Factors Influencing the Faunal Recolonization of Restored Thornscrub Forest Habitats †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Selection
2.2. Medium and Large Mammal Surveys
2.3. Avian Surveys
2.4. Lepidoptera Surveys
2.5. Herpetofauna Surveys
2.6. Vegetation Surveys and Environmental Variables
2.7. Analysis
3. Results
3.1. Principal Component Analysis of Environmental Factors
3.2. Mammals
3.2.1. Multivariate Analysis of Mammal Communities
3.2.2. Mammal Community Univariate Analyses
3.3. Birds
3.3.1. Multivariate Analyses of Bird Communities
3.3.2. Bird Community Univariate Analyses
3.4. Lepidoptera
3.4.1. Multivariate Analyses of Lepidoptera Communities
3.4.2. Lepidoptera Community Univariate Analyses
3.5. Herpetofauna
3.5.1. Multivariate Analyses of Herpetofauna Communities
3.5.2. Herpetofauna Community Univariate Analyses
3.6. Ensemble (Combined) Animal Communities
3.6.1. Multivariate Analyses of Ensemble Animal Communities
3.6.2. Ensemble Communities Univariate Analyses
4. Discussion
4.1. Island Biogeography Concepts
4.2. Assembly and Succession Patterns
4.3. Resource Availability and Abiotic Filters
5. Conclusions
Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jahrsdoerfer, S.E.; Leslie, D.M., Jr. Tamaulipan Brushland of the Lower Rio Grande Valley of South Texas: Description, Human Impacts, and Management Options; Biological Report; U.S. Department of the Interior: Washington, DC, USA, 1988; p. 63.
- Mathis, M.; Matisoff, D.; Pritchett, T. The Economic Value of Water for Ecosystem Preservation: Ecotourism in the Texas Lower Rio Grande Valley; Texas Coastal Management Program; Houston Advanced Research Center: The Woodlands, TX, USA, 2004; p. 139. [Google Scholar]
- Woosnam, K.M.; Dudensing, R.M.; Hanselka, D.; An, S. An Initial Examination of the Economic Impact of Nature Tourism on the Rio Grande Valley; Department of Recreation, Park & Tourism Sciences and Department of Agricultural Economics, Texas A&M University: College Station, TX, USA, 2011. [Google Scholar]
- Ewing, K.; Best, C. South Texas Tamaulipan Thornscrub Restoration Experiment Measures Growth of Planted Woody Vegetation. Ecol. Restor. 2004, 22, 11–17. [Google Scholar] [CrossRef]
- Ricketts, T.; Imhoff, M. Biodiversity, Urban Areas, and Agriculture: Locating Priority Ecoregions for Conservation. Conserv. Ecol. 2003, 8, 1. [Google Scholar] [CrossRef]
- Dale, J.; Villarreal, K.-W. Climate Impacts on 21st Century Conservation in Texas: A Resilience Strategy for Thornforest Restoration in the Lower Rio Grande Valley; American Forest: Washington, DC, USA, 2021. [Google Scholar]
- Alexander, H.D.; Moczygemba, J.; Dick, K. Growth and Survival of Thornscrub Forest Seedlings in Response to Restoration Strategies Aimed at Alleviating Abiotic and Biotic Stressors. J. Arid. Environ. 2016, 124, 180–188. [Google Scholar] [CrossRef]
- Alanís-Rodríguez, E.; Molina-Guerra, V.M.; Collantes-Chávez-Costa, A.; Buendía-Rodríguez, E.; Mora-Olivo, A.; Sánchez-Castillo, L.; Alcalá-Rojas, A.G. Structure, Composition and Carbon Stocks of Woody Plant Community in Assisted and Unassisted Ecological Succession in a Tamaulipan Thornscrub, Mexico. Rev. Chil. Hist. Nat. 2021, 94, 6. [Google Scholar] [CrossRef]
- Pérez, J.J.; Rodríguez, E.A.; Tagle, M.A.G.; Calderón, O.A.A.; Garza, E.J.T. Characterizing Regeneration of Woody Species in Areas with Different Land-History Tenure in the Tamaulipan Thornscrub, Mexico. Southwest. Nat. 2013, 58, 299–304. [Google Scholar] [CrossRef]
- Pequeño-Ledezma, M.Á.; Alanís-Rodríguez, E.; Jiménez-Pérez, J.; González-Tagle, M.A.; Yerena-Yamallel, J.I.; Cuellar-Rodríguez, G.; Mora-Olivo, A. Analysis of the livestock passive forest restoration in the Tamaulipan Thornscrub in northeast Mexico. CienciaUAT 2012, 7, 48–53. [Google Scholar] [CrossRef]
- Alanís-Rodríguez, E.; Rubio-Camacho, E.A.; Mata-Balderas, J.M.; Lozano-Cavazos, E.A.; González-Tagle, M.A.; Amarán-Ruiz, M.F. Tamaulipan Thornscrub after Fire: An Analysis of the Composition of Species. Braz. J. Biol. 2020, 80, 814–822. [Google Scholar] [CrossRef]
- Nichols, O.G.; Nichols, F.M. Long-Term Trends in Faunal Recolonization After Bauxite Mining in the Jarrah Forest of Southwestern Australia. Restor. Ecol. 2003, 11, 261–272. [Google Scholar] [CrossRef]
- Manley, P.N.; Zielinski, W.J.; Schlesinger, M.D.; Mori, S.R. Evaluation of Multiple-Species Approach to Monitoring Species at the Ecoregional Scale. Ecol. Appl. 2004, 14, 296–310. [Google Scholar] [CrossRef]
- Schulze, C.H.; Waltert, M.; Kessler, P.J.A.; Pitopang, R.; Veddeler, D.; Mühlenberg, M.; Gradstein, S.R.; Leuschner, C.; Steffan-Dewenter, I.; Tscharntke, T. Biodiversity Indicator Groups of Tropical Land-Use Systems: Comparing Plants, Birds, and Insects. Ecol. Appl. 2004, 14, 1321–1333. [Google Scholar] [CrossRef]
- Grman, E.; Bassett, T.; Brudvig, L.A. EDITOR’S CHOICE: Confronting Contingency in Restoration: Management and Site History Determine Outcomes of Assembling Prairies, but Site Characteristics and Landscape Context Have Little Effect. J. Appl. Ecol. 2013, 50, 1234–1243. [Google Scholar] [CrossRef]
- Suganuma, M.S.; Torezan, J.M.D.; Durigan, G. Environment and Landscape Rather than Planting Design Are the Drivers of Success in Long-Term Restoration of Riparian Atlantic Forest. Appl. Veg. Sci. 2018, 21, 76–84. [Google Scholar] [CrossRef]
- Stack, S.; Jones, C.; Bockstette, J.; Jacobs, D.F.; Landhäusser, S.M. Surface and Subsurface Material Selections Influence the Early Outcomes of Boreal Upland Forest Restoration. Ecol. Eng. 2020, 144, 105705. [Google Scholar] [CrossRef]
