Spectral Variations of Reclamation Vegetation in Rare Earth Mining Areas Using Continuous–Discrete Wavelets and Their Impact on Chlorophyll Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. Data Acquisition and Preprocessing
2.3. Spectral Feature Transform Method
2.4. Spectral and Chlorophyll-Sensitive Feature Extraction
2.5. Construction of Chlorophyll Inversion Model
2.6. Precision Analysis
3. Results
3.1. Statistical Characteristics of Chlorophyll in RV
3.2. Leaf Spectral Response of RV
3.3. Spectral and Chlorophyll-Sensitive Feature Extraction of RV
3.4. Comparison and Evaluation of RV Chlorophyll Estimation Models
3.4.1. Effect of Ori on the Chlorophyll Estimation Model of RV
3.4.2. Effect of Fir on the Chlorophyll Estimation Model of RV
3.4.3. Effect of Ori_CWT on the Chlorophyll Estimation Model of RV
3.4.4. Effect of Fir_CWT on the Chlorophyll Estimation Model of RV
3.4.5. Effects of Different Input Data on Chlorophyll Retrieval Model of RV
4. Discussion
4.1. Analysis of Typical Characteristics of Spectral Variation in RV
4.2. Environmental Adaptability of Different RV
4.3. The Indicative Role of Biochemical Parameter Inversion in Assessing the Environmental Adaptability of RV
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.L.; Lai, C.H.; Li, H.K.; Zhang, Z.Y. A tripartite game analysis of public participation in environmental regulation of ionic rare earth mining areas. Resour. Policy 2023, 81, 103319. [Google Scholar] [CrossRef]
- Behrsing, T.; Blair, V.L.; Jaroschik, F.; Deacon, G.B.; Junk, P.C. Rare Earths—The Answer to Everything. Molecules 2024, 29, 688. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.Z. Exploration method design of ion adsorption type rare earth ore based on radioactivity measurement. Coal Chem. Ind. 2023, 51, 141–144+149. [Google Scholar]
- Qiao, X.Y.; Ma, S.Y.; Hou, H.F.; Hao, R.J. Hyperspectral Characteristics and Inversion Models of Heavy Metal Pollution in Mining Area Plants. J. Saf. Environ. 2018, 18, 335–341. [Google Scholar]
- Zhang, Y.Y. Study on Inversion Method of Vegetation Typical Parameters Coupled Leaf-Canopy Model. Master’s Thesis, China University of Geosciences, Wuhan, China, 2022. [Google Scholar]
- Kimm, H.; Guan, K.; Jiang, C.Y.; Miao, G.F.; Wu, G.H.; Suyker, A.E.; Ainsworth, E.A.; Bernacchi, C.J.; Montes, C.M.; A Berry, J.; et al. A physiological signal derived from sun-induced chlorophyll fluorescence quantifies crop physiological response to environmental stresses in the U.S. Corn Belt. Environ. Res. Lett. 2021, 16, 124051. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef]
- Jiang, X.; Zhen, J.; Miao, J.; Zhao, D.; Shen, Z.; Jiang, J.; Gao, C.; Wu, G.; Wang, J. Newly-developed three-band hyperspectral vegetation index for estimating leaf relative chlorophyll content of mangrove under different severities of pest and disease. Ecol. Indic. 2022, 140, 108978. [Google Scholar] [CrossRef]
- Liu, W.; Yu, Q.; Niu, T.; Yang, L.Z.; Liu, H.J. Inversion of Soil Heavy Metal Content Based on Spectral Characteristics of Peach Trees. Forests 2021, 12, 1208. [Google Scholar] [CrossRef]
- Wang, M.; Yang, K.M.; Zhang, W. Hyperspectral monitoring of maize leaves under copper stress at different growth stages. Remote Sens. Lett. 2020, 11, 343–352. [Google Scholar] [CrossRef]
- Li, H.; Cui, L.; Dou, Z.; Wang, J.; Zhai, X.; Li, J.; Zhao, X.; Lei, Y.; Wang, J.; Li, W. Hyperspectral Analysis and Regression Modeling of SPAD Measurements in Leaves of Three Mangrove Species. Forests 2023, 14, 1566. [Google Scholar] [CrossRef]
- Cheng, X.; Feng, Y.; Guo, A.; Huang, W.; Cai, Z.; Dong, Y.; Guo, J.; Qian, B.; Hao, Z.; Chen, G.; et al. Detection of Rubber Tree Powdery Mildew from Leaf Level Hyperspectral Data Using Continuous Wavelet Transform and Machine Learning. Remote Sens. 2023, 16, 105. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wang, X.M.; Baishan, K.W.Q.T.; An, B.S. Hyperspectral Estimation of Soil Organic Carbon Content Based on Continuous Wavelet Transform and Successive Projection Algorithm in Arid Area of Xinjiang, China. Sustainability 2023, 15, 2587. [Google Scholar] [CrossRef]
- Zhang, J.J.; Niu, Z.; Ma, X.M.; Wang, J.; Xu, C.Y.; Shi, L.; Fernando, B.; Si, H.P. Extraction and Inversion of Soil Total Nitrogen Hyperspectral Features Based on Discrete Wavelet. Spectrosc. Spectr. Anal. 2023, 43, 3223–3229. [Google Scholar]
- GB/T 14467-2021; Classification and Codes of China Plants. 2021.
