Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Research Framework
2.3. Sample Plot Layout
2.4. Remote Sensing Estimation of Meteorological Data
2.4.1. Temperature
- to TM, K1 = 607.76 W/(m2·µmsr), K2 = 1260.56 K;
- to ETM+, K1= 666.09 W/(m2·µm·sr), K2 = 1282.71 K;
- to TIRS Band10, K1 = 774.89 W/(m2·µm·sr), K2 = 1321.08 K.
2.4.2. Relative Humidity and Vapor Pressure Deficit
2.5. Explanatory Variables
2.6. Model Construction and Evaluation
3. Results
3.1. Evaluation of the Accuracy of In-Forest Meteorological Estimates
3.2. Evaluation of Understory Fine DFMC Model Accuracy
3.3. Modeling Factor
4. Discussion
4.1. In-Forest Meteorology
4.2. Understory Fine DFMC
4.3. Significance and Future Research Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFMC | Dead fuel moisture content |
Wtw | The weight of dead fuel |
Wtd | The weight of dried dead fuel |
Lλ | The thermal infrared radiation brightness value |
ε | The surface-specific radiance |
B (Ts) | The thermal radiant luminance of the blackbody |
L↓ | The radiant luminance projected downward to the surface by the atmosphere |
τ | The surface-specific radiance |
L↑ | The radiant luminance emitted from the surface and reaching the satellite sensors after passing through the atmosphere |
TS | The real temperature of the surface |
W | The water vapor content |
τj | The atmospheric transmittance of the j-band |
τi | The atmospheric transmittance of the i-band |
εi | The surface-specific emissivity of the i-band |
εj | The surface-specific emissivity of the j-band |
Ti,k | The luminance temperature of the i-band for the kth image element |
Tj,k | The luminance temperature of the j-band for the kth image element |
The average luminance temperature of the i-band of the Nth image element | |
The average luminance temperature of the j-band of the Nth image element | |
ea | The actual water vapor pressure |
es | The saturated water vapor pressure |
λ | With changes in latitude and season (1.11–3.37) |
g | The acceleration of gravity |
δ | The ratio of the specific gas constants of water vapor and dry air (0.622) |
T | The canopy temperature estimated by remote sensing |
D | Vapor pressure deficit |
RH | Relative humidity |
The near-infrared band reflectance | |
The infrared band reflectance |
Appendix A
ID | Mean Height (m) | Mean Diameter at Breast (cm) | Canopy Density (%) | Major Tree Species |
---|---|---|---|---|
1 | 8.23 | 12.29 | 40 | Pinus |
2 | 6.68 | 8.59 | 70 | Pinus, Schima superba |
3 | 11.33 | 16.8 | 80 | Pinus, Liquidambar formosana Hance |
4 | 9.25 | 9.35 | 60 | Pinus, Schima superba |
5 | 15.6 | 18.07 | 55 | Liquidambar formosana Hance |
6 | 8.05 | 11.65 | 60 | Pinus, Schima superba |
7 | 5.82 | 8.27 | 20 | Pinus |
8 | 9.16 | 10.6 | 40 | Schima superba |
9 | 9.2 | 7.38 | 60 | Schima superba |
10 | 8.87 | 11.9 | 20 | Pinus |
11 | 11.78 | 19.07 | 80 | Schima superba |
12 | 9.36 | 13.78 | 50 | Pinus |
13 | 8.36 | 11.97 | 25 | Pinus |
14 | 11.38 | 14.18 | 60 | Schima superba |
15 | 6.44 | 9.89 | 50 | Schima superba |
16 | 14.33 | 21.48 | 70 | Schima superba |
17 | 12.58 | 17.06 | 50 | Pinus, Cunninghamia lanceolata |
18 | 5.36 | 7.29 | 5 | Pinus,Cunninghamia lanceolata |
19 | 7.11 | 12 | 10 | Pinus, Schima superba |
20 | 4.09 | 8.15 | 20 | Pinus |
21 | 13.7 | 17.57 | 30 | Pinus |
22 | 11.69 | 18.04 | 60 | Pinus |
23 | 9.88 | 16.25 | 75 | Pinus |
24 | 6.32 | 10.11 | 30 | Pinus, Cunninghamia lanceolata |
25 | 8.62 | 12.02 | 60 | Pinus, Liquidambar formosana Hance, Schima superba, Cunninghamia lanceolata |
References
- Vitolo, C.; Di Giuseppe, F.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-based global meteorological wildfire danger maps. Sci. Data 2020, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.Z.; Zhang, G.; Chu, R.; Zhang, J.; Yang, Z.G.; Wu, X.; Xiao, H.S. Detecting forest fire omission error based on data fusion at subpixel scale. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103737. [Google Scholar] [CrossRef]
- Zhao, J.; Yue, C.; Wang, J.; Hantson, S.; Wang, X.; He, B.; Li, G.; Wang, L.; Zhao, H.; Luyssaert, S. Forest fire size amplifies postfire land surface warming. Nature 2024, 633, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Aguado, I.; Chuvieco, E.; Borén, R.; Nieto, H. Estimation of dead fuel moisture content from meteorological data in Mediterranean areas.: Applications in fire danger assessment. Int. J. Wildland Fire 2007, 16, 390–397. [Google Scholar] [CrossRef]
- Fan, C.Q.; He, B.B.; Yin, J.P.; Chen, R. Regional estimation of dead fuel moisture content in southwest China based on a practical process-based model. Int. J. Wildland Fire 2023, 32, 1148–1161. [Google Scholar] [CrossRef]
- Matthews, S.; Gould, J.; McCaw, L. Simple models for predicting dead fuel moisture in eucalyptus forests. Int. J. Wildland Fire 2010, 19, 459–467. [Google Scholar] [CrossRef]