- Gabler, C.A.; Siemann, E. Environmental Variability and Ontogenetic Niche Shifts in Exotic Plants May Govern Reinvasion Pressure in Restorations of Invaded Ecosystems. Restor. Ecol. 2012, 20, 545–550. [Google Scholar] [CrossRef]
- Atkinson, J.; Brudvig, L.A.; Mallen-Cooper, M.; Nakagawa, S.; Moles, A.T.; Bonser, S.P. Terrestrial Ecosystem Restoration Increases Biodiversity and Reduces Its Variability, but Not to Reference Levels: A Global Meta-Analysis. Ecol. Lett. 2022, 25, 1725–1737. [Google Scholar] [CrossRef]
- Craig, M.D.; Smith, M.E.; Stokes, V.L.; Hardy, G.E.S.; Hobbs, R.J. Temporal Longevity of Unidirectional and Dynamic Filters to Faunal Recolonization in Post-Mining Forest Restoration. Austral Ecol. 2018, 43, 973–988. [Google Scholar] [CrossRef]
- Provete, D.B.; Garey, M.V.; Goncalves-Souza, T.; Martins, I. Broad-Scale Spatial Patterns of Canopy Cover and Pond Morphology Affect the Structure of a Neotropical Amphibian Metacommunity. Hydrobiologia 2014, 734, 69–79. [Google Scholar] [CrossRef]
- Brunbjerg, A.K.; Brunn, H.H.; Dalby, L.; Fløjgaard, C.; Frøslev, T.G.; Høye, T.T.; Goldbery, I.; Læssøe, T.; Hansen, M.D.D. Vascular Plant Species Richness and Bioindication Predict Multi-taxon Species Richness. Method Ecol. Evol. 2018, 9, 2372–2382. [Google Scholar] [CrossRef]
- Bailey, A.M.; Ober, H.K.; Reichert, B.E.; McCleery, R.A. Canopy Cover Shapes Bat Diversity across an Urban and Agricultural Landscape Mosaic. Environ. Conserv. 2019, 46, 193–200. [Google Scholar] [CrossRef]
- Coddington, C.P.J.; Cooper, W.J.; Mokross, K.; Luther, D.A. Forest Structure Predicts Species Richness and Functional Diversity in Amazonian Mixed-Species Bird Flocks. Biotropica 2023, 55, 467–479. [Google Scholar] [CrossRef]
- Clinton, B.D. Light, Temperature, and Soil Moisture Responses to Elevation, Evergreen Understory, and Small Canopy Gaps in the Southern Appalachians. For. Ecol. Manag. 2003, 186, 243–255. [Google Scholar] [CrossRef]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A Global Assessment of Invasive Plant Impacts on Resident Species, Communities and Ecosystems: The Interaction of Impact Measures, Invading Species’ Traits and Environment. Glob. Chang. Biol. 2012, 18, 1725–1737. [Google Scholar] [CrossRef]
- Stilley, J.A.; Gabler, C.A. Effects of Patch Size, Fragmentation, and Invasive Species on Plant and Lepidoptera Communities in Southern Texas. Insects 2021, 12, 777. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.K.; Thomas, C.D.; Lewis, O.T. Effects of Habitat Patch Size and Isolation on Dispersal by Hesperia Comma Butterflies: Implications for Metapopulation Structure. J. Anim. Ecol. 1996, 65, 725–735. [Google Scholar] [CrossRef]
- Reiley, B.M.; Benson, T.J. Differential Effects of Landscape Composition and Patch Size on Avian Habitat Use of Restored Fields in Agriculturally Fragmented Landscapes. Agric. Ecosyst. Environ. 2019, 274, 41–51. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Wood, J.; McBurney, L.; Blair, D.; Banks, S.C. Single Large versus Several Small: The SLOSS Debate in the Context of Bird Responses to a Variable Retention Logging Experiment. For. Ecol. Manag. 2015, 339, 1–10. [Google Scholar] [CrossRef]
- Newmark, W.D. Isolation of African Protected Areas. Front. Ecol. Environ. 2008, 6, 321–328. [Google Scholar] [CrossRef]
- Uezu, A.; Metzger, J.P.; Vielliard, J.M.E. Effects of Structural and Functional Connectivity and Patch Size on the Abundance of Seven Atlantic Forest Bird Species. Biol. Conserv. 2005, 123, 507–519. [Google Scholar] [CrossRef]
- Amos, J.N.; Harrisson, K.A.; Radford, J.Q.; White, M.; Newell, G.; Nally, R.M.; Sunnucks, P.; Pavlova, A. Species- and Sex-Specific Connectivity Effects of Habitat Fragmentation in a Suite of Woodland Birds. Ecology 2014, 95, 1556–1568. [Google Scholar] [CrossRef]
- Catterall, C.P.; Lynch, R.J.; Jansen, A. Riparian Wildlife and Habitats. In Principles for Riparian Lands Management; Land & Water Australia: Canberra, Australia, 2007; pp. 141–158. [Google Scholar]
- Allen, C.; Gonzales, R.; Parrott, L. Modelling the Contribution of Ephemeral Wetlands to Landscape Connectivity. Ecol. Model. 2020, 419, 108944. [Google Scholar] [CrossRef]
- Dixneuf, C.; Peiris, P.; Nummi, P.; Sundell, J. Vernal Pools Enhance Local Vertebrate Activity and Diversity in a Boreal Landscape. Glob. Ecol. Conserv. 2021, 31, e01858. [Google Scholar] [CrossRef]
- Prugh, L.R.; Hodges, K.E.; Sinclair, A.R.E.; Brashares, J.S. Effect of Habitat Area and Isolation on Fragmented Animal Populations. Proc. Natl. Acad. Sci. USA 2008, 105, 20770–20775. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.; Shulzitski, J.; Setty, A. Evaluating Wildlife Response to Coastal Dune Habitat Restoration in San Francisco, California. Ecol. Restor. 2009, 27, 439–448. [Google Scholar] [CrossRef]
- Trujillo-Miranda, A.L.; Toledo-Aceves, T.; López-Barrera, F.; Gerez-Fernández, P. Active versus Passive Restoration: Recovery of Cloud Forest Structure, Diversity and Soil Condition in Abandoned Pastures. Ecol. Eng. 2018, 117, 50–61. [Google Scholar] [CrossRef]
- Meli, P.; Holl, K.D.; Rey Benayas, J.M.; Jones, H.P.; Jones, P.C.; Montoya, D.; Moreno Mateos, D. A Global Review of Past Land Use, Climate, and Active vs. Passive Restoration Effects on Forest Recovery. PLoS ONE 2017, 12, e0171368. [Google Scholar] [CrossRef]
- Garrett, J.T. Tamaulipan Thornforest Restoration: Factors Influencing Restoration Outcomes and Impacts of Cover Crops during Replanting. Master’s Thesis, University of Texas Rio Grande Valley, Brownsville, TX, USA.
