Light Drought Stress Positively Influenced Root Morphological and Endogenous Hormones in Pinus massoniana Seedlings Inoculated with Suillus luteus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-Experimental Preparations
2.2. Design of Drought Stress Experiments
2.3. Measurement of Experimental Parameters
2.4. Statistical Analysis
3. Results
3.1. Root Morphology
3.2. Gibberellic Acid Concentration
3.3. Zeatin Riboside Concentration
3.4. Indole-3-Acetic Acid Concentration
3.5. Abscisic Acid Concentration
3.6. Ratio of Endogenous Hormones
3.7. Root Morphology and Endogenous Hormones Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Mijnsbrugge, K.; Turcsán, A.; Erdélyi, É.; Beeckman, H. Drought Treated Seedlings of Quercus petraea (Matt.) Liebl., Q. robur L. and Their Morphological Intermediates Show Differential Radial Growth and Wood Anatomical Traits. Forests 2020, 11, 250. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Wu, Q.S.; Zou, Y.N. Arbuscular mycorrhizal fungi and tolerance of drought stress in plants. In Arbuscular Mycorrhizas and Stress Tolerance of Plants; Springer: Singapore, 2017; pp. 25–41. [Google Scholar] [CrossRef]
- Li, M.; Wang, H.Y.; Zhao, X.Z.; Lu, Z.K.; Sun, X.G.; Ding, G.J. Role of Suillus placidus in improving the drought tolerance of P. massoniana (Pinus massoniana Lamb.) seedlings. Forests 2021, 12, 332. [Google Scholar] [CrossRef]
- Wang, J.X.; Zhang, H.Q.; Gao, J.; Zhang, Y.; Liu, Y.; Tang, M. Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biol. 2021, 21, 1–13. [Google Scholar] [CrossRef]
- Yin, D.C.; Song, R.Q.; Qi, J.Y.; Deng, X. Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. J. Forestry Res. 2018, 29, 1775–1788. [Google Scholar] [CrossRef]
- Abbaspour, H.; Saeidi-Sar, S.; Afshari, H.; Abdel-Wahhab, M.A. Tolerance of mycorrhiza-infected pistachio (Pistacia vera L.) seedlings to drought stress under greenhouse conditions. J. Plant Physiol. 2012, 169, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Beniwal, R.S.; Langenfeld-Heyser, R.; Polle, A. Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environ. Exp. Bot. 2010, 69, 189–197. [Google Scholar] [CrossRef]
- Li, Y.N.; Zhang, T.Z.; Zhou, Y.B.; Zou, X.M.; Yin, Y.; Li, H.; Liu, L.; Zhang, S. Ectomycorrhizal symbioses increase soil calcium availability and water use efficiency of Quercus acutissima seedlings under drought stress. Eur. J. Forest Res. 2021, 140, 1–10. [Google Scholar] [CrossRef]
- Segnitz, R.M.; Russo, S.E.; Davies, S.J.; Peay, K.G. Ectomycorrhizal fungi drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant family. Ecology 2020, 101, e03083. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Huang, X.F.; Zhou, Y.C. Factors influencing the evolution of human-driven rocky desertification in Karst areas. Land. Degrad. Dev. 2020, 31, 2506–2513. [Google Scholar] [CrossRef]
- Zou, Y.N.; Wang, P.; Liu, C.Y.; Ni, Q.D.; Zhang, D.J.; Wu, Q.S. Mycorrhizal trifoliate orange has greater root adaptation of morphology and phytohormones in response to drought stress. Sci. Rep. 2017, 7, 41134. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, S.H.; Wen, M.X.; Wang, Y.; Wu, Q.S. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hortic. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Matloob, A.; Khan, F.A.; Khaliq, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.; Ullah, N.; et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regul. 2015, 75, 391–404. [Google Scholar] [CrossRef]
- Liu, R.J.; Li, M.; Meng, X.X.; Liu, X.; Li, X.L. Effects of AM fungi on endogenous hormones in corn and cotton plants. Mycosystema 2000, 19, 91–96. [Google Scholar] [CrossRef]
