google Scholar] [CrossRef]
- Suzuki, H.; Ueda, T.; Juránek, I.; Yamamoto, S.; Katoh, T.; Node, M.; Suzuki, T. Hinokitiol, a Selective Inhibitor of the Platelet-Type Isozyme of Arachidonate 12-Lipoxygenase. Biochem. Biophys. Res. Commun. 2000, 275, 885–889. [Google Scholar] [CrossRef]
- Li, Y.; Qi, B.; Wan, Y. Inhibitory Effect of Vanillin on Cellulase Activity in Hydrolysis of Cellulosic Biomass. Bioresour. Technol. 2014, 167, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Skadhauge, B.; Thomsen, K.K.; Wettstein, D. The Role of the Barley Testa Layer and Its Flavonoid Content in Resistance to Fusarium Infections. Hereditas 2004, 126, 147–160. [Google Scholar] [CrossRef]
- Li, Y.; Hu, W.; Sa, R.; Long, Y.; Liao, J. Bacteriostatic mechanism of natural plant extracts and their application in fruit and vegetable preservation. Food Ferment. Ind. 2019, 45, 239–244. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Recent Advances in Understanding the Antibacterial Properties of Flavonoids. Int. J. Antimicrob. Agents 2011, 38, 99–107. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, X.; Ding, Y.; Feng, D.; Fan, Y.; Ye, S. Effect of Ginkgo Biloba Leaf Flavonoids on the Growth and Enzymatic Oxidation Systems of Penicillium Expansum. Food Bioprocess Technol. 2024. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, X.; Xie, Y.; Zhong, Y. O-Vanillin, a Promising Antifungal Agent, Inhibits Aspergillus Flavus by Disrupting the Integrity of Cell Walls and Cell Membranes. Appl. Microbiol. Biotechnol. 2021, 105, 5147–5158. [Google Scholar] [CrossRef]
- Li, Q. Research on Chemical Composition and Decay Resistance Mechanisam of Cinnamomum camphora Wood Extracts. Ph.D. Dissertation, Fujian Agriculture and Forestry University, Fuzhou, China, 2014. [Google Scholar]
- Hart, J.H. Inhibition of Wood-Rotting Fungi by Stilbenes and Other Polyphenols in Eucaly Ptus Sideroxylon. Phytopathology 1974, 64, 939. [Google Scholar] [CrossRef]
- Haslam, E. Tannins, Polyphenols and Molecular Complexation. Chem. Ind. For. Prod. 1992, 12, 1–24. [Google Scholar]
- Spencer, C.M.; Cai, Y.; Martin, R.; Gaffney, S.H.; Goulding, P.N.; Magnolato, D.; Lilley, T.H.; Haslam, E. Polyphenol Complexation—Some Thoughts and Observations. Phytochemistry 1988, 27, 2397–2409. [Google Scholar] [CrossRef]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef] [PubMed]
- Li, X. Study on the Antifungle Mechanism of Chinese Traditional Medicine Protection of Wood. Master’s Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2013. [Google Scholar]
- Humar, M. 4–Protection of the Bio-Based Material. In Performance of Bio-Based Building Materials; Jones, D., Brischke, C., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 187–247. ISBN 978-0-08-100982-6. [Google Scholar]
- Bi, Z.; Morrell, J.J.; Lei, Y.; Yan, L.; Ji, M. Eco-Friendly and Mildly Modification of Wood Cell Walls with Heat Treated Wood Extracts to Improve Wood Decay Resistance. Ind. Crops Prod. 2022, 184, 115079. [Google Scholar] [CrossRef]
- Hon, D.N.S.; Nobuya, M. Color and Discoloration. In Wood and Cellulosic Chemistry, Revised, and Expanded; Hon, D.N.S., Nobuo, S., Eds.; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0-429-17533-6. [Google Scholar]
