A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Satellite Data Collection and Processing
2.2.2. Driver Data Sets and Processing
2.3. Methods
2.3.1. Vegetation Cover Calculation
2.3.2. Geodetector Model
3. Results and Discussion
3.1. Overall Evaluation of FVC in Dingnan County
3.2. Spatial and Temporal Distribution and Evolution of FVC
3.2.1. Changes in Vegetation Cover: 1988–2002
3.2.2. Changes in Vegetation Cover: 2002–2013
3.2.3. Changes in Vegetation Cover: 2013–2023
3.3. Analysis of Driving Factors of FVC
3.4. Analysis of FVC Variation in Typical Rare-Earth Mining Areas
3.4.1. Examination of Factors Influencing FVC Change in the Lingbei Mining Area
3.4.2. Effects of Rare-Earth Mining on FVC
3.5. Limitations and Future Work
- Inconsistencies in satellite data: While the Landsat satellite imagery was selected with relatively small time gaps, statistical inaccuracies still persist. Images prior to 2017 were obtained from Landsat 5, those from 2017 from Landsat 8, and those from 2023 from Landsat 9. The differences in satellite data products may affect subsequent statistical results, introducing certain limitations to the study.
- Environmental factors affecting images and image processing: The accuracy of results may be affected by conditions such as atmospheric interference, particulate matter, and various environmental elements. [84,85]. Cloud cover can alter spectral values, resulting in errors when measuring continuous variables such as vegetation biomass. The NDVI is especially prone to distortion due to atmospheric conditions such as cloud cover [86]. Meanwhile, processing raw satellite images of lower quality can introduce significant statistical errors. Therefore, it is essential to employ various analytical methods and data processing strategies to reduce the impact of inaccuracies. Addressing striping artifacts in satellite imagery is critical to maintaining accuracy.
- Lack of field data: While shifts in vegetation coverage can reflect the degree of degradation and pollution related to mining activities, especially concerning solid waste emissions, examining these changes over time and space does not completely reveal the underlying causes. Field survey data must be combined with statistical results to allow for more comprehensive analysis and accurate inferences. In addition, due to the lack of field data, the selection of driving factors in this study remains limited. Meanwhile, although existing application examples have demonstrated the reliability of DPM in FVC estimation, it is still necessary to evaluate its accuracy using field-measured data. The lack of truth-value data creates uncertainty in this analysis, which undermines the overall evaluation and interpretation of the findings.
- Discretization in Geodetector analysis: When using the Geodetector method for driving factor analysis, the factors must be discretized. Various discretization techniques can impact the results to a certain degree. Additionally, due to incomplete data for Dingnan County prior to 2000, the number of discrete variables is limited, which may lead to statistically insignificant results, thus influencing the overall findings.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |
2023 | 4 | 4 | 4 | 5 | 3 | 3 | ||
2017 | 1 | 4 | 1 | 4 | 3 | 1 | 1 | |
2013 | 5 | 3 | 3 | 4 | 4 | 2 | 2 | 2 |
2006 | 2 | 5 | 3 | 5 | 3 | 1 | 1 | 3 |
2002 | 5 | 1 | 3 | 3 | 3 | 1 | 1 | 2 |
1997 | 3 | 5 | 2 | 2 | 1 | 5 | ||
1995 | 4 | 4 | 5 | 3 | 2 | 4 | ||
1988 | 1 | 2 | 1 | 4 |
FVC Value | Grade |
0.0–0.2 | Very low vegetation cover |
