Analyzing the Impact of EU’s Legality Requirements Policies on Sustainable Timber and Sawnwood Trade—Focusing on Tropical Wood Trade
Abstract
:1. Introduction
2. Timber Legal Regulations and Trade of Tropical Timber
2.1. EU-FLEGT and Sustainable Forest Management
2.2. Current Status of Tropical Timber and Sawnwood Trade
3. Methodology
3.1. Gravity Model with Difference-in-Differences
3.2. Empirical Model for Analyzing the Effects of EUTR
3.3. Empirical Model for Analyzing the Effects of EUTR as Well as VPA
4. Data
5. Estimation Results
5.1. Estimation Results of the Effects of EUTR
5.2. Estimation Results of the Effects of EUTR as Well as VPA
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, R.; Taubert, F.; Müller, S.; Groenevel, J.; Lehmann, S.; Huth, A. Accelerated Forest Fragmentation Leads to Critical Increase in Tropical Forest Edge Area. Sci. Adv. 2021, 7, eabg7012. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.; Erskine, P.D.; Parrotta, J.A. Restoration of Degraded Tropical Forest Landscapes. Science 2005, 310, 1628–1632. [Google Scholar] [CrossRef] [PubMed]
- Angelson, A.; Wunder, S. Exploring the Forest—Poverty Link: Key concept, Issues and Research Implications; Center for International Forestry Research: Bogor, Indonesia, 2003; pp. 1–54. [Google Scholar]
- Wright, S.J.; Sanchez-Azofeifa, G.A.; Portillo-Quintero, C.; Davies, D. Poverty and Corruption Compromise Tropical Forest Reserves. Ecol. Appl. 2007, 17, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, C.; Yilmaz, R. The Impact of Corruption on Deforestation: A Cross-Country Evidence. J. Dev. Areas 2008, 42, 213–222. [Google Scholar] [CrossRef]
- Hajjar, R.; Newton, P.; Ihalainen, M.; Agrawal, A.; Alix-Garcia, J.; Castle, S.E.; Erbaugh, J.T.; Gabay, M.; Hughes, K.; Mawutor, S.; et al. Levers for Alleviating Poverty in Forests. For. Policy Econ. 2021, 132, 102589. [Google Scholar] [CrossRef]
- Lawson, S.; MacFaul, L. Illegal Logging and Related Trade Indicators of the Global Response; Chatham House: London, UK, 2010; p. 132. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020; (accessed on 24 January 2022). [Google Scholar] [CrossRef]
- Scotland, N.; Ludwig, S. Deforestation, the Timber Trade and Illegal Logging. In Proceedings of the EC Workshop on Forest Law Enforcement, Governance and Trade, Brussels, Belgium, 22–24 April 2002; p. 9. [Google Scholar]
- Seol, M.; Kim, Y.H.; Lee, H.S. Trends of Illegal Logging Prohibition Regulations: Focus on the Case of United States’ Lacey Act. J. Korean Soc. Int. Agric. 2015, 27, 589–594. [Google Scholar] [CrossRef]
- Tzoulis, I.K.; Andreopoulou, Z.S.; Voulgaridis, E. Wood Tracking Information Systems to Confront Illegal Logging. J. Agric. Inform. 2014, 5, 9–17. [Google Scholar] [CrossRef]
- Thompson, S.T.; Magrath, W.B. Preventing Illegal Logging. For. Policy Econ. 2021, 128, 102479. [Google Scholar] [CrossRef]
- Giurca, A.; Jonsson, R.; Rinaldi, F.; Priyadi, H. Ambiguity in Timber Trade Regarding Efforts to Combat Illegal Logging: Potential Impacts on Trade between South-East Asia and Europe. Forests 2013, 4, 730–750. [Google Scholar] [CrossRef]
- Rougieux, P.; Jonsson, R. Impacts of the FLEGT Action Plan and the EU Timber Regulation on EU Trade in Timber Product. Sustainability 2021, 13, 6030. [Google Scholar] [CrossRef]
- Prestemon, J.P. The impacts of the Lacey Act Amendment of 2008 on U.S. hardwood lumber and hardwood plywood imports. For. Policy Econ. 2015, 50, 31–44. [Google Scholar] [CrossRef]
- Hoare, A. Tackling Illegal Logging and the Related Trade What Progress and Where Next? Chatham House: London, UK, 2015; p. 64. [Google Scholar]
- Kenc, T.; Dibooglu, S. The 2007–2009 Financial Crisis, Global Imbalances and Capital Flows: Implications for Reform. Econ. Systems. 2010, 34, 3–21. [Google Scholar] [CrossRef]
- ITTO. Available online: https://www.itto.int/ (accessed on 15 December 2022).