- Mastouri, A.; Azadfallah, M.; Kamboj, G.; Rezaei, F.; Tarmian, A.; Efhamisisi, D.; Mahmoudkia, M.; Corcione, C.E. Kinetic Studies on Photo-Degradation of Thermally-Treated Spruce Wood during Natural Weathering: Surface Performance, Lignin and Cellulose Crystallinity. Constr. Build. Mater. 2023, 392, 131923. [Google Scholar] [CrossRef]
- Cogulet, A.; Blanchet, P.; Landry, V. Wood Degradation under UV Irradiation: A Lignin Characterization. J. Photochem. Photobiol. B Biol. 2016, 158, 184–191. [Google Scholar] [CrossRef]
- Peng, H.; Yu, H.; Zhan, T.; Jiang, J.; Lyu, J. Photo-Stabilization Effect of Extractives on the Photo-Degradation of Red Pine (Pinus koraiensis Sieb. et Zucc.). Eur. J. Wood Prod. 2024, 82, 905–915. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, X.; Zhang, Z. Advances in research on lignin biosynthesis and its molecular regulation. Biotechnol. Bull. 2007, 23, 47–51. [Google Scholar]
- Lan, H.-N.; Liu, R.-Y.; Liu, Z.-H.; Li, X.; Li, B.-Z.; Yuan, Y.-J. Biological Valorization of Lignin to Flavonoids. Biotechnol. Adv. 2023, 64, 108107. [Google Scholar] [CrossRef]
- Magel, E.; Hübner, B. Distribution of Phenylalanine Ammonia Lyase and Chalcone Synthase within Trunks of Robinia Pseudoacacia L. Bot. Acta 1997, 110, 314–322. [Google Scholar] [CrossRef]
- Xue, Y.; Li, J.; Lu, M.; Zhang, Q. The lignin subunits biosynthesis pathway and its rewriting. Sci. Silvae Sin. 2003, 39, 146–153. [Google Scholar]
- Liu, Q.; Luo, L.; Zheng, L. Lignins: Biosynthesis and Biological Functions in Plants. Int. J. Mol. Sci. 2018, 19, 335. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Qiu, Z.; Zhao, G. Microbial synthesis of plant polyphenols. Chin. J. Biotechnol. 2021, 37, 2050–2076. [Google Scholar] [CrossRef]
- Rånby, B.G.; Rabek, J.F. Photodegradation, Photo-Oxidation, and Photostabilization of Polymers: Principles and Applications; Wiley: London, UK; New York, NY, USA, 1975; ISBN 978-0-471-70788-2. [Google Scholar]
- Sadeghifar, H.; Ragauskas, A. Lignin as a UV Light Blocker—A Review. Polymers 2020, 12, 1134. [Google Scholar] [CrossRef]
- Heitner, C.; Scaiano, J.C. (Eds.) Photochemistry of Lignocellulosic Materials; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1993; Volume 531, ISBN 978-0-8412-2692-0. [Google Scholar]
- Hon, N. Formation of Free Radicals in Photoirradiated Cellulose. I. Effect of Wavelength. J. Polym. Sci. Polym. Chem. Ed. 1975, 13, 1347–1361. [Google Scholar] [CrossRef]
- Hon, D.N.-S. Photooxidative Degradation of Cellulose: Reactions of the Cellulosic Free Radicals with Oxygen. J. Polym. Sci. Polym. Chem. Ed. 1979, 17, 441–454. [Google Scholar] [CrossRef]
- Pandey, K.K. Study of the Effect of Photo-Irradiation on the Surface Chemistry of Wood. Polym. Degrad. Stab. 2005, 90, 9–20. [Google Scholar] [CrossRef]
- Radotić, K.; Kalauzi, A.; Djikanović, D.; Jeremić, M.; Leblanc, R.M.; Cerović, Z.G. Component Analysis of the Fluorescence Spectra of a Lignin Model Compound. J. Photochem. Photobiol. B Biol. 2006, 83, 1–10. [Google Scholar] [CrossRef]
- Chang, T.-C.; Chang, S.-T. Photostabilization Mechanisms of the Main Wood Photostabilizers from the Heartwood Extract in Acacia confusa: Okanin and Melanoxetin. Wood Sci. Technol. 2019, 53, 335–348. [Google Scholar] [CrossRef]
