Plant Diversity Research in Shangqiu Yellow River Ancient Course National Forest Park, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Collection
2.3. Data Analysis
2.3.1. Alpha Diversity Index
2.3.2. Frequency and Importance Values
2.3.3. Phylogenetic Diversity Indices
3. Results
3.1. Plant Species Composition Characteristics and Regional Distribution
3.1.1. Plant Species Composition and Quantitative Features
3.1.2. Regional Distribution of Families
3.1.3. Results of Alpha Diversity Index Calculations
3.2. Dominant and Characteristic Groups
3.2.1. Dominant Families and Genera and Characteristic Families and Genera
3.2.2. Dominant Species Frequency and Importance Values
3.3. Invasive Plant Diversity
3.3.1. Composition of Invasive Plant Species
3.3.2. Distribution of Invasive Plants
3.4. Phylogenetic Diversity
3.4.1. Phylogenetic Tree
3.4.2. Results of Phylogenetic Diversity Indices
4. Discussion
4.1. Discussion on Plant Species Composition and Regional Distribution
4.2. Discussion on Dominance and Characteristic Groups
4.3. Discussion on Invasive Plant Diversity
4.4. Discussion on Phylogenetic Diversity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Beugnon, R.; Guyader, L.N.; Milcu, A.; Lenoir, J.; Puissant, J.; Morin, X.; Hättenschwiler, S. Microclimate modulation: An overlooked mechanism influencing the impact of plant diversity on ecosystem functioning. Glob. Change Biol. 2024, 30, e17214. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Travers, S.K.; Delgado-Baquerizo, M.; Eldridge, D.J. Multiple trade-offs regulate the effects of woody plant removal on biodiversity and ecosystem functions in global rangelands. Glob. Change Biol. 2020, 26, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Beijing Municipal People’s Government. Forest Park: Government Affairs Terminology. Available online: https://www.beijing.gov.cn/zhengce/zwmc/202210/t20221009_2830472.html (accessed on 4 September 2024).
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 2022, 376, eabl4649. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.; Gholizadeh, H. Uncovering the hidden: Leveraging sub-pixel spectral diversity to estimate plant diversity from space. Remote Sens. Environ. 2023, 296, 113734. [Google Scholar] [CrossRef]
- Warton, D.I.; McGeoch, M.A. Technical advances at the interface between ecology and statistics: Improving the biodiversity knowledge generation workflow. Methods Ecol. Evol. 2017, 8, 396–397. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Zhang, X.; Wang, J.; Yang, Y.; Sun, Y.; Guo, X.; Wu, Q.; Nepovimova, E.; Watson, A.E.; et al. Biodiversity conservation in the context of climate change: Facing challenges and management strategies. Sci. Total Environ. 2024, 937, 173377. [Google Scholar] [CrossRef]
- White, D.A.; Visser, J.M. Twenty-eight years of plant community development and dynamics in the Balize Mississippi River Delta, Louisiana, USA. Water 2023, 15, 3481. [Google Scholar] [CrossRef]
- Esraa, A. Crop diversification in the Egyptian Nile Region: Viewpoint of spatial, climatic, and human features. Saudi J. Biol. Sci. 2022, 29, 103451. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Li, J.; Lu, F.; Tao, W.; Li, D.; Guo, Y.; Tang, N.; Li, X.; Xiang, W. Functional Traits Affect the Contribution of Individual Species to Beta Diversity in the Tropical Karst Seasonal Rainforest of South China. Forests 2024, 15, 1125. [Google Scholar] [CrossRef]
- Ma, Y.; Wei, J.; Wang, W.; Huang, C.; Feng, C.; Xu, D.; Haider, F.U.; Li, X. Monitoring Changes in Composition and Diversity of Forest Vegetation Layers after the Cessation of Management for Renaturalization. Forests 2024, 15, 907. [Google Scholar] [CrossRef]
- Xu, Z.; Li, R.; Dou, W.; Wen, H.; Yu, S.; Wang, P.; Ning, L.; Duan, J.; Wang, J. Plant Diversity Response to Environmental Factors in Yellow River Delta, China. Land 2024, 13, 264. [Google Scholar] [CrossRef]
- People’s Government of Henan Province. Shangqiu Yellow River Ancient Course National Forest Park. Henan People’s Government Portal. Available online: https://www.henan.gov.cn/2019/01-24/732323.html (accessed on 4 September 2024).
