Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Satellite Data and Pre-Processing
2.3. Sample Point Collection
3. Method
3.1. Overview
3.2. Architecture of the Improved Prototypical Network
3.2.1. Prototypical Network
3.2.2. Data Augmentation
3.2.3. Convolutional Block Attention Module
3.2.4. Improvement of the Prototypical Network Algorithm
3.3. Random Forest and Support Vector Machine
3.4. Transfer Learning
3.5. Validation
4. Results
4.1. Performance of the Farmland Shelterbelt Extraction
4.2. Extraction Results for RF and SVM
4.3. Effectiveness of Transfer Learning in Different Regions
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Kort, J. Benefits of windbreaks to field and forage crops. Agric. Ecosyst. Environ. 1988, 22–23, 165–190. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Wang, J.; Liu, B.; Fang, Y.; Li, H.; Zou, X. Wind erosion forces and wind direction distribution for assessing the efficiency of shelterbelts in northern China. Aeolian Res. 2018, 33, 44–52. [Google Scholar] [CrossRef]
- Abdalazeem, M.E.; Hassan, H.; Asawa, T.; Mahmoud, H. Impact of windbreak design on microclimate in hot regions during cold waves: Numerical investigation. Int. J. Biometeorol. 2024, 68, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- Fang, H. Quantifying farmland shelterbelt impacts on catchment soil erosion and sediment yield for the black soil region, northeastern China. Soil Use Manag. 2021, 37, 181–195. [Google Scholar] [CrossRef]
- Grala, R.K.; Colletti, J.P. Estimates of additional Maize (Zea mays) yields required to offset costs of tree-windbreaks in Midwestern USA. Agrofor. Syst. 2003, 59, 11–20. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Brown, C.; Eales, J.; Eggers, S.; Josefsson, J.; Kronvang, B.; Randall, N.P.; Uusi-Kämppä, J. The multifunctional roles of vegetated strips around and within agricultural fields. Environ. Evid. 2018, 7, 14. [Google Scholar] [CrossRef]
- Smith, M.M.; Bentrup, G.; Kellerman, T.; MacFarland, K.; Straight, R.; Ameyaw, L. Windbreaks in the United States: A systematic review of producer-reported benefits, challenges, management activities and drivers of adoption. Agric. Syst. 2021, 187, 103032. [Google Scholar] [CrossRef]
- Weninger, T.; Scheper, S.; Lackóová, L.; Kitzler, B.; Gartner, K.; King, N.W.; Cornelis, W.; Strauss, P.; Michel, K. Ecosystem services of tree windbreaks in rural landscapes—A systematic review. Environ. Res. Lett. 2021, 16, 103002. [Google Scholar] [CrossRef]
- Baker, T.P.; Moroni, M.T.; Hunt, M.A.; Worledge, D.; Mendham, D.S. Temporal, environmental and spatial changes in the effect of windbreaks on pasture microclimate. Agric. For. Meteorol. 2021, 297, 108265. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Yuan, F.; Shen, L.; Wu, M.; Li, W.; Wang, A.; Wu, J.; Guan, D. Estimating the impact of shelterbelt structure on corn yield at a large scale using Google Earth and Sentinel 2 data. Environ. Res. Lett. 2022, 17, 044060. [Google Scholar] [CrossRef]
- Tian, H.; Wang, H.; Lyu, X.; Li, X.; Yang, Y.; Zhang, Y.; Liu, J.; Lu, Y.; Zhao, X.; Qu, T.; et al. Construction and optimization of ecological security patterns in Dryland watersheds considering ecosystem services flows. Ecol. Indic. 2024, 159, 111664. [Google Scholar] [CrossRef]
- Zheng, X.; Zhu, J.; Xing, Z. Assessment of the effects of shelterbelts on crop yields at the regional scale in Northeast China. Agric. Syst. 2016, 143, 49–60. [Google Scholar] [CrossRef]