- Crestini, C.; D’Auria, M. Singlet Oxygen in the Photodegradation of Lignin Models. Tetrahedron 1997, 53, 7877–7888. [Google Scholar] [CrossRef]
- Chang, T.-C.; Yeh, T.-F.; Chang, S.-T. Investigation of Photo-Induced Discoloration on Wood Treated with the Polyphenols from Acacia confusa Heartwood. J. Wood Chem. Technol. 2019, 39, 270–281. [Google Scholar] [CrossRef]
- Cui, X.; Matsumura, J. Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions. Forests 2020, 11, 1326. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Zhang, R.; Wang, W.; Cao, J. Improvement of Wood against UV Weathering and Decay by Using Plant Origin Substances: Tannin Acid and Tung Oil. Ind. Crops Prod. 2021, 168, 113606. [Google Scholar] [CrossRef]
- Burchard, P.; Bilger, W.; Weissenböck, G. Contribution of Hydroxycinnamates and Flavonoids to Epidermal Shielding of UV-A and UV-B Radiation in Developing Rye Primary Leaves as Assessed by Ultraviolet-induced Chlorophyll Fluorescence Measurements. Plant Cell Environ. 2000, 23, 1373–1380. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential Accumulation of Flavonoids and Hydroxycinnamates in Leaves of Ligustrum vulgare under Excess Light and Drought Stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Pollastri, S.; Tattini, M. Flavonols: Old Compounds for Old Roles. Ann. Bot. 2011, 108, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, N.-C.; Chang, T.-C.; Chang, S.-T. Influences of Merbau Heartwood Extracts and Their Metal Complexes on Wood Photodegradation. Eur. J. Wood Prod. 2021, 79, 207–216. [Google Scholar] [CrossRef]
- Chang, T.-C.; Lin, H.-Y.; Wang, S.-Y.; Chang, S.-T. Study on Inhibition Mechanisms of Light-Induced Wood Radicals by Acacia confusa Heartwood Extracts. Polym. Degrad. Stab. 2014, 105, 42–47. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by Natural Polyphenols: Anti-Inflammatory, Antioxidant and DNA Repair Mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef]
- Hon, D.; Feist, W. Hydroperoxidation in Photoirradiated Wood Surfaces. Wood Fiber Sci. 1992, 24, 448–455. [Google Scholar]
- Ghazi, S. Do the Polyphenolic Compounds from Natural Products Can Protect the Skin from Ultraviolet Rays? Results Chem. 2022, 4, 100428. [Google Scholar] [CrossRef]
- Rajasekar, M.; Mary, J.; Sivakumar, M.; Selvam, M. Recent Developments in Sunscreens Based on Chromophore Compounds and Nanoparticles. RSC Adv. 2024, 14, 2529–2563. [Google Scholar] [CrossRef] [PubMed]
- Tournaire, C.; Croux, S.; Maurette, M.-T.; Beck, I.; Hocquaux, M.; Braun, A.M.; Oliveros, E. Antioxidant Activity of Flavonoids: Efficiency of Singlet Oxygen (1Δg) Quenching. J. Photochem. Photobiol. B Biol. 1993, 19, 205–215. [Google Scholar] [CrossRef]
- Galiñanes, C.; Freire, M.S.; González-Álvarez, J. UV Protection Effects of Phenolic Extracts from Chestnut Fruit and Forest Industries Residues. Eur. J. Wood Prod. 2015, 73, 731–739. [Google Scholar] [CrossRef]
- Peng, Y.; Yan, N.; Cao, J. Utilization of Three Bark Extractives as Natural Photostabilizers for the Photostabilization of Wood Flour/Polypropylene Composites. Fibers Polym. 2020, 21, 1488–1497. [Google Scholar] [CrossRef]
- Cetera, P.; Gindl-Altmutter, W.; D’Auria, M.; Turkulin, H.; Todaro, L. Native and TMT Chestnut Extractives as Hydrophobic and Photostabylizing Additives for Wood Surfaces. Forests 2024, 15, 1358. [Google Scholar] [CrossRef]