- Konica Minolta. Available online: http://www.konicaminolta.com.cn (accessed on 1 August 2024).
- Zhao, R.; An, L.; Tang, W.; Qiao, L.; Wang, N.; Li, M.; Sun, H.; Liu, G. Improving chlorophyll content detection to suit maize dynamic growth effects by deep features of hyperspectral data. Field Crops Res. 2023, 297, 108929. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhang, L.; Wang, H.; Gu, X.H.; Zhuang, L.Y.; Duan, L.F.; Li, J.J.; Lin, J. Quantitative Inversion of Soil Organic Matter Content Using Continuous Wavelet Transfor. Spectrosc. Spectr. Anal. 2018, 38, 3521–3527. [Google Scholar]
- Yuan, X.T.; Zhang, X.; Zhang, N.N.; Ma, R.; He, D.D.; Bao, H.; Sun, W. Hyperspectral Estimation of SPAD Value of Cotton Leaves under Verticillium Wilt Stress Based on GWO–ELM. Agriculture 2023, 13, 1779. [Google Scholar] [CrossRef]
- Mahajan, G.R.; Pandey, R.N.; Sahoo, R.N.; Gupta, V.K.; Datta, S.C.; Kumar, D. Monitoring nitrogen, phosphorus and sulphur in hybrid rice (Oryza sativa L.) using hyperspectral remote sensing. Precis. Agric. 2017, 18, 736–761. [Google Scholar] [CrossRef]
- Li, H.K.; Wei, Z.A.; Wang, X.L.; Xu, F. Spectral characteristics of reclamation vegetation in a rare earth mine and analysis of its correlation with the chlorophyll content. J. Appl. Spectrosc. 2020, 87, 553–562. [Google Scholar] [CrossRef]
- Zhang, F.D.; Liu, J.; Lin, J.; Wang, Z.H. Detection of oil yield from oil shale based on near-infrared spectroscopy combined with wavelet transform and least squares support vector machines. Infrared Phys. Technol. 2019, 97, 224–228. [Google Scholar] [CrossRef]
- Li, H.K.; Zhou, B.B.; Xu, F.; Wei, Z.A. Hyperspectral characterization and chlorophyll content inversion of reclamation vegetation in rare earth mines. Environ. Sci. Pollut. Res. 2022, 29, 36839–36853. [Google Scholar] [CrossRef]
- Zhang, S.L.; Qin, J.; Tang, X.D.; Wang, Y.J.; Huang, J.L.; Song, Q.L.; Min, J.Y. Spectral Characteristics and Evaluation Model of Pinus Massoniana Suffering from Bursaphelenchus Xylophilus Disease. Spectrosc. Spectr. Anal. 2019, 39, 865–872. [Google Scholar]
- Peng, Z.; Lin, S.; Zhang, B.; Wei, Z.; Liu, L.; Han, N.; Cai, J.; Chen, H. Winter Wheat Canopy Water Content Monitoring Based on Spectral Transforms and “Three-edge” Parameters. Agric. Water Manag. 2020, 240, 106306. [Google Scholar] [CrossRef]
- Ceccon, E.; Gomez-Ruiz, P.A. Bamboos ecological functions on environmental services and productive ecosystems restoration. Rev. Soc. Bras. MediCIMa Trop. 2019, 67, 679–691. [Google Scholar] [CrossRef]
- Kumar, R.; Thangaraju, M.M.; Kumar, M.; Thul, S.T.; Pandey, V.C.; Yadav, S.; Singh, L.; Kumar, S. Ecological restoration of coal fly ash–dumped area through bamboo plantation. Environ. Sci. Pollut. Res. 2021, 28, 33416–33432. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Cheng, Z.Y.; Qian, F.; Ma, S.F.; Huang, C.F.; Luo, Y.L.; Zou, H.B.; Jiang, P.A. New Techniques for Planting willow and Their Application in Desert and Saline-Alkali Lands. Jiangsu Agric. Sci. 2020, 48, 119–122. [Google Scholar]