0.2–0.4 | Low vegetation cover |
0.4–0.6 | Moderate vegetation coverage |
0.6–0.8 | High vegetation cover |
0.8–1 | Very high vegetation cover |
Class | 1988 | 1995 | 1997 | 2002 | ||||
Area (km2) | Percent | Area (km2) | Percent | Area (km2) | Percent | Area (km2) | Percent | |
Very Low (0–0.2) | 161.81 | 12.25% | 166.76 | 12.62% | 169.86 | 12.86% | 172.57 | 13.07% |
Low (0.2–0.4) | 137.58 | 10.42% | 135.19 | 10.23% | 134.25 | 10.17% | 154.85 | 11.73% |
Relatively Low (0–0.4) | 299.39 | 22.67% | 301.95 | 22.85% | 304.11 | 23.03% | 327.42 | 24.80% |
Medium (0.4–0.6) | 223.22 | 16.90% | 206.25 | 15.61% | 209.72 | 15.88% | 236.96 | 17.94% |
High (0.6–0.8) | 343.25 | 25.99% | 334.13 | 25.29% | 345.51 | 26.16% | 357.96 | 27.11% |
Very High (0.8–1) | 454.73 | 34.44% | 478.91 | 36.25% | 461.25 | 34.93% | 398.26 | 30.15% |
Relatively High (0.6–1) | 797.98 | 60.43% | 813.04 | 61.54% | 806.76 | 61.09% | 756.22 | 57.26% |
Class | 2002 | 2006 | 2013 | |||
Area (km2) | Percent | Area (km2) | Percent | Area (km2) | Percent | |
Very Low (0–0.2) | 172.57 | 13.07% | 157.71 | 11.94% | 152.28 | 11.53% |
Low (0.2–0.4) | 154.85 | 11.73% | 153.14 | 11.60% | 156.73 | 11.87% |
Relatively Low (0–0.4) | 327.42 | 24.80% | 310.85 | 23.54% | 309.01 | 23.40% |
Medium (0.4–0.6) | 236.96 | 17.94% | 237.31 | 17.97% | 268.96 | 20.37% |
High (0.6–0.8) | 357.96 | 27.11% | 361.91 | 27.41% | 375.62 | 28.44% |
Very High (0.8–1) | 398.26 | 30.15% | 410.51 | 31.09% | 367.02 | 27.79% |
Relatively High (0.6–1) | 756.22 | 57.26% | 772.42 | 58.49% | 742.64 | 56.23% |
Class | 2013 | 2017 | 2023 | |||
Area (km2) | Percent | Area (km2) | Percent | Area (km2) | Percent | |
Very Low (0–0.2) | 152.28 | 11.53% | 125.27 | 9.49% | 117.88 | 8.93% |
Low (0.2–0.4) | 156.73 | 11.87% | 115.66 | 8.77% | 95.18 | 7.20% |
Relatively Low (0–0.4) | 309.01 | 23.40% | 240.93 | 18.25% | 213.06 | 16.13% |
Medium (0.4–0.6) | 268.96 | 20.37% | 213.87 | 16.19% | 139.91 | 10.60% |
High (0.6–0.8) | 375.62 | 28.44% | 410.51 | 31.08% | 325.17 | 24.62% |
Very High (0.8–1) | 367.02 | 27.79% | 455.29 | 34.48% | 642.46 | 48.65% |
Relatively High (0.6–1) | 742.64 | 56.23% | 865.80 | 65.56% | 967.63 | 73.27% |
References
- Yue, J.; Guo, W.; Yang, G.; Zhou, C.; Feng, H.; Qiao, H. Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing. Plant Methods 2021, 17, 51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Jia, K.; Wei, X.; Xia, M.; Yao, Y.; Zhang, X.; Liu, D.; Tao, G. Generating spatiotemporally consistent fractional vegetation cover at different scales using spatiotemporal fusion and multiresolution tree methods. ISPRS J. Photogramm. Remote Sens. 2020, 167, 214–229. [Google Scholar] [CrossRef]
- Fernández-Guisuraga, J.M.; Calvo, L.; Quintano, C.; Fernández-Manso, A.; Fernandes, P.M. Fractional vegetation cover ratio estimated from radiative transfer modeling outperforms spectral indices to assess fire severity in several Mediterranean plant communities. Remote Sens. Environ. 2023, 290, 113542. [Google Scholar] [CrossRef]
- Tu, Y.; Jia, K.; Wei, X.; Yao, Y.; Xia, M.; Zhang, X.; Jiang, B. A Time-Efficient Fractional Vegetation Cover Estimation Method Using the Dynamic Vegetation Growth Information from Time Series GLASS FVC Product. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1672–1676. [Google Scholar] [CrossRef]
- Melville, B.; Fisher, A.; Lucieer, A. Ultra-high spatial resolution fractional vegetation cover from unmanned aerial multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 14–24. [Google Scholar] [CrossRef]