- Saha, S.; Kocaefe, D.; Boluk, Y.; Pichette, A. Enhancing Exterior Durability of Jack Pine by Photo-Stabilization of Acrylic Polyurethane Coating Using Bark Extract. Part 1: Effect of UV on Color Change and ATR–FT-IR Analysis. Prog. Org. Coat. 2011, 70, 376–382. [Google Scholar] [CrossRef]
- Saha, S.; Kocaefe, D.; Krause, C.; Boluk, Y.; Pichette, A. Enhancing Exterior Durability of Heat-Treated Jack Pine by Photo-Stabilization by Acrylic Polyurethane Coating Using Bark Extract. Part 2: Wetting Characteristics and Fluorescence Microscopy Analysis. Prog. Org. Coat. 2013, 76, 504–512. [Google Scholar] [CrossRef]
- Saha, S.; Kocaefe, D.; Boluk, Y.; Mshvildadze, V.; Legault, J.; Pichette, A. Boreal Forest Conifer Extracts: Potential Natural Additives for Acrylic Polyurethane Coatings for the Protection of Heat-Treated Jack Pine. J. Coat. Technol. Res. 2013, 10, 109–122. [Google Scholar] [CrossRef]
- Tomak, E.D.; Arican, F.; Gonultas, O.; Sam Parmak, E.D. Influence of Tannin Containing Coatings on Weathering Resistance of Wood: Water Based Transparent and Opaque Coatings. Polym. Degrad. Stab. 2018, 151, 152–159. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Bilici, E.; Durmaz, S.; Söğütlü, C.; Emik, S. Enhancing Weathering Durability of Pre-Protected and Unprotected Wood by Using Bark Extracts as Natural UV Absorbers in Waterborne Acrylic Coating. J. Coat. Technol. Res. 2022, 19, 303–321. [Google Scholar] [CrossRef]
- Özgenç, Ö.; Durmaz, S.; Kuştaş, S.; Bilici, E. Durability in Outdoor Conditions of Coating Systems Based on Waterborne Acrylic Resin with Commercial UV Absorber and Tree Bark Extract. Drewno 2021, 64, 111–124. [Google Scholar] [CrossRef]
- Yazaki, Y. Wood Colors and Their Coloring Matters: A Review. Nat. Prod. Commun. 2015, 10, 505–512. [Google Scholar] [CrossRef]
- Bi, Z.; Yan, L.; Yan, Z.; Chen, Z.; Lei, Y. Improve Color Stability of Plant Extract Dye through Chemical Grafting of Laccase to Wood Substrate. Ind. Crops Prod. 2023, 194, 116293. [Google Scholar] [CrossRef]
- Garcia, R.A.; De Oliveira Lopes, J.; Do Nascimento, A.M.; De Figueiredo Latorraca, J.V. Color Stability of Weathered Heat-Treated Teak Wood. Maderas Cienc. Tecnol. 2014, 16, 453–462. [Google Scholar] [CrossRef]
- Fitz-Binder, C.; Bechtold, T. Extraction of Polyphenolic Substances from Bark as Natural Colorants for Wool Dyeing. Color. Technol. 2019, 135, 32–39. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Z.; Chen, X.; Zou, W.; Jiang, X.; Sun, D.; Yu, M. Color Fastness Enhancement of Dyed Wood by Si-sol@PDMS Based Superhydrophobic Coating. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129701. [Google Scholar] [CrossRef]
- Ben Mansour, H.; Houas, I.; Montassar, F.; Ghedira, K.; Barillier, D.; Mosrati, R.; Chekir-Ghedira, L. Alteration of in Vitro and Acute in Vivo Toxicity of Textile Dyeing Wastewater after Chemical and Biological Remediation. Environ. Sci. Pollut. Res. 2012, 19, 2634–2643. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Grifoni, D.; Roscigno, G.; Falco, E.D.; Vece, A.; Camilli, F.; Sabatini, F.; Fibbi, L.; Zipoli, G. Evaluation of Dyeing and UV Protective Properties on Hemp Fabric of Aqueous Extracts from Vegetal Matrices of Different Origin. Fibers Polym. 2020, 21, 1750–1759. [Google Scholar] [CrossRef]