- Kim, K.H. Changes in the International Economic Environment Since the 1980s and Korea’s Response; Korea Development Institute: Namsejong, Republic of Korea, 2012; p. 996. [Google Scholar]
- Tinbergen, J. Shaping the world economy. Intl. Executive. 1963, 5, 27–30. [Google Scholar] [CrossRef]
- Morland, C.; Schier, F.; Weimar, H. The Structural Gravity Model and Its Implications on Global Forest Product Trade. Forests 2020, 11, 178. [Google Scholar] [CrossRef]
- Leonardi, M.; Meschi, E. Do Non-Tariff Barriers to Trade Save American Jobs and Wages? IZA Discussion Paper 14162; IZA—Institute of Labor Economics: Bonn, Germany, 2021; p. 34. [Google Scholar]
- Eun, W. The study on change in international trade agreement to national export. J. Korean Res. Soc. Cust. 2007, 8, 301–319. [Google Scholar]
- Zhang, X.; Xu, B.; Wang, L.; Yang, A.; Yang, H. Eliminating Illegal Timber Consumption or Production: Which Is the More Economical Means to Reduce Illegal Logging? Forests 2016, 7, 191. [Google Scholar] [CrossRef]
- Nasrullah, M.; Chang, L.; Khan, K.; Rizwanullah, M.; Zulfiqar, F.; Ishfaq, M. Determinants of Forest Product Group Trade by Gravity Model Approach: A case study of China. For. Policy Econ. 2020, 113, 102–117. [Google Scholar] [CrossRef]
- Beckerman, W. Distance and the Pattern of Intra-European Trade. Rev. Econ. Stat. 1956, 38, 31–40. [Google Scholar] [CrossRef]
- Feder, G. On Exports and Economics Growth. J. Dev. Econ. 1983, 12, 59–73. [Google Scholar] [CrossRef]
- Frankel, J.A.; Romer, D. Does Trade Cause Growth? Am. Econ. Rev. 1999, 89, 379–399. [Google Scholar] [CrossRef]
- Sohn, C.H.; Yoon, J. A Gravity Model Analysis of Korea’s Trade Patterns and the Effects of a Regional Economic Bloc. East Asian Econ. Re. 2000, 4, 3–41. [Google Scholar] [CrossRef]
- Chen, R.; Hartarska, V.; Wilson, N.L.W. The Causal Impact of HACCP on Seafood Imports in the U.S.: An Application of Difference-in-differences within the Gravity Model. Food Policy 2018, 79, 166–178. [Google Scholar] [CrossRef]
- Rockel, M.L.; Buongiorno, J. Derived Demand for Wood and Other Inputs in Residential Construction: A Cost Function Approach. For. Sci. 1982, 28, 207–219. [Google Scholar]
- Van Kooten, G.C.; Schmitz, A. COVID-19 Impacts on U.S. Lumber Markets. For. Policy and Econ. 2022, 135, 102665. [Google Scholar] [CrossRef]
- Youn, Y.C.; Kim, E.G. A Study on the Demand for Timber in South Korea—With an Emphasis on the Long-term Forecasts. J. Korean For. Soc. 1992, 81, 124–138. [Google Scholar]
- Luppold, W.; Prestemon, J.P.; Schuler, A. Changing markets for hardwood roundwood. In Proceedings of the 2001 Southern Forest Economics Workshop, Atlanta, Georgia, 28–29 March 2001; Zhang, D., Ed.; School of Forestry and Wildlife Sciences, Auburn University: Auburn, AL, USA, 2002; pp. 96–100, 203. [Google Scholar]
- Sun, C. Competition of wood products with different fiber transformation and import sources. For. Policy Econ. 2017, 74, 30–39. [Google Scholar] [CrossRef]
- EFI. Available online: https://flegtvpafacility.org/countries/ (accessed on 26 May 2024).