- Leslie, D.M., Jr. An International Borderland of Concern: Conservation of Biodiversity in the Lower Rio Grande Valley; Scientific Investigations Report; U.S. Geological Survey: Reston, VA, USA, 2016; Volume 2016–5078, p. 136.
- Requena, N.; Perez-Solis, E.; Azcón-Aguilar, C.; Jeffries, P.; Barea, J.-M. Management of Indigenous Plant-Microbe Symbioses Aids Restoration of Desertified Ecosystems. Appl. Environ. Microbiol. 2001, 67, 495–498. [Google Scholar] [CrossRef]
- Assou, D.; D’Cruze, N.; Kirkland, H.; Auliya, M.; Macdonald, D.W.; Segniagbeto, G.H. Camera Trap Survey of Mammals in the Fazao-Malfakassa National Park, Togo, West Africa. Afr. J. Ecol. 2021, 59, 583–596. [Google Scholar] [CrossRef]
- CameraSweet, Version 10; SWCCF: Corrales, NM, USA, 2022.
- Huff, M.H.; Bettinger, K.A.; Ferguson, H.L.; Brown, M.J.; Altman, B. A Habitat-Based Point-Count Protocol for Terrestrial Birds, Emphasizing Washington and Oregon; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2000; p. PNW-GTR-501.
- Dobkin, D.S.; Rich, A.C. Comparison of Line-Transect, Spot-Map, and Point-Count Surveys for Birds in Riparian Habitats of the Great Basin. J. Field Ornithol. 1998, 69, 430–443. [Google Scholar]
- Ralph, C.J.; Sauer, J.R.; Droege, S. Monitoring Bird Populations by Point Counts; PSW-GTR-149; General Technical Report; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1995; Volume 149, p. 187. [CrossRef]
- Matsuoka, S.M.; Mahon, C.L.; Handel, C.M.; Sólymos, P.; Bayne, E.M.; Fontaine, P.C.; Ralph, C.J. Reviving Common Standards in Point-Count Surveys for Broad Inference across Studies. Condor 2014, 116, 599–608. [Google Scholar] [CrossRef]
- Austin, G.T.; Riley, T.J. Portable Bait Traps for the Study of Butterflies. Trop. Lepid. 1995, 6, 5. [Google Scholar]
- Hampton, P. A Comparison of the Success of Artificial Cover Types for Capturing Amphibians and Reptiles. Amphib. -Reptil. 2007, 28, 433–437. [Google Scholar] [CrossRef]
- Eekhout, X. Chapter 20 Sampling Amphibians and Reptiles. Abc Taxa 2010, 8, 530–543. [Google Scholar]
- Corn, P.S.; Bury, R.B. Sampling Methods for Terrestrial Amphibians and Reptiles; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 1990; PNW-GTR-256.
- USFWS. Laguna Atascosa National Wildlife Refuge Comprehensive Conservation Plan; U.S. Fish and Wildlife Service, National Wildlife Refuge System, Southwest Region: Albuquerque, NM, USA, 2010; p. 274.