- Knapp, M.; Štrobl, M.; Venturo, A.; Seidl, M.; Jakubíková, L.; Tajovský, K.; Kadlec, T.; González, E. Importance of grassy and forest non-crop habitat islands for overwintering of ground-dwelling arthropods in agricultural landscapes: A multi-taxa approach. Biol. Conserv. 2022, 275, 109757. [Google Scholar] [CrossRef]
- González–Zamora, A.; Ríos–Sánchez, E.; Pérez–Morales, R. Conservation of vascular plant diversity in an agricultural and industrial region in the Chihuahuan Desert, Mexico. Glob. Ecol. Conserv. 2020, 22, e01002. [Google Scholar] [CrossRef]
- George, K.; Johnson, K.; Wamunyokoli, F. Phylogenetic Analysis of Acacia nilotica and Coffea arabica Using Protein Sequences from the Chloroplast RBCL Gene. Asian J. Biochem. Genet. Mol. Biol. 2023, 15, 1–9. [Google Scholar] [CrossRef]
- Webb, C.O.; Pitman, N.C. Phylogenetic balance and ecological evenness. Syst. Biol. 2002, 51, 898–907. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Scheiner, S.M. Plant Diversity, Biogeography and Environment in Iberia: Patterns and Possible Causal Factors. J. Veg. Sci. 2002, 13, 245–258. [Google Scholar] [CrossRef]
- Wang, W.; Gao, X.; Cen, C.; Jian, M.; Wang, Z.; Yang, J. Impact of transforming karst mountainous forests into urban parks on plant diversity patterns. Ecol. Evol. 2024, 14, e70194. [Google Scholar] [CrossRef]
- Wiryani, E. The abundance and importance value of tree in “Sendang Kalimah Toyyibah” surrounding and its implication to the spring. J. Phys. Conf. Ser. 2018, 1025, 012032. [Google Scholar] [CrossRef]
- Wu, J. Plant diversity in Songding National Forest Park in Henan. J. Henan For. Sci. Technol. 2022, 42, 1003–2630. Available online: https://kns.cnki.net/kcms2/article/abstract?v=cF0fONyw0YLmnBpPIfnYAvW63sq66jleZbiOc9erUJ4iy5b8bNnxuB5Psj6x7jbFBCfobmIVAmo1boZg98iGe_cQNXQnX6-VMKeTLi5ux1AB3tV6BOYF-GXhmNayOYvYj3pjzzakT1__CzflfZgtGT5Gwv7FdC1o9WkMwn-V2C9Vbg82SG7775pi066L8enrBecsKGJJhe4=&uniplatform=NZKPT&language=CHS (accessed on 4 September 2024).
- Feng, Q.; Huang, B.; Hua, C.; Wang, P. Study on Plant Diversity and Landscape in Zhengzhou City Forest Park. For. Inventory Plan. 2022, 47, 62–66. [Google Scholar]
- Coelho, M.T.P.; Barreto, E.; Rangel, T.F.; Diniz-Filho, J.A.F.; Wüest, R.O.; Bach, W.; Skeels, A.; McFadden, I.R.; Roberts, D.W.; Pellissier, L.; et al. The geography of climate and the global patterns of species diversity. Nature 2023, 622, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Mohanta, T.K.; Tamboli, Y.; Zubaidha, P.K. Phytochemical and medicinal importance of Ginkgo biloba L. Nat. Prod. Res. 2014, 28, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Zhou, Y.; Liu, B. Biological properties and potential application of extracts and compounds from different medicinal parts (bark, leaf, staminate flower, and seed) of Eucommia ulmoides: A review. Heliyon 2024, 10, e27870. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q. Chemical Constituents and Quality Standards of Equisetum ramosissimum. Master’s Thesis, Xiamen University, Xiamen, China, 2020. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, W.; Yang, X.; Zhang, T. The Allelopathic Effect of Salvinia natans and the Isolation and Identification of Its Algicidal Substances. J. Hyg. Res. 2016, 45, 442–447. [Google Scholar] [CrossRef]