- Deng, R.X.; Li, Y.; Xu, X.L.; Wang, W.J.; Wei, Y.C. Remote estimation of shelterbelt width from SPOT5 imagery. Agrofor. Syst. 2017, 91, 161–172. [Google Scholar] [CrossRef]
- Ghimire, K.; Dulin, M.W.; Atchison, R.L.; Goodin, D.G.; Shawn Hutchinson, J.M. Identification of windbreaks in Kansas using object-based image analysis, GIS techniques and field survey. Agrofor. Syst. 2014, 88, 865–875. [Google Scholar] [CrossRef]
- Thompson, J.B.; Symonds, J.; Carlisle, L.; Iles, A.; Karp, D.S.; Ory, J.; Bowles, T.M. Remote sensing of hedgerows, windbreaks, and winter cover crops in California’s Central Coast reveals low adoption but hotspots of use. Front. Sustain. Food Syst. 2023, 7, 1052029. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Fan, W. A method to estimate the structural parameters of windbreaks using remote sensing. Agrofor. Syst. 2017, 91, 37–49. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B. Application of TM images in the remote sensing survey of the “Three Norths” shelterbelt forests—A case study of western Jilin Province. Dyn. Remote Sens. Technol. 1990, 25–29. [Google Scholar]
- Chen, J.; Zhang, S.; Tang, J.; Zhang, Y. Remote sensing survey of shelterbelt based on Landsat 7 ETM+ imagery in Daqing City. J. Northeast For. Univ. 2003, 31, 101–102. [Google Scholar] [CrossRef]
- Czerepowicz, L.; Case, B.S.; Doscher, C. Using satellite image data to estimate aboveground shelterbelt carbon stocks across an agricultural landscape. Agric. Ecosyst. Environ. 2012, 156, 142–150. [Google Scholar] [CrossRef]
- Deng, R.; Guo, Q.; Jia, M.; Wu, Y.; Zhou, Q.; Xu, Z. Extraction of farmland shelterbelts from remote sensing imagery based on a belt-oriented method. Front. For. Glob. Chang. 2023, 6, 1247032. [Google Scholar] [CrossRef]
- Deng, R.X.; Li, Y.; Wang, W.J.; Zhang, S.W. Recognition of shelterbelt continuity using remote sensing and waveform recognition. Agrofor. Syst. 2013, 87, 827–834. [Google Scholar] [CrossRef]
- Hu, J. The Farmland Shelterbelts Extraction Based on HJ-1 and ZY-3 Satellite Images. Master’s Thesis, Beijing Forestry University, Beijing, China, 2014. [Google Scholar]
- Wiseman, G.; Kort, J.; Walker, D. Quantification of shelterbelt characteristics using high-resolution imagery. Agric. Ecosyst. Environ. 2009, 131, 111–117. [Google Scholar] [CrossRef]
- Liknes, G.C.; Meneguzzo, D.M.; Kellerman, T.A. Shape indexes for semi-automated detection of windbreaks in thematic tree cover maps from the central United States. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 167–174. [Google Scholar] [CrossRef]
- Xing, Z.; Li, Y.; Deng, R.; Zhu, H.; Fu, B. Extracting Farmland Shelterbelt Automatically Based on ZY-3 Remote Sensing Images. For. Sci. 2016, 52, 11–20. [Google Scholar] [CrossRef]
- Vilalta, R.; Drissi, Y. A Perspective View and Survey of Meta-Learning. Artif. Intell. Rev. 2002, 18, 77–95. [Google Scholar] [CrossRef]
- Snell, J.; Swersky, K.; Zemel, R.S. Prototypical Networks for Few-shot Learning. In Proceeding of Advances in Neural Information Processing Systems, NIPS 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 4077–4087. [Google Scholar]
- Liu, Q.; Peng, J.; Ning, Y.; Chen, N.; Sun, W.; Du, Q.; Zhou, Y. Refined Prototypical Contrastive Learning for Few-Shot Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–14. [Google Scholar] [CrossRef]