- Warren, B.H.; Simberloff, D.; Ricklefs, R.E.; Aguilée, R.; Condamine, F.L.; Gravel, D.; Morlon, H.; Mouquet, N.; Rosindell, J.; Casquet, J.; et al. Islands as Model Systems in Ecology and Evolution: Prospects Fifty Years after MacArthur-Wilson. Ecol. Lett. 2015, 18, 200–217. [Google Scholar] [CrossRef] [PubMed]
- Matthews, T.J. On The Biogeography of Habitat Islands: The Importance of Matrix Effects, Noncore Species, and Source-Sink Dynamics. Q. Rev. Biol. 2021, 96, 73–104. [Google Scholar] [CrossRef]
- Garmendia, A.; Arroyo-Rodríguez, V.; Estrada, A.; Naranjo, E.J.; Stoner, K.E. Landscape and Patch Attributes Impacting Medium- and Large-Sized Terrestrial Mammals in a Fragmented Rain Forest. J. Trop. Ecol. 2013, 29, 331–344. [Google Scholar] [CrossRef]
- Schnetler, A.; Radloff, F.; O’Riain, J.M. Medium and Large Mammal Conservation in the City of Cape Town: Factors Influencing Species Richness in Urban Nature Reserves. Urban Ecosyst. 2021, 24, 215–232. [Google Scholar] [CrossRef]
- Maseko, M.S.T.; Zungu, M.M.; Ehlers Smith, D.A.; Ehlers Smith, Y.C.; Downs, C.T. Effects of Habitat-Patch Size and Patch Isolation on the Diversity of Forest Birds in the Urban-Forest Mosaic of Durban, South Africa. Urban Ecosyst. 2020, 23, 533–542. [Google Scholar] [CrossRef]
- Smallwood, J.; Winkler, P.; Fowles, G.; Craddock, M. American Kestrel Breeding Habitat: The Importance of Patch Size. J. Raptor Res. 2009, 43, 308–314. [Google Scholar] [CrossRef]
- Mellink, E.; Riojas-López, M.E.; Cárdenas-García, M. Biodiversity Conservation in an Anthropized Landscape: Trees, Not Patch Size Drive, Bird Community Composition in a Low-Input Agro-Ecosystem. PLoS ONE 2017, 12, e0179438. [Google Scholar] [CrossRef]
- Cabrera-Guzmán, E.; Reynoso, V. Amphibian and Reptile Communities of Rainforest Fragments: Minimum Patch Size to Support High Richness and Abundance. Biodivers. Conserv. 2012, 21, 3243–3265. [Google Scholar] [CrossRef]
- Russildi, G.; Arroyo-Rodríguez, V.; Hernández-Ordóñez, O.; Pineda, E.; Reynoso, V.H. Species- and Community-Level Responses to Habitat Spatial Changes in Fragmented Rainforests: Assessing Compensatory Dynamics in Amphibians and Reptiles. Biodivers. Conserv. 2016, 25, 375–392. [Google Scholar] [CrossRef]
- Schutz, A.J.; Driscoll, D.A. Common Reptiles Unaffected by Connectivity or Condition in a Fragmented Farming Landscape. Austral Ecol. 2008, 33, 641–652. [Google Scholar] [CrossRef]
- Cappuccino, N.; Martin, M.-A. The Birch Tube-Maker Acrobasis Betulella in a Fragmented Habitat: The Importance of Patch Isolation and Edges. Oecologia 1997, 110, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.L.H.; Eales, H.T. Patch Occupancy in Coenonympha Tullia (Muller, 1764) (Lepidoptera: Satyrinae): Habitat Quality Matters as Much as Patch Size and Isolation. J. Insect Conserv. 1997, 1, 167–176. [Google Scholar] [CrossRef]
- Freire, G.B.; Silva, T.; Oliveira, H.; Collier, C.; Rodrigues, H.P.; Dias, J.P.; Santos, J.P.; Marini-Filho, O.J.; Freitas, A.V.L.; Smilanich, A.M.; et al. Good Things Come in Larger Packages: Size Matters for Adult Fruit-Feeding Butterfly Dispersal and Larval Diet Breadth. Diversity 2021, 13, 664. [Google Scholar] [CrossRef]
- Skorka, P.; Settele, J.; Woyciechowski, M. Effects of Management Cessation on Grassland Butterflies in Southern Poland. Agric. Ecosyst. Environ. 2007, 121, 319–324. [Google Scholar] [CrossRef]
- Pinotti, B.T.; Pagotto, C.P.; Pardini, R. Wildlife Recovery During Tropical Forest Succession: Assessing Ecological Drivers of Community Change. Biotropica 2015, 47, 765–774. [Google Scholar] [CrossRef]
- Acevedo-Charry, O.; Aide, T.M. Recovery of Amphibian, Reptile, Bird and Mammal Diversity during Secondary Forest Succession in the Tropics. Oikos 2019, 128, 1065–1078. [Google Scholar] [CrossRef]
- da Silva, T.W.; Lindenmayer, D.B.; Fontana, C.S. Passive Restoration Contributes to Bird Conservation in Brazilian Pampa Grasslands. J. Field Ornithol. 2019, 90, 295–308. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Bullock, J.M.; Newton, A.C. Creating Woodland Islets to Reconcile Ecological Restoration, Conservation, and Agricultural Land Use. Front. Ecol. Environ. 2008, 6, 329–336. [Google Scholar] [CrossRef]
- Barros, F.d.C.; Almeida, S.M.; Godoy, B.S.; Silva, R.R.d.; Silva, L.C.; de Moraes, K.F.; Santos, M.P.D. Taxonomic and Functional Diversity of Bird Communities in Mining Areas Undergoing Passive and Active Restoration in Eastern Amazon. Ecol. Eng. 2022, 182, 106721. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Adler, P.B.; Godoy, O.; James, E.C.; Fuller, S.; Levine, J.M. Community Assembly, Coexistence and the Environmental Filtering Metaphor. Funct. Ecol. 2015, 29, 592–599. [Google Scholar] [CrossRef]
- Abom, R.; Parsons, S.A.; Schwarzkopf, L. Complex Mammal Species Responses to Fire in a Native Tropical Savannah Invaded by Non-Native Grader Grass (Themeda quadrivalvis). Biol. Invasions 2016, 18, 3319–3332. [Google Scholar] [CrossRef]