- Mehmood, K.; Anees, S.A.; Rehman, A.; Pan, S.; Tariq, A.; Zubair, M.; Liu, Q.; Rabbi, F.; Khan, K.A.; Luo, M. Exploring spatiotemporal dynamics of NDVI and climate-driven responses in ecosystems: Insights for sustainable management and climate resilience. Ecol. Inform. 2024, 80, 102532. [Google Scholar] [CrossRef]
- Shobairi, S.O.R.; Usoltsev, V.A.; Chasovskikh, V.P. Dynamic estimation model of vegetation fractional coverage and drivers. Int. J. Adv. Appl. Sci. 2018, 5, 60–66. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, J.; Zhang, J.; Kong, H. Dynamic changes of vegetation coverage in China-Myanmar economic corridor over the past 20 years. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102378. [Google Scholar] [CrossRef]
- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region. Ecol. Inform. 2024, 82, 102732. [Google Scholar] [CrossRef]
- Li, X.; Wang, K.; Huntingford, C.; Zhu, Z.; Peñuelas, J.; Myneni, R.B.; Piao, S. Vegetation greenness in 2023. Nat. Rev. Earth Environ. 2024, 5, 241–243. [Google Scholar] [CrossRef]
- Zhou, Z.; Ding, Y.; Shi, H.; Cai, H.; Fu, Q.; Liu, S.; Li, T. Analysis and prediction of vegetation dynamic changes in China: Past, present and future. Ecol. Indic. 2020, 117, 106642. [Google Scholar] [CrossRef]
- Chen, N.; Tsendbazar, N.-E.; Hamunyela, E.; Verbesselt, J.; Herold, M. Sub-annual tropical forest disturbance monitoring using harmonized Landsat and Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102386. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Z.; Liu, G.; Chen, N.; Lei, S.; Du, C.; Xu, J.; Li, Y.; Zhang, R.; Huang, C. Estimating Effects of Natural and Anthropogenic Activities on Trophic Level of Inland Water: Analysis of Poyang Lake Basin, China, with Landsat-8 Observations. Remote Sens. 2023, 15, 1618. [Google Scholar] [CrossRef]
- Luo, M.; Anees, S.A.; Huang, Q.; Qin, X.; Qin, Z.; Fan, J.; Han, G.; Zhang, L.; Shafri, H.Z.M. Improving Forest Above-Ground Biomass Estimation by Integrating Individual Machine Learning Models. Forests 2024, 15, 975. [Google Scholar] [CrossRef]
- Yu, T.; Sun, R.; Xiao, Z.; Zhang, Q.; Liu, G.; Cui, T.; Wang, J. Estimation of Global Vegetation Productivity from Global LAnd Surface Satellite Data. Remote Sens. 2018, 10, 327. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, M.; Wei, X.; Yao, Y.; Zhang, X.; Liu, D. Spatio-Temporal Analysis and Uncertainty of Fractional Vegetation Cover Change over Northern China during 2001–2012 Based on Multiple Vegetation Data Sets. Remote Sens. 2018, 10, 549. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, X.; Ou, J.; Li, X.; Wen, Y. Assimilating multi-source remotely sensed data into a light use efficiency model for net primary productivity estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 11–25. [Google Scholar] [CrossRef]
- Chang, X.; Wang, D.; Xing, Y.; Wang, J.; Gong, W. Dynamic Responses of Landscape Pattern and Vegetation Coverage to Urban Expansion and Greening: A Case Study of the Severe Cold Region, China. Forests 2023, 14, 801. [Google Scholar] [CrossRef]
- Dou, X.; Ma, X.; Huo, T.; Zhu, J.; Zhao, C. Assessment of the environmental effects of ecological water conveyance over 31 years for a terminal lake in Central Asia. Catena 2022, 208, 105725. [Google Scholar] [CrossRef]
- Xiang, X.; Zhai, Z.; Fan, C.; Ding, Y.; Ye, L.; Li, J. Modelling future land use land cover changes and their impacts on urban heat island intensity in Guangzhou, China. J. Environ. Manag. 2024, 366, 121787. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, G.; Xu, F.; Li, S. Landsat-8 and Gaofen-1 image-based inversion method for the downscaled land surface temperature of rare earth mining areas. Infrared Phys. Technol. 2021, 113, 103658. [Google Scholar] [CrossRef]