- Ma, S.; Tong, L.; Zhou, J.; Yu, J.; Xiao, C. Self-Supervised Spectral–Spatial Graph Prototypical Network for Few-Shot Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Tian, X.; Chen, L.; Zhang, X.; Chen, E. Improved Prototypical Network Model for Forest Species Classification in Complex Stand. Remote Sens. 2020, 12, 3839. [Google Scholar] [CrossRef]
- Yang, Y.; Jing, L.; Li, Q.; Liang, C.; Dong, Q.; Zhao, S.; Chen, Y.; She, D.; Zhang, X.; Wang, L. Big-sized trees and higher species diversity improve water holding capacities of forests in northeast China. Sci. Total Environ. 2023, 880, 163263. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Xiao, X. The 10-m crop type maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef]
- Acquarelli, J.; Marchiori, E.; Buydens, L.M.C.; Tran, T.; Laarhoven, T.V. Convolutional Neural Networks and Data Augmentation for Spectral-Spatial Classification of Hyperspectral Images. Networks 2017, 16, 21–40. [Google Scholar] [CrossRef]
- Hu, X.; Li, T.; Zhou, T.; Peng, Y. Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning. Remote Sens. 2021, 13, 4418. [Google Scholar] [CrossRef]
- Zhang, H.; Cisse, M.; Dauphin, Y.N.; Lopez-Paz, D. mixup: Beyond Empirical Risk Minimization. arXiv 2017, arXiv:1710.09412. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; Clova AI Research: Seoul, Republic of Korea, 2019. [Google Scholar] [CrossRef]
- Chen, L.; Wu, J.; Xie, Y.; Chen, E.; Zhang, X. Discriminative feature constraints via supervised contrastive learning for few-shot forest tree species classification using airborne hyperspectral images. Remote Sens. Environ. 2023, 295, 113710. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Springer: Cham, Germany, 2018. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Song, G.; Tao, Z.; Huang, X.; Cao, G.; Yang, L. Hybrid Attention-Based Prototypical Network for Unfamiliar Restaurant Food Image Few-Shot Recognition. IEEE Access 2020, 8, 14893–14900. [Google Scholar] [CrossRef]
- Gao, T.; Han, X.; Liu, Z.; Sun, M. Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification. Proc. AAAI Conf. Artif. Intell. 2019, 33, 6407–6414. [Google Scholar] [CrossRef]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; He, Q. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2020, 109, 43–76. [Google Scholar] [CrossRef]
- Yang, B.; Hu, S.; Guo, Q.; Hong, D. Multisource Domain Transfer Learning Based on Spectral Projections for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3730–3739. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.; Wu, Z.; Zhan, T.; Wei, Z. Spatial–Spectral Local Domain Adaption for Cross Domain Few Shot Hyperspectral Images Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Deng, R.; Li, Y.; Zhang, S.; Wang, W. Research on Extracting Infomation of Shelterbelt Based on TM Remote Sensing Images. Syst. Sci. Compr. Stud. Agric. 2011, 27, 12–16. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Q.; Han, F.; Ma, Y.; Long, X.; Jiang, P. Application of Airborne Multispectral Image Semantic Segmentation Model in Farmland Shelterbelt Extraction. J. Geo-Inf. Sci. 2020, 22, 12. [Google Scholar] [CrossRef]
- Lei, S.; Sun, H.; Liu, H.; Jiang, F.; Chen, S.; Wu, T.; Xie, Y. Study on extraction method of farmland shelterbelt supported by Landsat 8 time series image. J. Cent. South Univ. For. Technol. 2020, 40, 7. [Google Scholar] [CrossRef]