- Drake, K.K.; Bowen, L.; Nussear, K.E.; Esque, T.C.; Berger, A.J.; Custer, N.A.; Waters, S.C.; Johnson, J.D.; Miles, A.K.; Lewison, R.L. Negative Impacts of Invasive Plants on Conservation of Sensitive Desert Wildlife. Ecosphere 2016, 7, e01531. [Google Scholar] [CrossRef]
- Schlesinger, C.A.; Kaestli, M.; Christian, K.A.; Muldoon, S. Response of Reptiles to Weed-Control and Native Plant Restoration in an Arid, Grass-Invaded Landscape. Glob. Ecol. Conserv. 2020, 24, e01325. [Google Scholar] [CrossRef]
- Wang, H.; Liang, S.; Ma, T.; Xiao, Q.; Cao, P.; Chen, X.; Qin, W.; Xiong, H.; Sun, Z.; Wen, X.; et al. No-Substrate and Low-Moisture Conditions during Pupating Adversely Affect Ectropis Grisescens (Lepidoptera: Geometridae) Adults. J. Asia-Pac. Entomol. 2018, 21, 657–662. [Google Scholar] [CrossRef]
- Ma, G.; Tian, B.-L.; Zhao, F.; Wei, G.-S.; Hoffmann, A.A.; Ma, C.-S. Soil Moisture Conditions Determine Phenology and Success of Larval Escape in the Peach Fruit Moth, Carposina sasakii (Lepidoptera, Carposinidae): Implications for Predicting Drought Effects on a Diapausing Insect. Appl. Soil Ecol. 2017, 110, 65–72. [Google Scholar] [CrossRef]
- Legal, L. Lepidoptera Flies, but Not Always: Interactions of Caterpillars and Chrysalis with Soil. Diversity 2022, 15, 27. [Google Scholar] [CrossRef]
Site Name | Restoration Method | Estimated Year Restoration Began | Degree of Isolation | Patch Size (ha) |
---|---|---|---|---|
Goat Island (GI) | Passive | 1945 | 53% | 104 |
Longoria Unit (LU) | Passive | 1955 | 85% | 122 |
Tucker Unit (TU) | Passive | 1955 | 59% | 72.7 |
Anacua Unit (AU) | Passive | 1985 | 81% | 56.4 |
Arroyo Colorado Unit (AC) | Passive | 1985 | 78% | 175 |
Ebony Unit (EU) | Passive | 1985 | 29% | 89.0 |
Duck Head (DH) | Active | 1990 | 88% | 26.8 |
Phillips Banco (PB) | Active | 1993 | 61% | 28.2 |
Garza-Cavazos (GC) | Active | 1994 | 48% | 4.51 |
Fish Hatchery (FH) | Active | 2002 | 92% | 18.4 |
Villa Nueva (VN) | Active | 2004 | 72% | 18.2 |
Tahuacal Banco (TB) | Active | 2007 | 49% | 5.93 |
Scientific Name | Common Name | Abbreviation | AU | AC | DH | EU | FH | GC | GI | LU | PB | TB | TU | VN | Species Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bos taurus | Domestic Cattle * | Cow | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 | 0 | 0.9 |
Boselaphus tragocamelus | Nilgai * | Nilg | 0 | 6.6 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 1.6 | 8.4 |
Canis latrans | Coyote | Coyo | 0.6 | 2.9 | 0.8 | 1.7 | 5.1 | 6.5 | 1.1 | 1.5 | 0.3 | 1.3 | 0.5 | 0.3 | 22.4 |
Canis lupus familiaris | Domestic Dog * | Dog | 0 | 0 | 0.4 | 0 | 0.3 | 0 | 0 | 1.2 | 0 | 0 | 0.3 | 0 | 2.2 |
Chiroptera spp. | Bat species | Bat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.7 | 0 | 0.3 | 1.0 |
Dasypus novemcinctus | Nine-banded Armadillo | Arma | 0 | 0 | 27.5 | 0.6 | 9.5 | 2.1 | 12.8 | 2.3 | 1.4 | 0 | 0 | 0 | 56.1 |
Dicotyles tajacu | Collared Peccary | Jave | 2.6 | 1.5 | 4.5 | 2.8 | 0.3 | 5.1 | 4.1 | 11.6 | 0.6 | 1.9 | 0.6 | 0.8 | 36.5 |
Didelphis virginiana | Virginia Opossum | Opos | 0 | 0 | 7.8 | 0 | 0 | 0 | 1.2 | 0.3 | 0 | 0 | 0 | 0 | 9.3 |
Felis catus | Domestic Cat *† | Cat | 0 | 0 | 0 | 0 | 0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.3 |
Homo sapiens | Human | Huma | 0 | 0 | 1.1 | 0 | 0 | 1.6 | 0 | 0.9 | 0.5 | 1.3 | 1.8 | 0.3 | 7.5 |
Leopardus pardalis | Northern Ocelot | Ocel | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 4.0 |
Lynx rufus | Bobcat | Bobc | 0 | 2.0 | 4.1 | 0.9 | 0 | 1.2 | 1.5 | 11.6 | 0 | 0 | 2.0 | 0 | 23.3 |
Mephitis mephitis | Striped Skunk | Skun | 0 | 0 | 2.9 | 0 | 0.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.5 |
Odocoileus virginianus | White-tailed Deer | Deer | 0 | 40.8 | 0 | 0 | 0 | 1.8 | 19.4 | 0 | 0 | 0.2 | 0 | 0 | 62.2 |
Procyon lotor | Common Raccoon | Racc | 0 | 0.9 | 31.1 | 0.6 | 9.3 | 32.9 | 10.3 | 2.9 | 2.0 | 0 | 1.8 | 0.8 | 92.6 |
Rattus spp. | Rat species | Rat | 0 | 0 | 0 | 0 | 0 | 0.5 | 0 | 2.3 | 0 | 2.1 | 0 | 0 | 4.9 |
Sus scrofa | Feral Hog *† | Hog | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.0 |
Sylvilagus floridanus | Cottontail Rabbit | Rabb | 0 | 0 | 3.3 | 1.8 | 3.9 | 0 | 3.6 | 1.2 | 0.7 | 0 | 0 | 0 | 14.5 |
Site Total | 3.2 | 54.6 | 83.7 | 8.4 | 33.7 | 51.6 | 57.9 | 35.8 | 5.5 | 7.6 | 7.7 | 4.1 | 353.7 |
Response | Predictor | Test | Effect Size | d.f. | F | p | Results Table | |
---|---|---|---|---|---|---|---|---|
Composition | Patch size | PerMANCOVA | - | 1 | 3.54 | 0.0001 | *** | S2 |
Composition | Method of restoration | PerMANCOVA | - | 1 | 3.15 | 0.0001 | *** | S2 |
Composition | Time since restoration | PerMANCOVA | - | 1 | 2.46 | 0.0060 | ** | S2 |
Composition | Distance to permanent water | PerMANCOVA | - | 1 | 2.30 | 0.0090 | ** | S2 |
Composition | Ground layer plant diversity | PerMANCOVA | - | 1 | 1.60 | 0.0939 | . | S2 |
Composition | Distance to temporary water | PerMANCOVA | - | 1 | 1.80 | 0.0400 | * | S2 |
Richness | Ground layer plant richness | Multiple regression | +0.372 | 1 | 12.27 | 0.0016 | ** | S3 |