- Yi, D.; Sung, J.H. The Local Effects of Coal-fired Power Plant Shutdown on PM2.5 Concentration: Evidence from a Policy Experiment in Korea. Environ. Resour. Econ. Rev. 2018, 27, 315–337. [Google Scholar]
- Min, I.S.; Choi, P.S. Panel Data Analysis, 2nd ed.; Jipil-Media: Gyeonggi, Republic of Korea, 2019; p. 264. [Google Scholar]
- Silva, S.; Tenreyro, S. The Log of Gravity. Rev. Econ. Stat. 2006, 88, 641–658. [Google Scholar] [CrossRef]
- FAO. Classification of Forest Products 2022; FAO: Rome, Italy, 2022; (accessed on 4 December 2023). [Google Scholar] [CrossRef]
- UN Comtrade. Available online: https://comtradeplus.un.org/ (accessed on 3 January 2024).
- CEPII. Available online: http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp (accessed on 3 January 2024).
- World Bank. Available online: https://www.worldbank.org/ (accessed on 3 January 2024).
- UN Data. Available online: https://data.un.org// (accessed on 3 January 2024).
- ILO. Available online: https://ilostat.ilo.org/topics/wages/ (accessed on 3 January 2024).
- Kim, K.D.; Shim, G.; Choi, H.I.; Kim, D.H. Effect of the Timber Legality Requirement System on Lumber Trade: Focusing on EUTR and Lacey Act. Forests 2023, 14, 2232. [Google Scholar] [CrossRef]
- Silva, B.K.; Boys, K.A.; Cubbage, F.W. The Impacts of Forest Certification on International Trade for Forest Product. In Proceedings of the 2016 Meeting of the International Society of Forest Resources Economics, Southern Research Station, Asheville, NC, USA, 3–5 April 2016; p. 154. [Google Scholar]
- Bhattarai, M.; Hammig, M. Institutional and the Environmental Kuznets Curve for Deforestation: A Cross-country Analysis for Latin America, Africa and Asia. World Dev. 2001, 29, 995–1010. [Google Scholar] [CrossRef]
- Hao, Y.; Xu, Y.; Zhang, J.; Hu, X.; Huang, J.; Chang, C.; Guo, Y. Relationship between Forest Resources and Economic Growth: Empirical Evidence from China. J. Clean. Prod. 2019, 214, 848–859. [Google Scholar] [CrossRef]
- Das, J.; Tanger, S.M.; Kennedy, P.L.; Vlosky, R.P. Examining the Relationship between Regulatory Quality and Forest Product Exports to India: A Gravity Model Approach. For. Prod. J. 2018, 68, 172–181. [Google Scholar] [CrossRef]
- Pepke, E.; Bratkovich, S.; Fernholz, K.; Frank, M.; Groot, H.; Howe, J. Impacts of Policies to Eliminate Illegal Timber Trade; Dovetail Partners, Inc.: Minneapolis, MN, US, 2015; p. 18. [Google Scholar]
- Lin, Y. Essays on International Timber Products Trade. Master’s Thesis, Graduate Faculty of Auburn University, Auburn, AL, USA, 6 May 2017; p. 96. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Malley, J.; Moutos., M. Do Excessive Wage Increases Raise Import? Theory and Evidence; CESifo Working Paper 467; Center for Economic Studies & Ifo Institute for Economic Research: Munich, Germany, 2001; p. 26. [Google Scholar]
- Prasada, I.Y.; Nugroho, A.D.; Lakner, Z. Impact of the FLEGT license on Indonesian plywood competitiveness in the European Union. For. Policy Econ. 2022, 144, 102848. [Google Scholar] [CrossRef]