- Xiao, M. Plant Diversity and Its Influencing Factors in Wetlands along the Yellow River in Henan Province. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2023. [Google Scholar]
- Zhu, W.; Zhou, O.; Sun, Y.; Gulmire, I.; Wang, Y.; Yang, H.; Jia, L.; Xi, B. Dynamic Ecological Niche Division of Water Absorption by the Root Systems of Populus tomentosa and Robinia pseudoacacia in Mixed Forests. Acta Phytoecol. Sin. 2023, 47, 389–403. [Google Scholar]
- Chesson, P. Mechanisms of Maintenance of Species Diversity. Annu. Rev. Ecol. Syst. 2000, 31, 343–366. [Google Scholar] [CrossRef]
- Wang, X. A Comparative Study on the Distribution Patterns of Invasive and Non-Invasive Species of the Genus Erigeron (Asteraceae) in China. Master’s Thesis, China Environmental Science Research Institute, Beijing, China, 2024. [Google Scholar] [CrossRef]
- Hu, X.; Arif, M.; Ding, D.; Li, J.; He, X.; Li, C. Invasive Plants and Species Richness Impact Litter Decomposition in Riparian Zones. Front. Plant Sci. 2022, 13, 955656. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, G.; Fu, W.; Zhang, Y.; Zhao, Z.; Li, Z.; Qin, Y. Impacts of climate change on climatically suitable regions of two invasive Erigeron weeds in China. Front. Plant Sci. 2023, 14, 1238656. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, H.; Jiang, K.; Zhou, J.; Wang, C. Erigeron canadensis affects the taxonomic and functional diversity of plant communities in two climate zones in the North of China. Ecol. Res. 2019, 34, 535–547. [Google Scholar] [CrossRef]
- Noguchi, K.H.; Kurniadie, D. The Invasive Mechanisms of the Noxious Alien Plant Species Bidens pilosa. Plants 2024, 13, 356. [Google Scholar] [CrossRef]
- Goyal, N.; Pardha-Saradhi, P.; Sharma, G.P. Can adaptive modulation of traits to urban environments facilitate Ricinus communis L. invasiveness? Environ. Monit. Assess. 2014, 186, 7941–7948. [Google Scholar] [CrossRef] [PubMed]
- Larson, D.C.; Wong, M.; Carr, M.P.; Seipel, T. Cool semi-arid cropping treatments alter Avena fatua’s performance and competitive intensity. J. Sustain. Agric. Environ. 2023, 3, e12078. [Google Scholar] [CrossRef]
- Cho, M.-S.; Kim, J.H.; Kim, C.-S.; Mejías, J.A.; Kim, S.-C. Sow Thistle Chloroplast Genomes: Insights into the Plastome Evolution and Relationship of Two Weedy Species, Sonchus asper and Sonchus oleraceus (Asteraceae). Genes 2019, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Su, M.; Zhou, W.; Wang, S.; Li, J.; Wang, L. Characteristics of the Composition of Alien Plants in the Beijing Area and the Distribution of Invasive Plants. J. Beijing For. Univ. 2010, 32, 29–35. [Google Scholar] [CrossRef]
- China’s Foreign Trade Situation Report. Available online: https://images.mofcom.gov.cn/zhs/202111/20211129152550467.pdf (accessed on 5 September 2024).
- Henan Provincial Department of Natural Resources. Green Barrier on the Ancient Yellow River Course—Shangqiu City of Henan Province Carries Out Comprehensive Ecological Restoration of the Ancient Yellow River Course. Henan Provincial Department of Natural Resources Portal. 2020. Available online: https://dnr.henan.gov.cn/2020/08-04/1863435.html (accessed on 4 September 2024).
- People’s Government of Shangqiu City. Regulations on the Protection of the Yellow River’s Old Course Wetlands in Shangqiu City. Available online: https://baijiahao.baidu.com/s?id=1710557387015219804&wfr=spider&for=pc (accessed on 4 September 2024).