Region | Class Name | Training | Testing |
---|---|---|---|
Fujin | Banded farmland shelterbelt | 150 | 50 |
Patch farmland shelterbelt | 100 | 35 | |
Others | 150 | 50 | |
Youyi | Banded farmland shelterbelt | 35 | 80 |
Patch farmland shelterbelt | 30 | 65 | |
Others | 40 | 95 | |
Hailun | Banded farmland shelterbelt | 35 | 90 |
Patch farmland shelterbelt | 35 | 85 | |
Others | 45 | 100 | |
Yi’an | Banded farmland shelterbelt | 45 | 85 |
Patch farmland shelterbelt | 35 | 80 | |
Others | 45 | 95 | |
Fuyu | Banded farmland shelterbelt | 45 | 135 |
Patch farmland shelterbelt | 30 | 75 | |
Others | 40 | 120 |
Improved Prototypical Network | CBAM Layer | |||||
---|---|---|---|---|---|---|
Convolution Block | Layer | Input Shape | Output Shape | Layer | Input Shape | Output Shape |
Convolution Block 1 | Conv2d | [10, 5, 5] | [64, 5, 5] | Channel attention module | ||
BatchNorm2d | [64, 5, 5] | [64, 5, 5] | AdaptiveAvgPool2d | [64, 3, 3] | [64, 1, 1] | |
ReLU | [64, 5, 5] | [64, 5, 5] | Flatten | [64, 1, 1] | [64] | |
Conv2d | [64, 5, 5] | [64, 5, 5] | Linear | [64] | [16] | |
BatchNorm2d | [64, 5, 5] | [64, 5, 5] | ReLU | [16] | [16] | |
ReLU | [64, 5, 5] | [64, 5, 5] | Linear/avg_fc | [16] | [64] | |
MaxPool2d | [64, 5, 5] | [64, 3, 3] | AdaptiveMaxPool2d | [64, 3, 3] | [64, 1, 1] | |
CBAM layer | [64, 3, 3] | [64, 3, 3] | Flatten | [64, 1, 1] | [64] | |
Convolution Block 2 | Conv2d | [64, 3, 3] | [64, 3, 3] | Linear | [64] | [16] |
BatchNorm2d | [64, 3, 3] | [64, 3, 3] | ReLU | [16] | [16] | |
ReLU | [64, 3, 3] | [64, 3, 3] | Linear/max_fc | [16] | [64] | |
Conv2d | [64, 3, 3] | [64, 3, 3] | avg_fc + max_fc | - | [64] | |
BatchNorm2d | [64, 3, 3] | [64, 3, 3] | Sigmoid | [64] | [64] | |
ReLU | [64, 3, 3] | [64, 3, 3] | Spatial attention module | |||
MaxPool2d | [64, 3, 3] | [64, 1, 1] | −/avg_out | [64, 3, 3] | [1, 3, 3] | |
−/max_out | [64, 3, 3] | [1, 3, 3] | ||||
Concatenate | - | [2, 3, 3] | ||||
CBAM layer | [64, 1, 1] | [64, 1, 1] | Conv2d | [2, 3, 3] | [1, 3, 3] | |
Flatten | Flatten | [64, 1, 1] | [64] | Sigmoid | [64, 3, 3] | [1, 3, 3] |
Experiment | Description | |
---|---|---|
A | Performance of the improved Prototypical Network in the classification of farmland shelterbelt | |
B | Comparison of different Prototypical Network architectures | B1: Prototypical Network without data augmentation, without CBAM B2: Prototypical Network integrating CBAM, without data augmentation B3: Prototypical Network integrating data augmentation, without CBAM |
C | Classification of farmland shelterbelt using RF and SVM | |
D | Transfer learning in the target domain | D1: Transfer learning using a fine-tuning method D2: Learning from scratch in the target domain |
Evaluation Index | 3 × 3 | 5 × 5 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | |
---|---|---|---|---|---|---|---|---|
OA | 90.37 | 93.33 | 93.33 | 92.59 | 93.33 | 92.59 | 92.59 | |
Kappa | 0.8547 | 0.8985 | 0.8991 | 0.8876 | 0.8987 | 0.8871 | 0.8871 | |
AA | 89.86 | 93.05 | 92.65 | 91.98 | 92.84 | 92.49 | 92.49 | |
PA | Other | 94.23 | 96.08 | 98 | 96.08 | 96.08 | 97.96 | 97.96 |
Banded farmland shelterbelt | 95.35 | 92.16 | 95.74 | 93.75 | 93.88 | 88.89 | 88.89 | |
Patch farmland shelterbelt | 80 | 90.91 | 84.21 | 86.11 | 88.57 | 90.62 | 90.62 |
Evaluation Index | 3 × 3 | 5 × 5 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | |
---|---|---|---|---|---|---|---|---|
OA | 88.89 | 91.11 | 90.37 | 87.41 | 87.41 | 88.89 | 87.41 | |
Kappa | 0.8321 | 0.8647 | 0.8536 | 0.8073 | 0.8078 | 0.8302 | 0.8071 | |
AA | 88.32 | 90.72 | 89.80 | 87.23 | 86.93 | 88.65 | 87.22 | |
PA | Other | 92.30 | 92.45 | 94.12 | 90.57 | 92.31 | 94.12 | 92.30 |
Banded farmland shelterbelt | 93.18 | 91.84 | 90 | 84.91 | 84.62 | 85.16 | 83.64 | |
Patch farmland shelterbelt | 79.49 | 87.88 | 85.29 | 86.21 | 83.87 | 86.67 | 85.71 |
Evaluation Index | 3 × 3 | 5 × 5 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | |
---|---|---|---|---|---|---|---|---|
OA | 88.15 | 89.63 | 88.89 | 89.63 | 89.63 | 88.15 | 89.62 | |
Kappa | 0.8204 | 0.8421 | 0.8310 | 0.8419 | 0.8417 | 0.8193 | 0.8424 | |
AA | 87.58 | 89.62 | 88.56 | 89.17 | 89.43 | 87.65 | 89.3 | |
PA | Other | 90.74 | 87.50 | 89.09 | 97.96 | 96 | 92.31 | 95.92 |
Banded farmland shelterbelt | 90.91 | 93.48 | 91.30 | 85.19 | 85.19 | 86.27 | 86.27 | |
Patch farmland shelterbelt | 81.08 | 87.88 | 85.29 | 89.17 | 87.10 | 84.38 | 85.71 |
Evaluation Index | 3 × 3 | 5 × 5 | 7 × 7 | 9 × 9 | 11 × 11 | 13 × 13 | 15 × 15 | |
---|---|---|---|---|---|---|---|---|
OA | 89.63 | 92.59 | 93.33 | 91.11 | 92.59 | 91.18 | 89.71 | |
Kappa | 0.8427 | 0.8876 | 0.8987 | 0.8652 | 0.8874 | 0.8662 | 0.8441 | |
AA | 89.13 | 91.98 | 92.84 | 90.36 | 92.10 | 90.70 | 89.28 | |
PA | Other | 90.74 | 96.08 | 96.08 | 96.08 | 96.08 | 96.00 | 95.83 |
Banded farmland shelterbelt | 93.33 | 93.75 | 93.88 | 91.67 | 92 | 86.11 | 88.24 | |
Patch farmland shelterbelt | 83.33 | 86.11 | 88.57 | 83.33 | 88.24 | 90.00 | 83.78 |
Region | Algorithm | OA | Kappa | AA | PA | ||
---|---|---|---|---|---|---|---|
Other | Banded Farmland Shelterbelt | Patch Farmland Shelterbelt | |||||
Fujin | RF | 80.74 | 0.7057 | 80.92 | 79.03 | 83.72 | 80.00 |
Fujin | SVM | 82.22 | 0.7320 | 81.79 | 89.58 | 82.61 | 73.17 |
Method | Region | OA | Kappa | AA | PA | ||
---|---|---|---|---|---|---|---|
Other | Banded Farmland Shelterbelt | Patch Farmland Shelterbelt | |||||
Transfer learning | Fuyu | 97.20 | 0.9569 | 97.29 | 98.20 | 96.32 | 97.33 |
Youyi | 98.75 | 0.9810 | 98.80 | 100 | 96.39 | 100 | |
Hailun | 98.91 | 0.9836 | 98.90 | 99.01 | 98.89 | 98.81 | |
Yi’an | 96.27 | 0.9433 | 95.74 | 98.95 | 98.73 | 89.55 | |
Learning from scratch | Fuyu | 96.58 | 0.9474 | 96.50 | 99.07 | 95.62 | 94.81 |
Youyi | 97.50 | 0.9621 | 97.18 | 100 | 97.44 | 94.12 | |
Hailun | 97.45 | 0.9617 | 97.34 | 100 | 96.63 | 95.40 | |
Yi’an | 95.02 | 0.9246 | 94.45 | 98.92 | 98.72 | 85.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, Q.; Wang, H.; Zhang, Y.; Du, X.; Shen, Y.; Dong, Y. Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery. Forests 2024, 15, 1995. https://doi.org/10.3390/f15111995
Wang Y, Li Q, Wang H, Zhang Y, Du X, Shen Y, Dong Y. Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery. Forests. 2024; 15(11):1995. https://doi.org/10.3390/f15111995
Chicago/Turabian StyleWang, Yueting, Qiangzi Li, Hongyan Wang, Yuan Zhang, Xin Du, Yunqi Shen, and Yong Dong. 2024. "Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery" Forests 15, no. 11: 1995. https://doi.org/10.3390/f15111995
APA StyleWang, Y., Li, Q., Wang, H., Zhang, Y., Du, X., Shen, Y., & Dong, Y. (2024). Improved Prototypical Network Model for Classification of Farmland Shelterbelt Using Sentinel-2 Imagery. Forests, 15(11), 1995. https://doi.org/10.3390/f15111995