- Wang, C.R.; Li, S.Z.; Yang, X.Y. Competitive patterns of pioneer species at different restoration levels in the subtropical red soil erosion and degradation region. Chin. J. Appl. Environ. Biol. 2019, 25, 239–245. [Google Scholar] [CrossRef]
- Ding, G.; Zhou, Z.; Wang, Z. Cultivation and Utilization of Pulpwood Stand for Pinus massoniana; China Forestry Publishing House: Beijing, China, 2006; ISBN 9787503841194. [Google Scholar]
- Liu, Q.H.; Zhou, Z.C.; Wei, Y.C.; Shen, D.Y.; Feng, Z.P.; Hong, S. Genome-wide identification of differentially expressed genes associated with the high yielding of oleoresin in secondary xylem of P. massoniana (Pinus massoniana Lamb.) by transcriptomic analysis. PLoS ONE 2015, 10, e0132624. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wu, X.Q. Physiological and proteomic analysis of mycorrhizal Pinus massoniana inoculated with Lactarius insulsus under drought stress. Russ. J. Plant Physiol. 2016, 63, 709–717. [Google Scholar] [CrossRef]
- Sun, X.G.; Feng, W.Y.; Li, M.; Shi, J.; Ding, G.J. Phenology and cultivation of Suillus bovinus, an edible mycorrhizal fungus, in a Pinus massoniana plantation. Can. J. Forest Res. 2019, 48, 960–968. [Google Scholar] [CrossRef]
- Feng, W.Y.; Hu, D.; Feng, J.W.; Chen, Y.Q.; Guo, Q.Q.; Sun, X.G. Characterization of two edible mycorrhizal species of Suillus in P. massoniana forest. Mycosystema 2019, 38, 792–801. [Google Scholar] [CrossRef]
- Zhai, S.S.; Ding, G.J.; Yi, W.; Luo, X.M.; Li, M. Effects of Suillus luteus on root architecture of Pinus massoniana. J. For. Environ. 2015, 35, 243–248. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, G.J. Influence of ectomycorrhiza on nutrient absorption of Pinus massoniana seedlings under water stress. For. Res. 2013, 26, 227–233. [Google Scholar] [CrossRef]
- Gu, X.R.; Li, J.; Wang, X.H.; He, X.H.; Cui, Y. Laccaria bicolor mobilizes both labile aluminum and inorganic phosphate in rhizosphere soil of Pinus massoniana seedlings field grown in a yellow acidic soil. Appl. Environ. Microbiol. 2020, 86, e03015–e03019. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.Y.; Huang, J.G.; Yuan, L. Biological mobilization of potassium from soil by thirteen Suillus species and ectomycorrhizal Pinus massoniana Lamb. seedlings. Eur. J. Soil. Sci. 2020, 71, 740–751. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Ding, G.J.; Li, Z.Q. Effect of water stress on physiology and photosynthesis properties of ectomycorrhizal Pinus massoniana seedlings. J. Zhejiang For. Sci. Technol. 2019, 39, 1–8. [Google Scholar]
- Chen, Z.; Wang, L.; He, S. Effects of ectomycorrhizal fungi (Laccaria tinctorius (Pers.) Coker & Couch) on the biomass of P. massoniana (Pinus massoniana) seedlings under simulated acid rain. Acta Ecol. Sin. 2013, 33, 6526–6533. [Google Scholar]
- Yu, P.Y.; Sun, Y.P.; Huang, Z.L.; Zhu, F.; Sun, Y.J.; Jiang, L.J. The effects of ectomycorrhizal fungi on heavy metals’ transport in Pinus massoniana and bacteria community in rhizosphere soil in mine tailing area. J. Hazard. Mater. 2020, 381, 121203. [Google Scholar] [CrossRef]
- Liu, H.Y.; Chen, H.Y.; Ding, G.J.; Li, K.F.; Ren, Q.F. Identification of candidate genes conferring tolerance to aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus. BMC Plant Biol. 2020, 20, 521. [Google Scholar] [CrossRef]
- Zhang, T.; Wen, X.P.; Ding, G.J. Ectomycorrhizal symbiosis enhances tolerance to low phosphorus through expression of phosphate transporter genes in P. massoniana (Pinus massoniana). Acta Physiol. Plant 2017, 39, 101. [Google Scholar] [CrossRef]
- Qi, J.; Yin, D. Effects of Suillus luteus on the Growth, Photosynthesis, Stomata, and Root System of Pinus tabulaeformis Under Drought Stress. J. Plant Growth Regul. 2023, 42, 3486–3497. [Google Scholar] [CrossRef]