Category | Factors |
---|---|
Arboreal quadrat | Name, quantity, diameter at breast height, height, crown spread |
Shrub quadrat | Name, height, cover, density |
Herbaceous quadrat Bryophytes | Name, quantity, cover Name, plot number |
No. | Family | Genus Number | Species Number | No. | Family | Genus Number | Species Number |
---|---|---|---|---|---|---|---|
1 | Asteraceae | 16 | 35 | 36 | Araceae | 2 | 2 |
2 | Poaceae | 21 | 26 | 37 | Pottiaceae | 1 | 1 |
3 | Rosaceae | 11 | 25 | 38 | Cannabaceae | 1 | 1 |
4 | Fabaceae | 11 | 14 | 39 | Juncaceae | 1 | 1 |
5 | Cyperaceae | 5 | 10 | 40 | Eucommiaceae | 1 | 1 |
6 | Polygonaceae | 3 | 9 | 41 | Marchantiaceae | 1 | 1 |
7 | Amaranthaceae | 7 | 9 | 42 | Brachytheciaceae | 1 | 1 |
8 | Cupressaceae | 5 | 6 | 43 | Funariaceae | 1 | 1 |
9 | Lamiaceae | 6 | 6 | 44 | Salviniaceae | 1 | 1 |
10 | Sapindaceae | 3 | 6 | 45 | Zygophyllaceae | 1 | 1 |
11 | Convolvulaceae | 3 | 6 | 46 | Ceratophyllaceae | 1 | 1 |
12 | Plantaginaceae | 2 | 4 | 47 | Simaroubaceae | 1 | 1 |
13 | Oleaceae | 3 | 4 | 48 | Calycanthaceae | 1 | 1 |
14 | Vitaceae | 3 | 4 | 49 | Lentibulariaceae | 1 | 1 |
15 | Brassicaceae | 4 | 4 | 50 | Nelumbonaceae | 1 | 1 |
16 | Salicaceae | 2 | 4 | 51 | Portulacaceae | 1 | 1 |
17 | Apocynaceae | 3 | 3 | 52 | Arecaceae | 1 | 1 |
18 | Malvaceae | 3 | 3 | 53 | Paulowniaceae | 1 | 1 |
19 | Magnoliaceae | 2 | 3 | 54 | Onagraceae | 1 | 1 |
20 | Moraceae | 3 | 3 | 55 | Caryophyllaceae | 1 | 1 |
21 | Pinaceae | 2 | 3 | 56 | Ebenaceae | 1 | 1 |
22 | Platanaceae | 1 | 3 | 57 | Rhamnaceae | 1 | 1 |
23 | Potamogetonaceae | 1 | 3 | 58 | Nymphaeaceae | 1 | 1 |
24 | Ulmaceae | 2 | 3 | 59 | Myrtaceae | 1 | 1 |
25 | Euphorbiaceae | 2 | 2 | 60 | Celastraceae | 1 | 1 |
26 | Aquifoliaceae | 1 | 2 | 61 | Berberidaceae | 1 | 1 |
27 | Meliaceae | 2 | 2 | 62 | Haloragaceae | 1 | 1 |
28 | Equisetaceae | 1 | 2 | 63 | Fossombroniaceae | 1 | 1 |
29 | Lythraceae | 2 | 2 | 64 | Urticaceae | 1 | 1 |
30 | Rubiaceae | 2 | 2 | 65 | Ginkgoaceae | 1 | 1 |
31 | Solanaceae | 2 | 2 | 66 | Alismataceae | 1 | 1 |
32 | Caprifoliaceae | 2 | 2 | 67 | Bryaceae | 1 | 1 |
33 | Apiaceae | 2 | 2 | 68 | Boraginaceae | 1 | 1 |
34 | Paeoniaceae | 1 | 2 | 69 | Grimmiaceae | 1 | 1 |
35 | Hydrocharitaceae | 2 | 2 | 70 | Oxalidaceae | 1 | 1 |
Tree | Frequency | TIV | Shrub | Frequency | SGIV | Herbaceous | Frequency | SGIV |
---|---|---|---|---|---|---|---|---|
Populus tomentosa | 12.6 | 18.73 | Lagerstroemia indica | 11.2 | 14.25 | Imperata cylindrica | 8.19 | 8.87 |
Robinia pseudoacacia | 10.8 | 8.05 | Paeonia suffruticosa | 9.6 | 12.22 | Digitaria sanguinalis | 7.56 | 8.19 |
Paulownia fortunei | 7.2 | 6.29 | Lonicera japonica | 8.8 | 13.87 | Cynodon dactylon | 5.67 | 5.43 |
Ulmus pumila | 5.3 | 5.02 | Ligustrum lucidum | 7.13 | 13.39 | Setaria viridis | 4.73 | 5.12 |