- Silva, M.G.D.; Barros, M.A.S.D.D.; Almeida, R.T.R.D.; Pilau, E.J.; Pinto, E.; Soares, G.; Santos, J.G. Cleaner Production of Antimicrobial and Anti-UV Cotton Materials through Dyeing with Eucalyptus Leaves Extract. J. Clean. Prod. 2018, 199, 807–816. [Google Scholar] [CrossRef]
- Özen, E.; Yeniocak, M.; Colak, M.; Goktas, O.; Koca, İ. Colorability of Wood Material with Punica granatum and Morus nigra Extracts. BioResources 2014, 9, 2797–2807. [Google Scholar] [CrossRef]
- Brocco, V.F.; Paes, J.B.; Costa, L.G.D.; Kirker, G.T.; Brazolin, S. Wood Color Changes and Termiticidal Properties of Teak Heartwood Extract Used as a Wood Preservative. Holzforschung 2020, 74, 233–245. [Google Scholar] [CrossRef]
- Repon, M.R.; Dev, B.; Rahman, M.A.; Jurkonienė, S.; Haji, A.; Alim, M.A.; Kumpikaitė, E. Textile Dyeing Using Natural Mordants and Dyes: A Review. Environ. Chem. Lett. 2024, 22, 1473–1520. [Google Scholar] [CrossRef]
- Chang, T.-C.; Pan, Y.-Y.; Teng, N.-Y. Exploitation of Eco-Friendly Wood Stain from Heartwood Extract of Acacia confusa. Ind. Crops Prod. 2024, 220, 119153. [Google Scholar] [CrossRef]
- Tsouka, N.; Lazari, D.; Nikolaidis, N.; Dimitriadis, K.; Vouvoudi, E.; Theodoropoulos, K. Dyeing of Cotton and Wool Fibers with the Aqueous Extract of Alnus glutinosa: Evaluation of Their Ultraviolet Protection Factor, Their Color Fastness and the Antioxidant Activity of the Aqueous Extract. Fibers Polym. 2024, 25, 1825–1833. [Google Scholar] [CrossRef]
- Dhanania, Y.; Singhee, D.; Samanta, A.K. Optimization of Dyeing Process Variables for Eco-Friendly Dyeing of Cotton Fabric with Babul Bark Extract as a Natural Dye and Gallnut Extract as a Bio-Mordant. J. Nat. Fibers 2022, 19, 5478–5495. [Google Scholar] [CrossRef]
- Inprasit, T.; Motina, K.; Pisitsak, P.; Chitichotpanya, P. Dyeability and Antibacterial Finishing of Hemp Fabric Using Natural Bioactive Neem Extract. Fibers Polym. 2018, 19, 2121–2126. [Google Scholar] [CrossRef]
- Islam, T.; Khan, A.M.; Karim, M.R.; Hossain, S.; Jalil, M.A. Assessing the Dyeing Efficacy and Environmental Impact of Cotton Fabric Dyed with Sawmill Bio-waste Extracts and Metal Salts. SPE Polym. 2024, 5, 444–456. [Google Scholar] [CrossRef]
- de Farias, N.O.; de Albuquerque, A.F.; Dos Santos, A.; Almeida, G.C.F.; Freeman, H.S.; Räisänen, R.; de Aragão Umbuzeiro, G. Is Natural Better? An Ecotoxicity Study of Anthraquinone Dyes. Chemosphere 2023, 343, 140174. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; El-Abedin, T.K.Z.; Yessoufou, K. Polyphenol Profile and Pharmaceutical Potential of Quercus Spp. Bark Extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Kim, H.; Shin, H.; Jeong, H.; Kim, J.; Kim, D. Cosmetic Effects of Prunus padus Bark Extract. Korean J. Chem. Eng. 2014, 31, 2280–2285. [Google Scholar] [CrossRef]
- Mármol, I.; Quero, J.; Jiménez-Moreno, N.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. A Systematic Review of the Potential Uses of Pine Bark in Food Industry and Health Care. Trends Food Sci. Technol. 2019, 88, 558–566. [Google Scholar] [CrossRef]
- Fernández Sosa, E.I.; Ehman, N.; Felissia, F.E.; Chaves, M.G.; Area, M.C. Progress and Potentialities in Wood Extractives-Based Materials for Active Food Packaging Applications. Food Biosci. 2024, 60, 104489. [Google Scholar] [CrossRef]