- Murata, H.; Yamada, A.; Yokota, S.; Maruyama, T.; Shimokawa, T.; Neda, H. Innate traits of Pinaceae-specific ectomycorrhizal symbiont Suillus luteus that differentially associates with arbuscular mycorrhizal broad-leaved trees in vitro. Mycoscience 2015, 56, 606–611. [Google Scholar] [CrossRef]
- Zhou, D.Q. Essential Microbiology; Higher Education Press: Beijing, China, 1993. [Google Scholar]
- Chu, H.L.; Wang, C.Y.; Li, Z.M.; Wang, H.H.; Xiao, Y.G.; Chen, J.; Tang, M. The dark septate endophytes and ectomycorrhizal fungi effect on Pinus tabulaeformis Carr. seedling growth and their potential effects to pine wilt disease resistance. Forests 2019, 10, 140. [Google Scholar] [CrossRef]
- Luo, X.M.; Ding, G.J.; Wang, Y. Active constituents of soil extracts from mycorrhizal seedling rhizosphere of Pinus massoniana and their effects on seed germination. Sci. Silvae Sin. 2018, 54, 32–38. [Google Scholar]
- Yang, Y.R.; Tang, M.; Sulpice, R.; Chen, H.; Tian, S.; Ban, Y.H. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J. Plant Growth Regul. 2014, 33, 612–625. [Google Scholar] [CrossRef]
- Brunner, I.; Herzog, C.; Dawes, M.A.; Arend, M.; Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 2015, 6, 547. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, W.; Inanaga, S.; Araki, H.; Morita, S.; An, P.; Sonobe, K. Development and distribution of root system in two grain sorghum cultivars originated from Sudan under drought stress (crop physiology and ecology). Plant Prod. Sci. 2005, 8, 553–562. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought tolerance strategies in plants: A mechanistic approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Alwhibi, M.S.; Hashem, A.; Abd-Allah, E.F.; Alqarawi, A.A.; Soliman, D.; Wirth, S.; Egamberdieva, D. Increased resistance of drought by Trichoderma harzianum fungal treatment correlates with increased secondary metabolites and proline content. J. Integr. Agric. 2016, 16, 1751–1757. [Google Scholar] [CrossRef]
- Zawaski, C.; Busov, V.B. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS ONE 2014, 9, e86217. [Google Scholar] [CrossRef]
- Abid, M.; Shao, Y.; Liu, S.; Wang, F.; Gao, J.; Jiang, D.; Dai, T. Pre-drought priming sustains grain development under post-anthesis drought stress by regulating the growth hormones in winter wheat (Triticum aestivum L.). Planta 2017, 246, 509–524. [Google Scholar] [CrossRef]
- Shi, H.T.; Chen, L.; Ye, T.T.; Liu, X.D.; Ding, K.J.; Chan, Z.L. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol. Biochem. 2014, 82, 209–217. [Google Scholar] [CrossRef]
- Ghosh, D.; Gupta, A.; Mohapatra, S. Dynamics of endogenous hormone regulation in plants by phytohormone secreting rhizobacteria under water-stress. Symbiosis 2019, 77, 265–278. [Google Scholar] [CrossRef]
- Wang, W.-X.; Zhang, F.; Chen, Z.-L.; Liu, J.; Guo, C.; He, J.-D.; Zou, Y.-N.; Wu, Q.-S. Responses of phytohormones and gas exchange to mycorrhizal colonization in trifoliate orange subjected to drought stress. Arch. Agron. Soil. Sci. 2017, 63, 14–23. [Google Scholar] [CrossRef]
- Pirasteh-Anosheh, H.; Emam, Y.; Pessarakli, M. Changes in endogenous hormonal status in corn (Zea mays) hybrids under drought stress. J. Plant Nutr. 2013, 36, 1695–1707. [Google Scholar] [CrossRef]
- Quan, W.X.; Ding, G.J. Dynamic of volatiles and endogenous hormones in Pinus massoniana needles under drought stress. Sci. Silvae Sin. 2017, 53, 49–55. [Google Scholar]
- Chen, W.; Meng, P.P.; Feng, H.; Wang, C.Y. Effects of Arbuscular Mycorrhizal Fungi on Growth and Physiological Performance of Catalpa bungei C.A.Mey. under Drought Stress. Forests 2020, 11, 1117. [Google Scholar] [CrossRef]