- Chen, W.; Hu, N.; Chen, K.; Chen, S.Y.; Zhang, H.; Ding, D.X. Study on the Remediation of Uranium-Contaminated Soil by Intercropping Macleaya cordata and willow. At. Energy Sci. Technol. 2018, 52, 1748–1755. [Google Scholar]
- Hu, H.L. Water Consumption Characteristics of Eucalyptus Grandis and Its Response to Drought Stress. Ph.D. Thesis, Sichuan Agricultural University, Yaan, China, 2012. [Google Scholar]
- Wu, X. Osmotic Regulation and Adaptation of Plants Under Salt Stress. Master’s Thesis, Chinese Academy of Forestry, Beijing, China, 2012. [Google Scholar]
- Hu, G.T. Study on the Accumulation of Heavy Metals and Physiological Changes in Willow. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2022. [Google Scholar]
- Desrochers, V.; Frenette-Dussault, C.; Nissim, W.G.; Brisson, J.; Labrecque, M. Using willow microcuttings for ecological restoration: An alternative method for establishing dense plantations. Ecol. Eng. 2020, 151, 1. [Google Scholar] [CrossRef]
- Wang, J.Y.; Zhang, M.Z.; Ling, H.R.; Wang, Z.T.; Gai, J.Y. A Hyperspectral Image-Based Method for Estimating Water and Chlorophyll Contents in Maize Leaves under Drought Stress. Smart Agric. 2023, 5, 142–153. [Google Scholar]
- Shen, L.Z.; Gao, M.F.; Yan, J.W.; Wang, Q.Z.; Shen, H. Winter Wheat SPAD Value Inversion Based on Multiple Pretreatment Methods. Remote Sens. 2022, 14, 4660. [Google Scholar] [CrossRef]
- Zheng, W.; Lu, X.; Li, Y.; Li, S.; Zhang, Y.Z. Hyperspectral Identification of Chlorophyll Fluorescence Parameters of Suaeda salsa in Coastal Wetlands. Remote Sens. 2021, 13, 2066. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Miller, J.R.; Harron, J.; Hu, B.X.; Noland, T.L.; Goel, N.; Mohammed, G.H.; Sampson, P. Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies. Remote Sens. Environ. 2004, 89, 189–199. [Google Scholar] [CrossRef]
Reclamation Vegetation | Number of Measurements | Minimum Value | Maximum Value | Average Value | Standard Deviation | Coefficient of Variation | Significant Difference |
---|---|---|---|---|---|---|---|
Salix japonica | 79 | 29.4 | 52.2 | 41.3 | 5.1 | 12.3% | 0 (1.22 × 10−6) |
Tung tree | 86 | 16.2 | 55.6 | 32.3 | 7.2 | 22.3% | |
Masson pine | 74 | 19.7 | 79.8 | 59.7 | 13.8 | 23.1% | |
Photinia glabra | 54 | 24.8 | 73.8 | 44.6 | 10.6 | 23.7% | |
Blue gum | 132 | 25.4 | 60.8 | 42.6 | 6.3 | 14.8% |
Type of Vegetation | ||||||
---|---|---|---|---|---|---|
Normal Salix japonica | 0.0011 | 525 | −0.00004 | 628 | 0.0080 | 724 |
Reclamation Salix japonica | 0.0033 | 520 | −0.00012 | 629 | 0.011 | 703 |
Normal Tung tree | 0.0013 | 523 | −0.00002 | 627 | 0.013 | 718 |
Reclamation Tung tree | 0.0036 | 520 | −0.00008 | 629 | 0.018 | 701 |
Normal Masson pine | 0.0031 | 518 | −0.00007 | 628 | 0.013 | 718 |
Reclamation Masson pine | 0.0034 | 520 | −0.00006 | 629 | 0.012 | 717 |
Normal Photinia glabra | 0.0025 | 523 | −0.00008 | 629 | 0.015 | 719 |
Reclamation Photinia glabra | 0.0032 | 520 | −0.00010 | 597 | 0.015 | 702 |
Normal Blue gum | 0.0018 | 523 | 0.00008 | 629 | 0.013 | 706 |