- Bai, J.; Xu, X.; Duan, Y.; Zhang, G.; Wang, Z.; Wang, L.; Zheng, C. Evaluation of resource and environmental carrying capacity in rare earth mining areas in China. Sci. Rep. 2022, 12, 6105. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Chen, T.; Zhen, N.; Niu, R. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index. Environ. Sci. Pollut. Res. Int. 2020, 27, 15716–15728. [Google Scholar] [CrossRef]
- Wang, Y.; Hong, H.; Chen, W.; Li, S.; Panahi, M.; Khosravi, K.; Shirzadi, A.; Shahabi, H.; Panahi, S.; Costache, R. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. J. Environ. Manag. 2019, 247, 712–729. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, X.; Wang, P.; Hu, Y.; Cheng, H. Heavy metal pollution caused by small-scale metal ore mining activities: A case study from a polymetallic mine in South China. Sci. Total Environ. 2018, 639, 217–227. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Wen, X.; Duan, C.; Zhang, D. Effect of simulated acid rain on soil acidification and rare earth elements leaching loss in soils of rare earth mining area in southern Jiangxi Province of China. Environ. Earth Sci. 2012, 69, 843–853. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous impact of mining activities on soil heavy metals levels and human health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef]
- Mishra, M.; Santos, C.A.G.; Nascimento, T.; Dash, M.K.; Silva, R.M.D.; Kar, D.; Acharyya, T. Mining impacts on forest cover change in a tropical forest using remote sensing and spatial information from 2001-2019: A case study of Odisha (India). J Environ. Manag. 2022, 302, 114067. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wei, Z.; Wang, X.; Xu, F. Spectral Characteristics of Reclaimed Vegetation in a Rare Earth Mine and Analysis of its Correlation with the Chlorophyll Content. J. Appl. Spectrosc. 2020, 87, 553–562. [Google Scholar] [CrossRef]
- Pan, H.; Zhou, G.; Yang, R.; Cheng, Z.; Sun, B. Heavy Metals and As in Ground Water, Surface Water, and Sediments of Dexing Giant Cu-Polymetallic Ore Cluster, East China. Water 2022, 14, 352. [Google Scholar] [CrossRef]
- Rout, T.K.; Masto, R.E.; Ram, L.C.; George, J.; Padhy, P.K. Assessment of human health risks from heavy metals in outdoor dust samples in a coal mining area. Environ. Geochem. Health 2013, 35, 347–356. [Google Scholar] [CrossRef]
- Zhang, L.; Bai, K.Z.; Wang, M.J.; Karthikeyan, R. Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China. Nat. Hazards 2015, 80, 1213–1230. [Google Scholar] [CrossRef]
- Zhang, C.; Li, F.; Li, J.; Zhang, K.; Ran, W.; Du, M.; Guo, J.; Hou, G. Assessing the effect, attribution, and potential of vegetation restoration in open-pit coal mines’ dumping sites during 2003–2020 utilizing remote sensing. Ecol. Indic. 2023, 155, 111003. [Google Scholar] [CrossRef]
- Wang, W.; Liu, R.; Gan, F.; Zhou, P.; Zhang, X.; Ding, L. Monitoring and Evaluating Restoration Vegetation Status in Mine Region Using Remote Sensing Data: Case Study in Inner Mongolia, China. Remote Sens. 2021, 13, 1350. [Google Scholar] [CrossRef]
- Hu, J.; Ye, B.; Bai, Z.; Feng, Y. Remote Sensing Monitoring of Vegetation Reclamation in the Antaibao Open-Pit Mine. Remote Sens. 2022, 14, 5634. [Google Scholar] [CrossRef]