Richness | Soil temperature | Multiple regression | +0.442 | 1 | 7.32 | 0.0115 | * | S3 |
Richness | Isolation | Multiple regression | +0.044 | 1 | 5.54 | 0.0258 | * | S3 |
Richness | Understory plant richness | Multiple regression | −1.809 | 1 | 16.81 | 0.0003 | *** | S3 |
Richness | Understory plant diversity | Multiple regression | +4.074 | 1 | 6.60 | 0.0158 | * | S3 |
Diversity | Understory total cover | Multiple regression | −0.014 | 1 | 7.18 | 0.0118 | * | S4 |
Diversity | Ground layer plant richness | Multiple regression | +0.052 | 1 | 4.58 | 0.0406 | * | S4 |
Diversity | Soil temperature | Multiple regression | +0.069 | 1 | 2.88 | 0.1003 | S4 | |
Abundance | Ground layer plant diversity | Multiple regression | +17.420 | 1 | 4.79 | 0.0363 | * | S5 |
Abundance | Total plant richness | Multiple regression | −1.630 | 1 | 2.00 | 0.1169 | S5 |
Scientific Name | Common Name | Abbreviation | AU | AC | DH | EU | FH | GC | GI | LU | PB | TB | TU | VN | Species Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Agelaius phoeniceus | Red-winged Blackbird | Agepho | 4 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 4 | 2 | 0 | 13 |
Amazona viridigenalis | Red-crowned Parrot | Amavir | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Amphispiza bilineata | Black-throated Sparrow | Ampbil | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Archilochus sp. | Hummingbird sp. | Arcsp. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Ardea alba | Great Egret | Ardalb | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
Arremonops rufivirgatus | Olive Sparrow | Arrruf | 6 | 5 | 5 | 5 | 5 | 3 | 6 | 5 | 4 | 6 | 6 | 3 | 59 |
Baeolophus atricristatus | Black-crested Titmouse | Beoatr | 3 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 4 | 0 | 3 | 3 | 16 |
Buteo lineatus | Red-Shouldered Hawk | Butlin | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 3 |
Cardinalis cardinalis | Northern Cardinal | Carcar | 1 | 5 | 3 | 1 | 1 | 3 | 3 | 4 | 1 | 5 | 0 | 2 | 29 |
Cathartes aura | Turkey Vulture | Cataur | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
Charadrius vociferus | Killdeer | Chavoc | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Chordeiles minor | Common Nighthawk | Chomin | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 3 |
Coccyzus americanus | Yellow-billed Cuckoo | Cocame | 3 | 4 | 0 | 5 | 0 | 3 | 2 | 6 | 4 | 1 | 3 | 4 | 35 |
Columbina passerina | Common Ground Dove | Colpas | 1 | 2 | 0 | 3 | 1 | 1 | 1 | 0 | 0 | 5 | 0 | 0 | 14 |
Colinus virginianus | Northern Bobwhite | Colvir | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Crotophaga sulcirostris | Groove-billed Ani | Crosul | 4 | 0 | 0 | 1 | 3 | 1 | 0 | 0 | 0 | 1 | 1 | 2 | 13 |
Cyanocorax yncas | Green Jay | Cyaync | 0 | 2 | 1 | 0 | 3 | 1 | 0 | 3 | 2 | 2 | 1 | 4 | 19 |
Dendrocygna autumnalis | Black-Bellied Whistling Duck | Denaut | 1 | 0 | 2 | 1 | 1 | 0 | 2 | 2 | 0 | 0 | 2 | 1 | 12 |
Dryobates scalaris | Ladder-backed Woodpecker | Drysca | 2 | 3 | 0 | 0 | 1 | 0 | 2 | 4 | 3 | 2 | 2 | 3 | 22 |
Egretta thula | Snowy Egret | Egrthu | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Empidonax sp. | Empidonax species | Empsp. | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 5 |
Geothlypis trichas | Common Yellowthroat | Geotri | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Icterus galbula | Baltimore Oriole | Ictgal | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
Icterus gularis | Altamira Oriole | Ictgul | 0 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
Lanius ludovicianus | Loggerhead Shrike | Lanlud | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Leptotila verreauxi | White-tipped Dove | Lepver | 6 | 0 | 0 | 2 | 2 | 0 | 2 | 4 | 2 | 0 | 2 | 2 | 22 |
Leucophaeus atricilla | Laughing Gull | Leuatr | 0 | 4 | 0 | 0 | 0 | 0 | 5 | 0 | 1 | 0 | 1 | 0 | 11 |
Melanerpes aurifrons | Golden-Fronted Woodpecker | Melaur | 6 | 2 | 6 | 4 | 5 | 2 | 2 | 6 | 4 | 6 | 6 | 5 | 54 |
Mimus polyglottos | Northern Mockingbird | Mimpol | 5 | 0 | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 10 |
Molothrus aeneus | Bronzed Cowbird | Molaen | 0 | 1 | 0 | 0 | 0 | 0 | 3 | 0 | 1 | 0 | 1 | 0 | 6 |
Molothrus ater | Brown-headed Cowbird | Molate | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 4 |
Myiarchus cinerascens | Ash-throated Flycatcher | Myicin | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 |
Myiarchus tyrannulus | Brown-crested Flycatcher | Myityr | 4 | 0 | 2 | 0 | 2 | 1 | 1 | 2 | 3 | 1 | 4 | 3 | 23 |
Nyctidromus albicollis | Common Pauraque | Nycalb | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Nycticorax nycticorax | Black-crowned Night Heron | Nycnyc | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Nyctanassa violacea | Yellow-crowned Night Heron | Nycvio | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
Ortalis vetula | Plain Chachalaca | Ortvet | 0 | 4 | 3 | 0 | 0 | 0 | 3 | 0 | 0 | 4 | 2 | 1 | 17 |