- Pandey, S.; Pant, P. Possibilities and Challenges for Harnessing Tree Bark Extracts for Wood Adhesives and Green Chemicals and Its Prospects in Nepal. For. Sci. Technol. 2023, 19, 68–77. [Google Scholar] [CrossRef]
- Olba-Zięty, E.; Krzyżaniak, M.; Stolarski, M.J. Environmental External Production Costs of Extracts Derived from Poplar-Containing Bioactive Substances. Energies 2023, 16, 7544. [Google Scholar] [CrossRef]
- Birke, M.; Rauch, U.; Hofmann, F. Tree Bark as a Bioindicator of Air Pollution in the City of Stassfurt, Saxony-Anhalt, Germany. J. Geochem. Explor. 2018, 187, 97–117. [Google Scholar] [CrossRef]
- Richard, B.; Bénard, A.; Dumarçay, S.; Colin, F. Wood, Knots and Bark Extractives for Oak, Beech and Douglas Fir: A Dataset Based on a Review of the Scientific Literature. Ann. For. Sci. 2024, 81, 9. [Google Scholar] [CrossRef]
Class | Structure |
---|---|
Simple phenolics, benzoquinones | C6 |
Hydroxybenzoic acids | C6-C1 |
Hydroxycinnamic acids, phenylpropanoids | C6-C3 |
Napthoquinones | C6-C4 |
Stilbenes, anthraquinones | C6-C2-C6 |
Flavonoids, isoflavonoids | C6-C3-C6 |
Lignans, neolignans | (C6-C3)2 |
Condensed tannins (proanthocyanidins or flavolans) | (C6-C3-C6)n |
Species | Solvent | Fungi or Termites | Mass Loss (Unextracted) | Mass Loss (Extracted) | Reference |
---|---|---|---|---|---|
Tectona grandis | Ethanol:toluene (2:1 v/v) | Reticulitermes flavipes, Trametes versicolor, Rhodonia placenta | 0.30% (R.f) 2.90% (T.v) | 1.93% (R.f) 9.53% (T.v) | Hassan [180] |
Cedrus deodara | 1.93% (R.f) 8.62% (R.p) | 33.4% (R.f) 48.94 (R.p) | |||
Baillonella toxisperma | Dichloromethane (1. step), Acetone (2. step), Toluene:ethanol (2:1,v/v) (3. step), Water (4. step) | Trametes versicolor, Trametes coccinea, Coniophora puteana, Rhodonia placenta | 3.3% (T.v) 2.1% (T.c) −0.3% (C.p) 2.1% (R.p) | 5.6% (T.v) 3.0% (T.c) 0.4% (C.p) 3.5% (R.p) | Saha [93] |
Distemonanthus benthamianus | 0.9% (T.v) 0.1% (T.c) −0.4% (C.p) 0.1% (R.p) | 26% (T.v) 16% (T.c) 20% (C.p) 8.0% (R.p) | |||
Pterocarpus soyauxii | 1.9% (T.v) 0.1% (T.c) 0.4% (C.p) 0.2% (R.p) | 40% (T.v) 18% (T.c) 0.5% (C.p) 16% (R.p) | |||
Erythrophleum suaveolens | 1.5% (T.v) 0.4% (T.c) 0.2% (C.p) 0.8% (R.p) | 15.9% (T.v) 17% (T.c) 0.8% (C.p) 0.9% (R.p) | |||
Prunus africana | Dichloromethane, | Macrotermes natalensis | 0.3% | 23.6% | Mburu [115] |
Acetone, | 13.6% | ||||
Toluene/ethanol (2:1 v/v), | 10.3% | ||||
Water | 22.2% | ||||
Burkea africana | Toluene/ethanol, Mixture (2/1, v/v), | Coriolus versicolor | 2.5% | 1.2% | Neya [38] |
Diethylether | 2.2% | ||||
Acetone | 2.9% | ||||
Thuja plicata | Hexane(1. step), Methanol(2. step) | Coptotermes formosanus, Postia placenta | 4.1% (C.f) 1.5% (P.p) | 20.6% (C.f) 35.4% (P.p) | Taylor [181] |
Chamaecyparis nootkatensis | 1.4% (C.f) 0% (P.p) | 6.4% (C.f) 29.0% (P.p) |
Species | Solvent | Concentration | Fungus | Inhibition Rate | Reference |
---|---|---|---|---|---|
Cedrela fissilis | Methanol | 0.5 µg/µL | Trametes trogii, Pycnoporus sanguineus, Chaetomium globosum | 25.12% (T.t) 27.84% (P.s) 29.57% (C.g) | Vovchuk [183] |
Acetone | 24.34% (T.t) 30.11% (P.s) 16.20% (C.g) | ||||
Ethyl acetate | 31.62% (T.t) 32.28% (P.s) 29.66% (C.g) | ||||