Tropical Timber | Tropical Sawnwood | Unit | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Reporter (i) | Partner (j) | Reporter (i) | Partner (j) | ||||||||
EUTR | Control | VPAs | Control | EUTR | Control | VPAs | Control | ||||
#Obs. | 2973 | 6817 | - | - | 11,934 | 35,140 | - | - | Ton | [42] | |
Min | 0 | 0 | - | - | 0 | 0 | - | - | |||
Max | 328,980 | 1,928,100 | - | - | 112,664 | 3,299,397 | - | - | |||
Mean | 2911 | 7032 | - | - | 888 | 1205 | - | - | |||
St. dev. | 14,047 | 59,758 | - | - | 4980 | 32,375 | - | - | |||
#Obs. | 4847 | 10,937 | 1502 | 14,282 | 11,916 | 34,393 | 5509 | 40,800 | km | [43] | |
Min | 19 | 60 | 184 | 19 | 19 | 10 | 190 | 10 | |||
Max | 18,247 | 19,630 | 15,717 | 19,630 | 19,586 | 19,772 | 19,116 | 19,772 | |||
Mean | 4598 | 6783 | 6694 | 6050 | 5201 | 6207 | 6938 | 5815 | |||
St. dev. | 3529 | 4647 | 2850 | 4582 | 3856 | 4455 | 3325 | 4433 | |||
#Obs. | 4852 | 11,006 | 1506 | 14,329 | 11,934 | 34,990 | 5626 | 41,288 | USD/capita | [44] | |
Min | 11,526 | 118 | 253 | 110 | 11,526 | 110 | 180 | 110 | |||
Max | 133,712 | 123,091 | 3754 | 133,712 | 133,712 | 123,091 | 4788 | 133,712 | |||
Mean | 39,767 | 15,278 | 1677 | 17,688 | 40,654 | 18,700 | 1770 | 20,017 | |||
St. dev. | 15,949 | 19,261 | 822 | 20,179 | 15,942 | 20,946 | 1088 | 20,697 | |||
#Obs. | 4852 | 11,008 | 1506 | 14,376 | 11,934 | 34,990 | 5626 | 41,378 | Million | ||
Min | 44 | 2 | 313 | 2 | 44 | 2 | 290 | 1 | |||
Max | 8380 | 141,717 | 3348 | 141,717 | 8380 | 141,717 | 27,550 | 141,717 | |||
Mean | 3501 | 33,646 | 1576 | 10,935 | 3373 | 13,182 | 6869 | 11,567 | |||
St. dev. | 2720 | 53,130 | 935 | 27,164 | 2789 | 32,780 | 9707 | 29,101 | |||
#Obs. | 4852 | 11,044 | - | - | 11,934 | 34,203 | - | - | % | [45] | |
Min | 10.4 | 0.8 | - | - | 10.4 | 2.4 | - | - | |||
Max | 41.5 | 84.7 | - | - | 41.5 | 85.9 | - | - | |||
Mean | 21.9 | 29.7 | - | - | 22.1 | 29.0 | - | - | |||
St. dev. | 4.3 | 11.7 | - | - | 4.4 | 11.6 | - | - | |||
#Obs. | 4852 | 7938 | - | - | 11,934 | 23,973 | - | - | Thousand m3 | [41] | |
Min | 39 | 0 | - | - | 39 | 0 | - | - | |||
Max | 25,335 | 69,187 | - | - | 25,335 | 69,187 | - | - | |||
Mean | 4172 | 8518 | - | - | 4977 | 8217 | - | - | |||
St. dev. | 5943 | 14,699 | - | - | 6518 | 15,977 | - | - | |||
#Obs. | - | - | 882 | 12,177 | - | - | - | - | Ton | [42] | |
Min | - | - | 0 | 0 | - | - | - | - | |||
Max | - | - | 59,805 | 3,937,851 | - | - | - | - | |||
Mean | - | - | 2316 | 62,270 | - | - | - | - | |||
St. dev. | - | - | 10,450 | 247,025 | - | - | - | - | |||
#Obs. | - | - | - | - | 7590 | 26,750 | - | - | USD | [46] | |
Min | - | - | - | - | 342 | 0.01 | - | - | |||
Max | - | - | - | - | 2604 | 4386 | - | - | |||
Mean | - | - | - | - | 1431 | 479 | - | - | |||
St. dev. | - | - | - | - | 488 | 577 | - | - |
Tropical Timber | Tropical Sawnwood | |||||
---|---|---|---|---|---|---|