Petrochelidon pyrrhonota | Cliff Swallow | Petpyr | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 |
Phalacrocorax sp. | Cormorant species | Phasp. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Pitangus sulphuratus | Great Kiskadee | Pitsul | 2 | 1 | 2 | 3 | 3 | 3 | 0 | 4 | 2 | 3 | 4 | 6 | 33 |
Psittacara holochlorus | Green Parakeet | Psihol | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Quiscalus mexicanus | Great-tailed Grackle | Quimex | 2 | 4 | 5 | 1 | 1 | 2 | 3 | 6 | 1 | 1 | 3 | 1 | 30 |
Setophaga pensylvanica | Chestnut-sided Warbler | Setpen | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
Spiza americana | Dickcissel | Spiame | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Sturnus vulgaris | European Starling *† | Stuvul | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Thryomanes bewickii | Bewick’s Wren | Thrbew | 0 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 4 |
Thryothorus ludovicianus | Carolina Wren | Thrlud | 0 | 2 | 3 | 1 | 0 | 6 | 2 | 0 | 3 | 0 | 5 | 1 | 23 |
Toxostoma longirostre | Long-billed Thrasher | Toxlon | 0 | 5 | 4 | 5 | 5 | 2 | 5 | 4 | 4 | 3 | 0 | 6 | 43 |
Turdus grayi | Clay-colored Thrush | Turgra | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 |
Tyrannus couchii | Couch’s Kingbird | Tyrcou | 6 | 3 | 5 | 4 | 3 | 6 | 3 | 6 | 4 | 6 | 3 | 2 | 51 |
Tyrannus melancholicus | Tropical Kingbird | Tyrmel | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 3 |
Vireo griseus | White-eyed Vireo | Virgri | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 1 | 2 | 1 | 0 | 1 | 9 |
Zenaida macroura | Mourning Dove | Zenmac | 6 | 5 | 6 | 5 | 2 | 5 | 6 | 6 | 4 | 6 | 4 | 4 | 59 |
Site Total | 72 | 63 | 56 | 48 | 42 | 45 | 60 | 65 | 51 | 63 | 57 | 61 | 683 |
Response | Predictor | Test | Effect Size | d.f. | F | p | Results Table | |
---|---|---|---|---|---|---|---|---|
Composition | Distance to temporary water | PerMANCOVA | - | 1 | 2.05 | 0.0010 | ** | S7 |
Composition | Canopy tree density | PerMANCOVA | - | 1 | 1.65 | 0.0450 | * | S7 |
Richness | Canopy plant diversity | ANCOVA | +2.465 | 1 | 7.15 | 0.0119 | * | S8 |
Richness | Method of restoration | ANCOVA | −1.136 | 1 | 9.42 | 0.0044 | ** | S8 |
Richness | Invasive grass cover | ANCOVA | +0.041 | 1 | 6.16 | 0.0187 | * | S8 |
Richness | Understory plant richness | ANCOVA | +0.399 | 1 | 3.64 | 0.0657 | . | S8 |
Response | Predictor | Test | Effect Size | d.f. | F | p | Results Table | |
---|---|---|---|---|---|---|---|---|
Composition | Canopy cover | PerMANCOVA | - | 1 | 3.01 | 0.0020 | ** | S11 |
Composition | Soil moisture content | PerMANCOVA | - | 1 | 2.25 | 0.0050 | ** | S11 |
Composition | Method of restoration | PerMANCOVA | - | 1 | 2.47 | 0.0060 | ** | S11 |
Composition | Invasive grass cover | PerMANCOVA | - | 1 | 2.04 | 0.0220 | * | S11 |
Composition | ln(native:exotic cover) | PerMANCOVA | - | 1 | 2.07 | 0.0100 | ** | S11 |
Composition | Isolation | PerMANCOVA | - | 1 | 2.64 | 0.0100 | *** | S11 |
Composition | Time since restoration | PerMANCOVA | - | 1 | 2.47 | 0.0050 | ** | S11 |
Composition | Distance to temporary water | PerMANCOVA | - | 1 | 1.56 | 0.0920 | . | S11 |
Composition | Ground layer plant diversity | PerMANCOVA | - | 1 | 2.20 | 0.0079 | ** | S11 |
Richness | ln(native:exotic cover) | Multiple regression | +1.320 | 1 | 6.54 | 0.0165 | * | S12 |
Richness | Distance to permanent water | Multiple regression | −0.004 | 1 | 3.18 | 0.0860 | . | S12 |
Richness | Canopy plant richness | Multiple regression | −1.311 | 1 | 5.33 | 0.0288 | * | S12 |
Richness | Understory total cover | Multiple regression | +0.054 | 1 | 1.86 | 0.1838 | S12 | |
Richness | Patch size | Multiple regression | −0.023 | 1 | 2.77 | 0.1074 | S12 | |
Diversity | Soil moisture content | Multiple regression | +0.019 | 1 | 15.19 | 0.0005 | *** | S13 |
Diversity | Distance to permanent water | Multiple regression | −0.0004 | 1 | 3.29 | 0.0800 | . | S13 |
Diversity | Invasive grass cover | Multiple regression | −0.004 | 1 | 2.46 | 0.1276 | S13 | |
Abundance | Soil moisture content | ANCOVA | −1.088 | 1 | 10.66 | 0.0030 | ** | S14 |
Abundance | Time since restoration | ANCOVA | +1.086 | 1 | 9.38 | 0.0049 | ** | S14 |
Abundance | Method of restoration | ANCOVA | +19.139 | 1 | 7.91 | 0.0091 | ** | S14 |
Abundance | Ground layer plant diversity | ANCOVA | −44.818 | 1 | 17.82 | 0.0002 | *** | S14 |
Abundance | ln(native:exotic cover) | ANCOVA | +15.230 | 1 | 14.07 | 0.0008 | *** | S14 |
Scientific Name | Common Name | Abbreviation | AU | AC | DH | EU | FH | GC | GI | LU | PB | TB | TU | VN | Species Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Anolis carolinensis | Green Anole | Anocar | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Anolis sagrei | Brown Anole | Anosag | 1 | 0 | 15 | 0 | 18 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 37 |
Aspidoscelis gularis | Common Spotted Whiptail | Aspgul | 0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 9 |