Ginkgo biloba | 3.2 | 3.64 | Photinia serratifolia | 7.2 | 13.53 | Humulus scandens | 4.1 | 19.79 |
Salix matsudana | 3.6 | 3.55 | Cercis chinensis | 6.8 | 13.6 | Tribulus terrestris | 3.78 | 4.41 |
Cupressus funebris | 3.2 | 2.68 | Forsythia suspensa | 5.6 | 7.13 | Erigeron canadensis | 3.47 | 4.04 |
Eucommia ulmoides | 2.9 | 2.15 | Acer palmatum | 3.2 | 6.59 | Ipomoea nil | 2.21 | 10.66 |
No. | Family | Genus | Species | Level |
---|---|---|---|---|
1 | Asteraceae | Erigeron | Erigeron canadensis | 1 |
2 | Asteraceae | Erigeron | Erigeron annuus | 1 |
3 | Asteraceae | Erigeron | Erigeron sumatrensis | 1 |
4 | Asteraceae | Bidens | Bidens pilosa | 1 |
5 | Asteraceae | Symphyotrichum | Symphyotrichum subulatum | 1 |
6 | Amaranthaceae | Alternanthera | Alternanthera philoxeroides | 1 |
7 | Amaranthaceae | Celosia | Celosia argentea | 1 |
8 | Amaranthaceae | Amaranthus | Amaranthus retroflexus | 1 |
9 | Convolvulaceae | Ipomoea | Ipomoea purpurea | 1 |
10 | Plantaginaceae | Veronica | Veronica persica | 2 |
11 | Euphorbiaceae | Ricinus | Ricinus communis | 2 |
12 | Fabaceae | Trifolium | Trifolium repens | 2 |
13 | Poaceae | Avena | Avena fatua | 2 |
14 | Asteraceae | Erigeron | Erigeron bonariensis | 2 |
15 | Solanaceae | Datura | Datura stramonium | 2 |
16 | Apiaceae | Daucus | Daucus carota | 2 |
17 | Onagraceae | Oenothera | Oenothera curtiflora | 2 |
18 | Convolvulaceae | Ipomoea | Ipomoea nil | 2 |
19 | Malvaceae | Abutilon | Abutilon theophrasti | 3 |
20 | Asteraceae | Bidens | Bidens bipinnata | 3 |
21 | Fabaceae | Robinia | Robinia pseudoacacia | 4 |
22 | Poaceae | Lolium | Lolium perenne | 4 |
23 | Asteraceae | Sonchus | Sonchus wightianus | 4 |
24 | Asteraceae | Sonchus | Sonchus oleraceus | 4 |
25 | Asteraceae | Sonchus | Sonchus asper | 4 |
26 | Asteraceae | Eclipta | Eclipta prostrata | 4 |
27 | Amaranthaceae | Oxybasis | Oxybasis glauca | 4 |
28 | Amaranthaceae | Amaranthus | Amaranthus tricolor | 4 |
29 | Fabaceae | Sesbania | Sesbania cannabina | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Song, Y.; Zhang, X.; Hou, H.; Li, Y. Plant Diversity Research in Shangqiu Yellow River Ancient Course National Forest Park, China. Forests 2024, 15, 1831. https://doi.org/10.3390/f15101831
Wang X, Song Y, Zhang X, Hou H, Li Y. Plant Diversity Research in Shangqiu Yellow River Ancient Course National Forest Park, China. Forests. 2024; 15(10):1831. https://doi.org/10.3390/f15101831
Chicago/Turabian StyleWang, Xiaofang, Yiming Song, Xiangju Zhang, Heping Hou, and Yongsheng Li. 2024. "Plant Diversity Research in Shangqiu Yellow River Ancient Course National Forest Park, China" Forests 15, no. 10: 1831. https://doi.org/10.3390/f15101831
APA StyleWang, X., Song, Y., Zhang, X., Hou, H., & Li, Y. (2024). Plant Diversity Research in Shangqiu Yellow River Ancient Course National Forest Park, China. Forests, 15(10), 1831. https://doi.org/10.3390/f15101831