PPML (z-Value) | Pooled Regression (t-Value) | Fixed Effect (t-Value) | PPML (z-Value) | Pooled Regression (t-Value) | Fixed Effect (t-Value) | |
1.31 *** (14.05) | 3.24 *** (6.66) | 30.75 *** (3.57) | 1.07 *** (14.08) | 1.90 *** (4.99) | 8.41 ** (2.16) | |
−0.03 *** (−4.18) | −0.18 *** (−4.83) | (omitted) | −0.04 *** (−8.28) | −0.18 *** (−6.85) | (omitted) | |
0.05 *** (4.43) | 0.41 *** (7.77) | 0.88 *** (5.50) | 0.07 *** (6.92) | 0.49 *** (9.84) | 0.96 *** (9.52) | |
−0.05 *** (−9.11) | −0.25 *** (−7.40) | −0.54 *** (−3.91) | −0.05 *** (−18.85) | −0.39 *** (−23.98) | −0.71 *** (−9.64) | |
0.14 *** (22.16) | 0.84 *** (26.55) | −3.98 *** (−4.23) | 0.11 *** (29.42) | 0.61 *** (31.66) | −0.47 (−1.04) | |
−0.01 ** (−2.53) | −0.11 *** (−3.85) | 1.08 ** (2.08) | 0.02 *** (7.48) | 0.02 * (1.77) | 0.70 *** (3.71) | |
−0.04 *** (−7.99) | −0.23 *** (−9.19) | 0.02 (0.29) | −0.03 *** (−12.96) | −0.19 *** (−14.27) | −0.20 *** (−4.13) | |
- | - | - | 0.05 *** (5.93) | 0.20 *** (4.98) | −0.24 *** (−3.83) | |
−0.02 *** −5.85) | −0.12 *** (−7.79) | −0.05 *** (−3.07) | - | - | - | |
0.12 *** (5.40) | 0.58 *** (5.25) | 0.71 *** (4.25) | 0.05 *** (4.52) | 0.14 ** (2.12) | 0.82 *** (8.62) | |
) | 0.15 *** (7.28) | 0.84 *** (7.78) | (omitted) | 0.07 *** (5.24) | 0.37 *** (5.05) | (omitted) |
) | 0.09 *** (5.23) | 0.18 * (1.73) | 0.36 *** (3.51) | 0.04 *** (3.67) | −0.26 *** (−4.48) | −0.22 *** (−4.10) |
) | −0.19 *** (−5.97) | −1.32 *** (−7.81) | −1.21 *** (−8.66) | −0.07 *** (−3.31) | −0.39 *** (−3.14) | −0.24 *** (−2.66) |
#Obs | 5350 | 5965 | 5965 | 13,516 | 14,988 | 14,988 |
F-test | - | 171.34 *** | 28.06 *** | - | 205.61 *** | 41.60 *** |
Pseudo Log-likelyhood | −11,839.75 | - | - | −29,651.47 | - | - |
R2 (within) | 0.26 | 0.26 | (0.06) | 0.12 | 0.13 | (0.03) |
Hausman test | - | - | 84.34 *** | - | - | 78.92 *** |
PPML (z-Value) | Pooled Robust Regression (t-Value) | Fixed Effect (t-Value) | |
---|---|---|---|
1.27 *** (13.59) | 3.06 *** (6.28) | 34.97 *** (3.89) | |
−0.03 *** (−4.87) | −0.20 *** (−5.42) | (omitted) | |
0.04 *** (3.34) | 0.36 *** (6.73) | 0.83 *** (5.05) | |
−0.04 *** (−6.41) | −0.16 *** (−4.58) | −0.63 *** (−4.45) | |
0.14 *** (21.31) | 0.83 *** (25.65) | −4.33 *** (−4.49) | |
0.00 (−0.76) | −0.06 ** (−2.08) | 0.93 * (1.68) | |
−0.03 *** (−6.98) | −0.21 *** (−8.29) | 0.02 (0.24) | |
−0.02 *** (−6.34) | −0.13 *** (−8.27) | −0.04 ** (−2.51) | |
0.12 *** (5.79) | 0.63 *** (5.72) | 0.81 *** (4.69) | |
) | 0.17 *** (7.94) | 0.92 *** (8.17) | (omitted) |
−0.02 (−0.39) | 0.16 (0.49) | (omitted) | |
0.31 *** (8.17) | 1.85 *** (6.86) | (omitted) | |
0.29 *** (7.18) | 1.57 *** (5.35) | (omitted) | |
0.14 * (1.69) | 1.02 ** (1.98) | (omitted) | |
) | 0.03 (1.08) | 0.23 * (1.75) | 0.13 (1.16) |
) | 0.00 (0.14) | −0.18 (−1.17) | 0.06 (0.49) |
) | 0.08 *** (3.63) | 0.15 (1.15) | 0.34 *** (3.10) |
) | −0.21 *** (−6.67) | −1.39 *** (−8.30) | −1.26 *** (−8.89) |
0.10 (1.24) | 0.58 (1.20) | 0.61 (1.28) | |