- Xie, J.; Liu, Y.; Xie, M.; Xia, L.; Yang, R.; Li, J. Exploring the restoration stability of abandoned open-pit mines by vegetation resilience indicator based on the LandTrendr algorithm. Ecol. Indic. 2024, 166, 112392. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, J.; Bai, S.; Sun, J.; Zheng, X.; Sun, Z. Change and driving factors of vegetation coverage in Gansu section of Yellow River Basin in recent 20 years. Trans. Agric. Mach. 2024, 55, 365–372+404. [Google Scholar]
- Ma, L.; Zheng, J.; Peng, J.; Li, G.; Han, W.; Liu, L. Remote sensing monitoring and influencing factors of grassland degradation in Xinjiang from 2001 to 2020. Surv. Mapp. Bull. 2024, 1–7. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Li, D.; Lu, X.; Yang, X.; Pan, X.; Mu, H.; Shi, D.; Zhang, B. Soil erosion changes over the past five decades in the red soil region of Southern China. J. Mt. Sci. 2010, 7, 92–99. [Google Scholar] [CrossRef]
- Zhu, Q.; Guo, J.; Guo, X.; Chen, L.; Han, Y.; Liu, S. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Indic. 2021, 121, 107119. [Google Scholar] [CrossRef]
- Li, H.; Zhou, B.; Xu, F.; Wei, Z. Hyperspectral characterization and chlorophyll content inversion of reclaimed vegetation in rare earth mines. Environ. Sci. Pollut. Res. Int. 2022, 29, 36839–36853. [Google Scholar] [CrossRef]
- He, L.; Zhong, H.; Liu, G.; Dai, Z.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Chen, Q.; Li, Y.; Guo, D.; Nie, X.; Peng, X. Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils. Ecol. Indic. 2020, 117, 106626. [Google Scholar] [CrossRef]
- Yang, L.; Wei, T.; Li, S.; Lv, Y.; Miki, T.; Yang, L.; Nagasaka, T. Immobilization persistence of Cu, Cr, Pb, Zn ions by the addition of steel slag in acidic contaminated mine soil. J. Hazard. Mater. 2021, 412, 125176. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 1414–1418. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef]
- Amici, V.; Marcantonio, M.; La Porta, N.; Rocchini, D. A multi-temporal approach in MaxEnt modelling: A new frontier for land use/land cover change detection. Ecol. Inform. 2017, 40, 40–49. [Google Scholar] [CrossRef]
- McKenna, P.B.; Doley, D.; Ufer, N.; Glenn, V.; Phinn, S.; Erskine, P.D. Vegetation recovery of rehabilitated pasture at three coal mine sites following fire disturbance. Ecol. Eng. 2024, 209, 107383. [Google Scholar] [CrossRef]
- Yu, H.; Zahidi, I.; Liang, D. Spatiotemporal variation of vegetation cover in mining areas of Dexing City, China. Environ. Res. 2023, 225, 115634. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, P.; Xia, J.; Huang, H.; Li, J. Impact of land use on water quality in buffer zones at different scales in the Poyang Lake, middle reaches of the Yangtze River basin. Sci. Total Environ. 2023, 896, 165161. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shi, K.; Chen, Z.; Liu, S.; Chang, Z. Developing improved time-series DMSP-OLS-like data (1992–2019) in China by integrating DMSP-OLS and SNPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4407714. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J. Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geogr. Sin. 2017, 72, 161–173. [Google Scholar] [CrossRef]
- Mu, X.; Yang, Y.; Xu, H.; Guo, Y.; Lai, Y.; McVicar, T.R.; Xie, D.; Yan, G. Improvement of NDVI mixture model for fractional vegetation cover estimation with consideration of shaded vegetation and soil components. Remote Sens. Environ. 2024, 314, 114409. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Li, D.; Fan, J.; Wang, J. Change characteristics and their causes of fractional vegetation coverage (FVC) in Shaanxi Province. Ying Yong Sheng Tai Xue Bao 2010, 21, 2896–2903. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, H.; Li, Z.; Xin, X.; Zheng, X.; Zhao, K. Comparison of fractional vegetation cover estimations using dimidiate pixel models and look-up table inversions of the PROSAIL model from Landsat 8 OLI data. J. Appl. Remote Sens. 2016, 10, 036022. [Google Scholar] [CrossRef]