Aspidoscelis laredoensis | Laredo Striped Whiptail | Asplar | 0 | 1 | 0 | 9 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 12 |
Eleutherodactylus cystignathoides | Rio Grande Chirping Frog | Elecys | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Hypopachus variolosus | Sheep Frog | Hypvar | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Incilius nebulifer | Gulf Coast Toad | Incneb | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Plestiodon tetragrammus | Four-lined Skink | Pletet | 0 | 0 | 1 | 0 | 2 | 12 | 0 | 0 | 1 | 0 | 1 | 0 | 17 |
Salvadora grahamiae | Texas Patch-nosed Snake | Salgra | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
Scincella lateralis | Little Brown Skink | Scilat | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
Site Totals | 1 | 1 | 19 | 13 | 21 | 15 | 1 | 1 | 2 | 2 | 4 | 3 | 83 |
Response | Predictor | Test | Effect Size | d.f. | F | p | Results Table | |
---|---|---|---|---|---|---|---|---|
Composition | Isolation | PerMANCOVA | - | 1 | 3.13 | 0.0100 | ** | S16 |
Composition | Distance to temporary water | PerMANCOVA | - | 1 | 3.63 | 0.0070 | ** | S16 |
Composition | Method of restoration | PerMANCOVA | - | 1 | 3.45 | 0.0030 | ** | S16 |
Richness | Time since restoration | Multiple regression | −0.025 | 1 | 16.42 | 0.0007 | *** | S17 |
Richness | Ground layer plant diversity | Multiple regression | +0.899 | 1 | 16.85 | 0.0007 | *** | S17 |
Richness | Distance to permanent water | Multiple regression | −0.001 | 1 | 8.45 | 0.0094 | ** | S17 |
Richness | Understory plant richness | Multiple regression | −0.170 | 1 | 7.35 | 0.0142 | * | S17 |
Abundance | Method of restoration | ANCOVA | +1.518 | 1 | 7.26 | 0.0148 | * | S18 |
Abundance | Distance to permanent water | ANCOVA | −0.006 | 1 | 7.26 | 0.0245 | * | S18 |
Abundance | Soil moisture content | ANCOVA | +0.067 | 1 | 1.21 | 0.2858 | S18 | |
Abundance | Invasive grass cover | ANCOVA | −0.055 | 1 | 3.34 | 0.0843 | . | S18 |
Response | Predictor | Test | Effect Size | d.f. | F | p | Results Table | |
---|---|---|---|---|---|---|---|---|
Composition | Time since restoration | PerMANCOVA | - | 1 | 1.95 | 0.0010 | ** | S19 |
Composition | Soil temperature | PerMANCOVA | - | 1 | 2.13 | <0.0001 | *** | S19 |
Composition | Total plant richness | PerMANCOVA | - | 1 | 1.55 | 0.0380 | * | S19 |
Composition | Distance to permanent water | PerMANCOVA | - | 1 | 1.99 | 0.0011 | ** | S19 |
Composition | Total exotic plant cover | PerMANCOVA | - | 1 | 1.53 | 0.0338 | * | S19 |
Composition | Understory plant cover | PerMANCOVA | - | 1 | 1.40 | 0.0807 | . | S19 |
Richness | Invasive grass cover | ANCOVA | −0.142 | 1 | 14.94 | 0.0005 | *** | S20 |
Richness | Method of restoration | ANCOVA | +2.689 | 1 | 8.22 | 0.0073 | ** | S20 |
Richness | Canopy plant richness | ANCOVA | −2.045 | 1 | 7.48 | 0.0101 | * | S20 |
Factor | Mammals | Birds | Lepidoptera | Herptiles | All | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | R | D | A | C | R | C | R | D | A | C | R | D | A | C | R | |
Time since restoration | . | ** | ** | *** | ** | |||||||||||
Patch size | *** | |||||||||||||||
Extent of isolation | * | *** | ** | |||||||||||||
Method of restoration | *** | ** | ** | ** | ** | * | ** | |||||||||
Interior-to-edge ratio | ||||||||||||||||
Distance to permanent water | * | . | . | ** | * | ** | ||||||||||
Distance to temporary water | * | ** | . | ** | ||||||||||||
Soil moisture content | ** | *** | ** | |||||||||||||
Soil temperature | * | *** | ||||||||||||||
Canopy plant cover | ** | |||||||||||||||
Canopy stem density | * | |||||||||||||||
Canopy plant richness | * | * | ||||||||||||||
Canopy plant diversity | * | |||||||||||||||
Understory plant cover | * | . | ||||||||||||||
Understory plant richness | *** | . | * | |||||||||||||
Understory plant diversity | * | |||||||||||||||
Ground layer plant richness | ** | * | ||||||||||||||
Ground layer plant diversity | . | * | ** | *** | *** | |||||||||||
Total plant richness | * | |||||||||||||||
Total plant diversity | ||||||||||||||||
Invasive grass cover | * | * | . | *** | ||||||||||||
ln (native cover/exotic cover) | ** | * | *** | |||||||||||||
Total exotic plant cover | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, A.J.; Garrett, J.T.; Gabler, C.A. Factors Influencing the Faunal Recolonization of Restored Thornscrub Forest Habitats. Forests 2024, 15, 1833. https://doi.org/10.3390/f15101833
Hicks AJ, Garrett JT, Gabler CA. Factors Influencing the Faunal Recolonization of Restored Thornscrub Forest Habitats. Forests. 2024; 15(10):1833. https://doi.org/10.3390/f15101833
Chicago/Turabian StyleHicks, Audrey J., Jerald T. Garrett, and Christopher A. Gabler. 2024. "Factors Influencing the Faunal Recolonization of Restored Thornscrub Forest Habitats" Forests 15, no. 10: 1833. https://doi.org/10.3390/f15101833
APA StyleHicks, A. J., Garrett, J. T., & Gabler, C. A. (2024). Factors Influencing the Faunal Recolonization of Restored Thornscrub Forest Habitats. Forests, 15(10), 1833. https://doi.org/10.3390/f15101833