Dichloromethane | 33.77% (T.t) 42.92% (P.s) 52.31% (C.g) | ||||
Hexane (1. step) Ethyl, Acetate (2. step) | 32.61% (T.t) 31.62% (P.s) 35.22% (C.g) | ||||
Cunninghamia lanceolata | Hexane | 2.5 g/L | Trametes versicolor, Irpex lacteus, Gloeophyllum trabeum, Postia placenta | 82% (T.v) 47% (I.l) 54% (G.t) 44% (P.p) | Xu [185] |
Ethyl acetate | 100% (T.v) 42% (I.l) 43% (G.t) 83% (P.p) | ||||
Methanol | 100% (T.v) −47% (I.l) 51% (G.t) 65% (P.p) | ||||
Tectona grandis | Hot water | 0.125% | Postia placenta | 31.92% | Brocco [112] |
0.25% | 37.74% | ||||
0.50% | 49.17% | ||||
1.0% | 58.73% | ||||
2.0% | 86.13% | ||||
4.0% | 100% | ||||
Neobalanocarpus heimii King P. S. Ashton | Hot water | 4% (w/v) | Trametes versicolor, Lentinus sajor-caju, Coniophora puteana | 61.43% (T.v) 66.53% (L.s) 59.63% (C.p) | Kadir [186] |
Cotylelobium lanceolatum Craib | 55.27% (T.v) 60.28% (L.s) 48.88% (C.p) | ||||
Madhuca utilis (Ridley) H.J.Lam ex K. Heyne | 49.67% (T.v) 57.62% (L.s) 43.22% (C.p) | ||||
Shorea curtisii Dyer ex King | 74.44% (T.v) 80.33% (L.s) 80.33% (C.p) | ||||
Prunus africana | Dichloromethane | 100/500 ppm | Coriolus versicolor Poria placenta, Aureobasidium pullulans | 87%/100% (C.v) 100%/100% (P.p) 100%/100% (A.p) | Mburu [115] |
Acetone | 76%/87% (C.v) 78%/100% (P.p) 100%/100% (A.p) | ||||
Toluene/ethanol (2:1 v/v) | 73%/86% (C.v) 45%/71% (P.p) 88%/91% (A.p) | ||||
Water | 45%/100% (C.v) 47%/100% (P.p) 75%/100% (A.p) | ||||
Morus alba L. | Methanol, Acetone, Ethyl acetate, Chloroform | 4 g/L | Coriolus versicolor, Gloeophyllum trabeum | 75%/98%/100%/12% (C.v) 91%/54%/100%/29% (G.t) | Li [187] |
Fraxinus mandshurica Rupr. | 19%/47%/48%/17% (C.v) 69%/35%/-11%/31% (G.t) | ||||
Sabina chinensis (L.) Antoine | 25%/60%/70%/57% (C.v) 74%/55%/85%/54% (G.t) | ||||
Larix principis-rupprechtii Mayr | 67%/60%/36%/70% (C.v) 33%/48%/26%/73% (G.t) | ||||
Burkea africana | Toluene/ethanol (2/1, v/v) | 100/1000 ppm | Coriolus versicolor, Poria placenta, Gloeophyllum trabeum, Coniophora puteana | 14%/47% (C.v) 46%/46% (P.p) 17%/31% (G.t) 30%/58% (C.p) | Neya [38] |
Diethylether | 4%/29% (C.v) 17%/51% (P.p) 12%/31% (G.t) 9%/58% (C.p) | ||||
Acetone | 1%/32% (C.v) 1%/17% (P.p) 47%/76% (G.t) 18%/46% (C.p) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Cui, X.; Matsumura, J. Multidimensional Exploration of Wood Extractives: A Review of Compositional Analysis, Decay Resistance, Light Stability, and Staining Applications. Forests 2024, 15, 1782. https://doi.org/10.3390/f15101782
Gao C, Cui X, Matsumura J. Multidimensional Exploration of Wood Extractives: A Review of Compositional Analysis, Decay Resistance, Light Stability, and Staining Applications. Forests. 2024; 15(10):1782. https://doi.org/10.3390/f15101782
Chicago/Turabian StyleGao, Chenggong, Xinjie Cui, and Junji Matsumura. 2024. "Multidimensional Exploration of Wood Extractives: A Review of Compositional Analysis, Decay Resistance, Light Stability, and Staining Applications" Forests 15, no. 10: 1782. https://doi.org/10.3390/f15101782
APA StyleGao, C., Cui, X., & Matsumura, J. (2024). Multidimensional Exploration of Wood Extractives: A Review of Compositional Analysis, Decay Resistance, Light Stability, and Staining Applications. Forests, 15(10), 1782. https://doi.org/10.3390/f15101782