−0.07 (−1.47) | −0.10 (−0.29) | 0.05 (0.16) | |
−0.04 (−0.57) | 0.20 (0.41) | −0.55 (−1.46) | |
0.03 (0.25) | 0.80 (0.95) | 1.46 ** (2.06) | |
#Obs | 5350 | 5965 | 5965 |
F-test | - | 97.68 *** | 17.64 *** |
Pseudo log-likelihood | −11,776.37 | - | - |
R2 (within) | 0.28 | 0.28 | (0.06) |
Hausman test | - | - | 112.77 *** |
PPML (z-Value) | Pooled Robust Regression (t-Value) | Fixed Effect (t-Value) | |
---|---|---|---|
0.99 *** (12.83) | 1.63 *** (4.22) | 9.89 ** (2.45) | |
−0.04 *** (−9.26) | −0.20 *** (−7.81) | (omitted) | |
0.07 *** (6.87) | 0.49 *** (9.77) | 0.94 *** (9.28) | |
−0.04 *** (−11.84) | −0.30 *** (−17.04) | −0.70 *** (−8.95) | |
0.11 *** (30.35) | 0.63 *** (32.13) | −0.51 (−1.12) | |
0.03 *** (10.02) | 0.06 *** (4.18) | 0.57 *** (2.96) | |
−0.03 *** (12.73) | −0.19 *** (−13.88) | −0.20 *** (−4.10) | |
0.05 *** (5.92) | 0.20 *** (4.94) | −0.25 *** (−3.89) | |
0.06 *** (4.82) | 0.16 ** (2.46) | 0.85 *** (8.49) | |
) | 0.07 *** (4.96) | 0.36 *** (4.85) | (omitted) |
0.28 *** (10.95) | 1.41 *** (8.88) | (omitted) | |
0.20 *** (7.91) | 1.10 *** (7.64) | (omitted) | |
0.40 *** (15.91) | 2.22 *** (12.86) | (omitted) | |
0.02 (0.45) | −0.03 (−0.11) | (omitted) | |
−0.08 (−0.97) | −0.51 (−1.38) | (omitted) | |
) | −0.02 (−1.07) | −0.05 (−0.62) | 0.08 (1.12) |
) | 0.01 (0.35) | −0.04 (−0.37) | −0.01 (−0.12) |
) | −0.04 ** (−2.06) | −0.21 * (−1.83) | −0.11 (−1.22) |
) | 0.08 *** (4.16) | −0.08 (−0.78) | −0.18 ** (−2.33) |
) | −0.07 *** (−3.44) | −0.39 *** (−3.22) | −0.25 *** (−2.73) |
−0.07 ** (−2.11) | −0.07 (−0.33) | 0.01 (0.07) | |
−0.05 * (−1.69) | 0.12 (0.54) | 0.46 ** (2.40) | |
0.10 (1.58) | 0.70 ** (2.02) | 0.15 (0.44) | |
−0.01 (−0.14) | 0.51 ** (2.10) | 0.54 ** (2.44) | |
−0.07 (−0.55) | 0.21 (0.39) | 0.63 (0.67) | |
#Obs | 13,516 | 14,988 | 14,988 |
F-test | - | 124.76 *** | 22.89 *** |
Pseudo Log-likelihood | −29,414.80 | - | - |
R2 (within) | 0.16 | 0.16 | (0.03) |
Hausman test | - | - | 81.27 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.H.; Ahn, B.I.; Shim, G. Analyzing the Impact of EU’s Legality Requirements Policies on Sustainable Timber and Sawnwood Trade—Focusing on Tropical Wood Trade. Forests 2024, 15, 1879. https://doi.org/10.3390/f15111879
Kim DH, Ahn BI, Shim G. Analyzing the Impact of EU’s Legality Requirements Policies on Sustainable Timber and Sawnwood Trade—Focusing on Tropical Wood Trade. Forests. 2024; 15(11):1879. https://doi.org/10.3390/f15111879
Chicago/Turabian StyleKim, Dong Hyun, Byeong Il Ahn, and Gyuhun Shim. 2024. "Analyzing the Impact of EU’s Legality Requirements Policies on Sustainable Timber and Sawnwood Trade—Focusing on Tropical Wood Trade" Forests 15, no. 11: 1879. https://doi.org/10.3390/f15111879
APA StyleKim, D. H., Ahn, B. I., & Shim, G. (2024). Analyzing the Impact of EU’s Legality Requirements Policies on Sustainable Timber and Sawnwood Trade—Focusing on Tropical Wood Trade. Forests, 15(11), 1879. https://doi.org/10.3390/f15111879