- Liu, H.; Li, X.; Mao, F.; Zhang, M.; Zhu, D.e.; He, S.; Huang, Z.; Du, H. Spatiotemporal Evolution of Fractional Vegetation Cover and Its Response to Climate Change Based on MODIS Data in the Subtropical Region of China. Remote Sens. 2021, 13, 913. [Google Scholar] [CrossRef]
- Rodgers, J.C.; Murrah, A.W.; Cooke, W.H. The Impact of Hurricane Katrina on the Coastal Vegetation of the Weeks Bay Reserve, Alabama from NDVI Data. Estuaries Coasts 2009, 32, 496–507. [Google Scholar] [CrossRef]
- Han, H.; Yin, Y.; Zhao, Y.; Qin, F. Spatiotemporal Variations in Fractional Vegetation Cover and Their Responses to Climatic Changes on the Qinghai–Tibet Plateau. Remote Sens. 2023, 15, 2662. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Xue, B.; Yinglan, A. Changes in vegetation cover and its influencing factors in the inner Mongolia reach of the yellow river basin from 2001 to 2018. Environ. Res. 2022, 215, 114253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Balzter, H.; Qiu, B.; Cheng, J. Directional and Zonal Analysis of Urban Thermal Environmental Change in Fuzhou as an Indicator of Urban Landscape Transformation. Remote Sens. 2019, 11, 2810. [Google Scholar] [CrossRef]
- Chen, N.; Tsendbazar, N.-E.; Requena Suarez, D.; Silva-Junior, C.H.L.; Verbesselt, J.; Herold, M. Revealing the spatial variation in biomass uptake rates of Brazil’s secondary forests. ISPRS J. Photogramm. Remote Sens. 2024, 208, 233–244. [Google Scholar] [CrossRef]
- Wang, J.-F.; Zhang, T.-L.; Fu, B.-J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, X.; Wang, X.; Xiong, Z.; Song, C. Spatial associations between NDVI and environmental factors in the Heihe River Basin. J. Geogr. Sci. 2019, 29, 1548–1564. [Google Scholar] [CrossRef]
- Xu, Q.; Dong, Y.; Wang, Y.; Yang, R.; Xu, C. Determinants and identification of the northern boundary of China’s tropical zone. J. Geogr. Sci. 2017, 28, 31–45. [Google Scholar] [CrossRef]
- Hu, T.; Peng, J.; Liu, Y.; Wu, J.; Li, W.; Zhou, B. Evidence of green space sparing to ecosystem service improvement in urban regions: A case study of China’s Ecological Red Line policy. J. Clean. Prod. 2020, 251, 119678. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Li, T.; Zhang, Q.; Wang, G.; Singh, V.P.; Zhao, J.; Sun, S.; Wang, D.; Liu, T.; Duan, L. Ecological degradation in the Inner Mongolia reach of the Yellow River Basin, China: Spatiotemporal patterns and driving factors. Ecol. Indic. 2023, 154, 110498. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.; Huang, D.; Wang, X. Evaluation Study of Ecological Resilience in Southern Red Soil Mining Areas Considering Rare Earth Mining Process. Sustainability 2023, 15, 2258. [Google Scholar] [CrossRef]
- Chen, X.; Cai, Q.Y.; Yu, X.S.; Liu, Y.Z.; Ge, G.; Wu, L.; Wang, X.F. Vertical distributions of soil environmental factors in ion-type rare earth mining of southern Jiangxi-a case study in Longnan Rare Earth mining Area. Chin. Rare Earths 2015, 36, 23–28. [Google Scholar] [CrossRef]
- Li, H. Change detection of ground-surface environment in rare earth mining area based on multi-temporal remote sensing: A case in Lingbei rare earth mining area. Environ. Sci. 2014, 43, 1087–1094. [Google Scholar] [CrossRef]