Reclamation Blue gum | 0.0019 | 524 | −0.000004 | 629 | 0.014 | 708 |
Type of Vegetation | Reclamation Salix japonica | Reclamation Tung tree | Reclamation Masson pine | Reclamation Photinia glabra | Reclamation Blue Gum | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Max | Num | Max | Num | Max | Num | Max | Num | Max | Num | ||
Ori_CWT | d1 | 0.6 | 169 | 0.9 | 180 | 0.7 | 320 | 0.7 | 194 | 0.8 | 231 |
d2 | 0.7 | 328 | 0.9 | 273 | 0.7 | 253 | 0.8 | 268 | 0.8 | 280 | |
d3 | 0.7 | 389 | 0.9 | 339 | 0.6 | 229 | 0.8 | 289 | 0.8 | 354 | |
d4 | 0.8 | 440 | 0.9 | 377 | 0.7 | 140 | 0.8 | 303 | 0.8 | 391 | |
d5 | 0.7 | 464 | 0.9 | 235 | 0.6 | 184 | 0.8 | 330 | 0.8 | 435 | |
d6 | 0.8 | 652 | 0.9 | 480 | 0.6 | 188 | 0.8 | 403 | 0.7 | 454 | |
d7 | 0.6 | 738 | 0.7 | 599 | 0.3 | 156 | 0.8 | 372 | 0.5 | 724 | |
d8 | 0.7 | 892 | 0.9 | 731 | 0.3 | 99 | 0.8 | 603 | 0.6 | 644 | |
d9 | 0.6 | 911 | 0.8 | 559 | 0.3 | 158 | 0.8 | 603 | 0.4 | 776 | |
d10 | 0.6 | 701 | 0.7 | 561 | 0.3 | 229 | 0.7 | 353 | 0.3 | 292 | |
Fir_CWT | d1 | 0.6 | 145 | 0.8 | 141 | 0.6 | 328 | 0.7 | 175 | 0.7 | 190 |
d2 | 0.6 | 287 | 0.8 | 234 | 0.7 | 280 | 0.7 | 228 | 0.8 | 293 | |
d3 | 0.7 | 335 | 0.8 | 309 | 0.6 | 237 | 0.8 | 275 | 0.8 | 306 | |
d4 | 0.8 | 392 | 0.9 | 373 | 0.7 | 139 | 0.8 | 323 | 0.8 | 372 | |
d5 | 0.7 | 472 | 0.9 | 387 | 0.6 | 172 | 0.8 | 377 | 0.8 | 499 | |
d6 | 0.7 | 614 | 0.9 | 504 | 0.7 | 170 | 0.8 | 427 | 0.8 | 497 | |
d7 | 0.5 | 569 | 0.8 | 506 | 0.3 | 291 | 0.7 | 332 | 0.5 | 694 | |
d8 | 0.7 | 887 | 0.9 | 848 | 0.4 | 118 | 0.9 | 640 | 0.7 | 684 | |
d9 | 0.6 | 803 | 0.8 | 758 | 0.3 | 240 | 0.7 | 620 | 0.5 | 724 | |
d10 | 0.6 | 841 | 0.6 | 634 | 0.3 | 138 | 0.7 | 558 | 0.3 | 534 |
Input Data Scheme | Input Data Content | Scheme Abbreviation |
---|---|---|
Scheme 1 | Original spectral sensitive band (Ori) | Ori |
Scheme 2 | First-order derivative spectral sensitive band (Fir) | Fir |
Scheme 3 | d4 scale sensitive band after CWT of the original spectrum (Ori_CWT_d4) | Ori_CWT |
Scheme 4 | d5 scale sensitive band after CWT of the original spectrum (Ori_CWT_d5) | |
Scheme 5 | d6 scale sensitive band after CWT of the original spectrum (Ori_CWT_d6) | |
Scheme 6 | d8 scale sensitive band after CWT of the original spectrum (Ori_CWT_d8) | |
Scheme 7 | d4 scale sensitive band after CWT of the first-order derivative spectra (Fir_CWT_d4) | Fir_CWT |
Scheme 8 | d5 scale sensitive band after CWT of the first-order derivative spectra (Fir_CWT_d5) | |
Scheme 9 | d6 scale sensitive band after CWT of the first-order derivative spectra (Fir_CWT_d6) | |
Scheme 10 | d8 scale sensitive band after CWT of the first-order derivative spectra (Fir_CWT_d8) |
Input Data Scheme | Type of Vegetation | R2 | RMSE | Input Data Scheme | Type of Vegetation | R2 | RMSE |
---|---|---|---|---|---|---|---|
1 | Reclamation Salix japonica | 0.71 | 2.76 | 2 | Reclamation Salix japonica | 0.72 | 2.69 |
Reclamation Tung tree | 0.86 | 2.75 | Reclamation Tung tree | 0.92 | 2.01 | ||