- Tan, Q.; You, L.; Hao, C.; Wang, J.; Liu, Y. Effects of four bolete species on ectomycorrhizae formation and development in Pinus thunbergii and Quercus acutissima. BMC Ecol. Evol. 2024, 24, 54. [Google Scholar] [CrossRef]
- Barker, S.J.; Tagu, D. The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Regul. 2000, 19, 144–154. [Google Scholar] [CrossRef]
- Luo, Z.B.; Li, K.; Gai, Y.; Göbel, C.; Wildhagen, H.; Jiang, X.; Polle, A. The ectomycorrhizal fungus (Paxillus involutus) modulates leaf physiology of poplar towards improved salt tolerance. Environ. Exp. Botany 2011, 72, 304–311. [Google Scholar] [CrossRef]
- Martin, F.; Kohler, A.; Murat, C.; Veneault-Fourrey, C.; Hibbett, D.S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016, 14, 760–773. [Google Scholar] [CrossRef]
- Muhammad, A.M.; Waseem, M.; Jakada, B.H.; Okal, E.J.; Lei, Z.; Saqib, H.S.A.; Zhang, Q. Exploring the Role of Abscisic Acid in Plant Drought Tolerance: A Molecular Perspective. Int. J. Mol. Sci. 2022, 23, 1084. [Google Scholar]
- Pan, X.; Zhang, J.; Xue, Z.; Liang, J.; Chen, Y.; Liu, Y. Synergistic effect of phytohormone-producing ectomycorrhizal fungus Suillus luteus and fertilizer GGR6 on Pinus massoniana growth. J. Plant Interact. 2022, 17, 643–655. [Google Scholar] [CrossRef]
Drought Treatment | Strains | IAA/ABA (ng·g−1) | ZR/ABA (ng·g−1) | GA/ABA (ng·g−1) | (IAA + ZR + GA)/ABA (ng·g−1) |
---|---|---|---|---|---|
ND | NM | 0.073 ± 0.011 b | 0.066 ± 0.008 b | 0.037 ± 0.007 b | 0.176 ± 0.025 b |
S12 | 0.356 ± 0.105 ab | 0.355 ± 0.020 a | 0.147 ± 0.010 b | 0.857 ± 0.134 ab | |
S13 | 0.932 ± 0.350 a | 0.425 ± 0.109 a | 0.298 ± 0.063 a | 1.655 ± 0.521 a | |
LD | NM | 0.053 ± 0.008 c | 0.055 ± 0.003 b | 0.022 ± 0.002 b | 0.131 ± 0.013 c |
S12 | 0.238 ± 0.009 b | 0.296 ± 0.023 a | 0.105 ± 0.016 a | 0.639 ± 0.047 b | |
S13 | 0.563 ± 0.025 a | 0.302 ± 0.050 a | 0.156 ± 0.034 a | 1.021 ± 0.081 a | |
MD | NM | 0.050 ± 0.003 c | 0.073 ± 0.015 b | 0.023 ± 0.007 b | 0.146 ± 0.018 c |
S12 | 0.202 ± 0.006 b | 0.277 ± 0.002 a | 0.090 ± 0.015 a | 0.569 ± 0.018 b | |
S13 | 0.479 ± 0.064 a | 0.259 ± 0.014 a | 0.101 ± 0.015 a | 0.839 ± 0.093 a | |
SD | NM | 0.019 ± 0.002 c | 0.031 ± 0.006 b | 0.007 ± 0.000 b | 0.056 ± 0.008 b |
S12 | 0.157 ± 0.049 b | 0.257 ± 0.049 a | 0.063 ± 0.011 a | 0.478 ± 0.109 a | |
S13 | 0.347 ± 0.028 a | 0.188 ± 0.017 a | 0.065 ± 0.008 a | 0.599 ± 0.019 a | |
Significance | ECMF | ** | ** | ** | ** |
DS | * | ** | ** | ** | |
ECMF × DS | ns | ns | ** | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ren, Y.; Tu, G.; Luo, X.; Zhang, Z. Light Drought Stress Positively Influenced Root Morphological and Endogenous Hormones in Pinus massoniana Seedlings Inoculated with Suillus luteus. Forests 2024, 15, 1997. https://doi.org/10.3390/f15111997
Wang Y, Ren Y, Tu G, Luo X, Zhang Z. Light Drought Stress Positively Influenced Root Morphological and Endogenous Hormones in Pinus massoniana Seedlings Inoculated with Suillus luteus. Forests. 2024; 15(11):1997. https://doi.org/10.3390/f15111997
Chicago/Turabian StyleWang, Yi, Youzhi Ren, Guiying Tu, Xuemei Luo, and Zhiyuan Zhang. 2024. "Light Drought Stress Positively Influenced Root Morphological and Endogenous Hormones in Pinus massoniana Seedlings Inoculated with Suillus luteus" Forests 15, no. 11: 1997. https://doi.org/10.3390/f15111997
APA StyleWang, Y., Ren, Y., Tu, G., Luo, X., & Zhang, Z. (2024). Light Drought Stress Positively Influenced Root Morphological and Endogenous Hormones in Pinus massoniana Seedlings Inoculated with Suillus luteus. Forests, 15(11), 1997. https://doi.org/10.3390/f15111997