- Li, Y.; Li, H.; Xu, F. Spatiotemporal changes in desertified land in rare earth mining areas under different disturbance conditions. Environ. Sci. Pollut. Res. Int. 2021, 28, 30323–30334. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, J.; Zhao, K.; Wang, X.; Chen, G. Status of leaching technology and theory of ion adsorption type rare earth ores. Chin. Rare Earths 2018, 39, 132–141. [Google Scholar]
- Zou, G.; Wu, Y.; Cai, S. Impacts of ion-adsorption rare earth’s leaching process on resources and environment. Nonferrous Met. Sci. Eng. 2014, 5, 100–106. [Google Scholar]
- Xu, F.; Li, H.; Li, Y. Ecological environment quality evaluation and evolution analysis of a rare earth mining area under different disturbance conditions. Environ. Geochem. Health 2021, 43, 2243–2256. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Xu, C.; Wang, R.; Lv, T.; Ranagalage, M. Landscape ecological risk assessment in the Dongjiangyuan region, China, from 1985 to 2020 using geospatial techniques. Geomat. Nat. Hazards Risk 2023, 14, 2173662. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, X.; Song, W.; Li, Z.; Chen, J. What is the main cause of grassland degradation? A case study of grassland ecosystem service in the middle-south Inner Mongolia. Catena 2017, 150, 100–107. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, W.; Liu, S.; An, Y.; Pereira, P. Ecosystems impact on aeolian dust emissions in Inner Mongolia from 2001 to 2018. Geoderma 2022, 422, 115938. [Google Scholar] [CrossRef]
- Ermida, S.L.; Trigo, I.F.; DaCamara, C.C.; Roujean, J.-L. Assessing the potential of parametric models to correct directional effects on local to global remotely sensed LST. Remote Sens. Environ. 2018, 209, 410–422. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Jain, M. The Benefits and Pitfalls of Using Satellite Data for Causal Inference. Rev. Environ. Econ. Policy 2020, 14, 157–169. [Google Scholar] [CrossRef]
Index | Dingnan County | ||
---|---|---|---|
q-Value | p-Value | Sorting of q-Values | |
Surface temperature (X1) | 0.666 | 1.000 | 5 |
Average rainfall (X2) | 0.294 | 0.996 | 8 |
Temperature (X3) | 0.945 | 0.286 | 3 |
Average wind speed (X4) | 0.459 | 0.995 | 7 |
Night light data (X5) | 0.773 | 0.740 | 4 |
GDP (X6) | 0.947 | 0.189 | 2 |
Population (X7) | 0.580 | 0.830 | 6 |
Amount of soil erosion (X8) | 0.962 | 0.518 | 1 |
Index | Lingbei Mining Area | ||
---|---|---|---|
q-Value | p-Value | Sorting of q-Values | |
Surface temperature (X1) | 0.976 | 0.360 | 1 |
Average rainfall (X2) | 0.653 | 0.843 | 6 |
Temperature (X3) | 0.897 | 0.236 | 2 |
Average wind speed (X4) | 0.428 | 0.998 | 8 |
Night light data (X5) | 0.726 | 0.605 | 5 |
GDP (X6) | 0.861 | 0.464 | 4 |
Population (X7) | 0.642 | 0.829 | 7 |
Amount of soil erosion (X8) | 0.895 | 0.637 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Z.; Liu, Y.; Chen, N.; Liu, G.; Lei, S.; Xu, J.; Li, J.; Ren, J.; Huang, C. A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data. Forests 2024, 15, 1999. https://doi.org/10.3390/f15111999
Zheng Z, Liu Y, Chen N, Liu G, Lei S, Xu J, Li J, Ren J, Huang C. A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data. Forests. 2024; 15(11):1999. https://doi.org/10.3390/f15111999
Chicago/Turabian StyleZheng, Zhubin, Yuqing Liu, Na Chen, Ge Liu, Shaohua Lei, Jie Xu, Jianzhong Li, Jingli Ren, and Chao Huang. 2024. "A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data" Forests 15, no. 11: 1999. https://doi.org/10.3390/f15111999
APA StyleZheng, Z., Liu, Y., Chen, N., Liu, G., Lei, S., Xu, J., Li, J., Ren, J., & Huang, C. (2024). A 35-Year Analysis of Vegetation Cover in Rare-Earth Mining Areas Using Landsat Data. Forests, 15(11), 1999. https://doi.org/10.3390/f15111999