Reclamation Masson pine | 0.85 | 13.29 | Reclamation Masson pine | 0.65 | 8.20 | ||
Reclamation Photinia glabra | 0.70 | 5.82 | Reclamation Photinia glabra | 0.87 | 3.86 | ||
Reclamation Blue gum | 0.74 | 3.25 | Reclamation Blue gum | 0.83 | 2.59 | ||
3 | Reclamation Salix japonica | 0.73 | 2.66 | 4 | Reclamation Salix japonica | 0.69 | 2.88 |
Reclamation Tung tree | 0.88 | 2.47 | Reclamation Tung tree | 0.87 | 2.57 | ||
Reclamation Masson pine | 0.57 | 9.15 | Reclamation Masson pine | 0.30 | 11.64 | ||
Reclamation Photinia glabra | 0.76 | 5.18 | Reclamation Photinia glabra | 0.74 | 5.40 | ||
Reclamation Blue gum | 0.79 | 2.91 | Reclamation Blue gum | 0.80 | 2.85 | ||
5 | Reclamation Salix japonica | 0.68 | 2.92 | 6 | Reclamation Salix japonica | 0.54 | 3.46 |
Reclamation Tung tree | 0.84 | 2.87 | Reclamation Tung tree | 0.79 | 3.31 | ||
Reclamation Masson pine | 0.12 | 13.00 | Reclamation Masson pine | 0.08 | 13.34 | ||
Reclamation Photinia glabra | 0.75 | 5.30 | Reclamation Photinia glabra | 0.75 | 5.30 | ||
Reclamation Blue gum | 0.57 | 4.16 | Reclamation Blue gum | 0.62 | 3.87 | ||
7 | Reclamation Salix japonica | 0.75 | 2.55 | 8 | Reclamation Salix japonica | 0.63 | 3.10 |
Reclamation Tung tree | 0.88 | 2.55 | Reclamation Tung tree | 0.86 | 2.76 | ||
Reclamation Masson pine | 0.59 | 8.95 | Reclamation Masson pine | 0.39 | 10.83 | ||
Reclamation Photinia glabra | 0.74 | 5.42 | Reclamation Photinia glabra | 0.78 | 4.96 | ||
Reclamation Blue gum | 0.74 | 3.23 | Reclamation Blue gum | 0.75 | 3.15 | ||
9 | Reclamation Salix japonica | 0.69 | 2.86 | 10 | Reclamation Salix japonica | 0.51 | 3.58 |
Reclamation Tung tree | 0.85 | 2.83 | Reclamation Tung tree | 0.83 | 2.95 | ||
Reclamation Masson pine | 0.13 | 12.98 | Reclamation Masson pine | 0.23 | 12.10 | ||
Reclamation Photinia glabra | 0.74 | 5.43 | Reclamation Photinia glabra | 0.78 | 4.98 | ||
Reclamation Blue gum | 0.61 | 3.97 | Reclamation Blue gum | 0.71 | 3.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Li, H.; Liu, K.; Wang, X.; Fan, X. Spectral Variations of Reclamation Vegetation in Rare Earth Mining Areas Using Continuous–Discrete Wavelets and Their Impact on Chlorophyll Estimation. Forests 2024, 15, 1885. https://doi.org/10.3390/f15111885
Li C, Li H, Liu K, Wang X, Fan X. Spectral Variations of Reclamation Vegetation in Rare Earth Mining Areas Using Continuous–Discrete Wavelets and Their Impact on Chlorophyll Estimation. Forests. 2024; 15(11):1885. https://doi.org/10.3390/f15111885
Chicago/Turabian StyleLi, Chige, Hengkai Li, Kunming Liu, Xiuli Wang, and Xiaoyong Fan. 2024. "Spectral Variations of Reclamation Vegetation in Rare Earth Mining Areas Using Continuous–Discrete Wavelets and Their Impact on Chlorophyll Estimation" Forests 15, no. 11: 1885. https://doi.org/10.3390/f15111885
APA StyleLi, C., Li, H., Liu, K., Wang, X., & Fan, X. (2024). Spectral Variations of Reclamation Vegetation in Rare Earth Mining Areas Using Continuous–Discrete Wavelets and Their Impact on Chlorophyll Estimation. Forests, 15(11), 1885. https://doi.org/10.3390/f15111885