- Loehman, R.A.; Reinhardt, E.; Riley, K.L. Wildland fire emissions, carbon, and climate: Seeing the forest and the trees—A cross-scale assessment of wildfire and carbon dynamics in fire-prone, forested ecosystems. For. Ecol. Manag. 2014, 317, 9–19. [Google Scholar] [CrossRef]
- Rodrigues, M.; de Dios, V.R.; Sil, A.; Camprubi, A.C.; Fernandes, P.M. VPD-based models of dead fine fuel moisture provide best estimates in a global dataset. Agric. For. Meteorol. 2024, 346, 109868. [Google Scholar] [CrossRef]
- Nelson, R.M., Jr. A method for describing equilibrium moisture content of forest fuels. Can. J. For. Res. 1984, 14, 597–600. [Google Scholar] [CrossRef]
- Viney, N.R.; Hatton, T.J. Assessment of existing fine fuel moisture models applied to Eucalyptus litter. Aust. For. 1989, 52, 82–93. [Google Scholar] [CrossRef]
- Wagner, C.E.V. Drying rates of some fine forest fuels. Fire Control Notes 1969, 30, 19690604683. [Google Scholar]
- Stuart, M. A Process-based Model of Fine Fuel Moisture. Int. J. Wildland Fire 2006, 15, 155–168. [Google Scholar] [CrossRef]
- Toomey, M.; Vierling, L.A. Multispectral remote sensing of landscape level foliar moisture: Techniques and applications for forest ecosystem monitoring. Can. J. For. Res. 2005, 35, 1087–1097. [Google Scholar] [CrossRef]
- Yebra, M.; Chuvieco, E.; Riano, D. Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agric. For. Meteorol. 2008, 148, 523–536. [Google Scholar] [CrossRef]
- Quan, X.W.; He, B.B.; Liu, X.Z.; Liao, Z.M.; Qiu, S.; Qiu, C.M. Retrieval of fuel moisture content by using radiative transfer models from optical remote sensing data. J. Remote Sens. 2019, 23, 62–77. [Google Scholar] [CrossRef]
- Dasgupta, S.; Qu, J.J.; Hao, X.J.; Bhoi, S. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA. Remote Sens. Environ. 2007, 108, 138–150. [Google Scholar] [CrossRef]
- Maki, M.; Ishiahra, M.; Tamura, M. Estimation of leaf water status to monitor the risk of forest fires by using remotely sensed data. Remote Sens. Environ. 2004, 90, 441–450. [Google Scholar] [CrossRef]
- Quan, X.W.; Yebra, M.; Riaño, D.; He, B.B.; Lai, G.K.; Liu, X.Z. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102354. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riano, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; de Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef]
- Rao, K.; Williams, A.P.; Flefil, J.F.; Konings, A.G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 2020, 245, 111797. [Google Scholar] [CrossRef]
- Zhu, L.J.; Webb, G.I.; Yebra, M.; Scortechini, G.; Miller, L.; Petitjean, F. Live fuel moisture content estimation from MODIS: A deep learning approach. ISPRS J. Photogramm Remote Sens. 2021, 179, 81–91. [Google Scholar] [CrossRef]
- Quan, X.W.; Chen, R.; Yebra, M.; Riaño, D.; de Dios, V.R.; Li, X.; He, B.B.; Nolan, R.H.; Griebel, A.; Boer, M.M.; et al. Sub-daily live fuel moisture content estimation from Himawari-8 data. Remote Sens. Environ. 2024, 308, 114170. [Google Scholar] [CrossRef]
- Nieto, H.; Aguado, I.; Chuvieco, E.; Sandholt, I. Dead fuel moisture estimation with MSG-SEVIRI data. Retrieval of meteorological data for the calculation of the equilibrium moisture content. Agric. For. Meteorol. 2010, 150, 861–870. [Google Scholar] [CrossRef]
- Nolan, R.H.; Resco de Dios, V.; Boer, M.M.; Caccamo, G.; Goulden, M.L.; Bradstock, R.A. Predicting dead fine fuel moisture at regional scales using vapour pressure deficit from MODIS and gridded weather data. Remote Sens. Environ. 2016, 174, 100–108. [Google Scholar] [CrossRef]
- Resco de Dios, V.; Fellows, A.W.; Nolan, R.H.; Boer, M.M.; Bradstock, R.A.; Domingo, F.; Goulden, M.L. A semi-mechanistic model for predicting the moisture content of fine litter. Agric. For. Meteorol. 2015, 203, 64–73. [Google Scholar] [CrossRef]
- Fan, C.Q.; He, B.B.; Yin, J.P.; Chen, R.; Zhang, H.G. Process-based and geostationary meteorological satellite-enhanced dead fuel moisture content estimation. Gisci. Remote Sens. 2024, 61, 2324556. [Google Scholar] [CrossRef]
- Pickering, B.J.; Duff, T.J.; Baillie, C.; Cawson, J.G. Darker, cooler, wetter: Forest understories influence surface fuel moisture. Agric. For. Meteorol. 2021, 300, 108311. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; De Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Ewers, R.M.; Banks Leite, C. Fragmentation Impairs the Microclimate Buffering Effect of Tropical Forests. PLoS ONE 2013, 8, 58093. [Google Scholar] [CrossRef]
- Hardwick, S.R.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Kane, J.M. Stand conditions alter seasonal microclimate and dead fuel moisture in a Northwestern California oak woodland. Agric. For. Meteorol. 2021, 308, 108602. [Google Scholar] [CrossRef]
- Matthews, S. Dead fuel moisture research: 1991-2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef]
- Holden, Z.A.; Jolly, W.M. Modeling topographic influences on fuel moisture and fire danger in complex terrain to improve wildland fire management decision support. For. Ecol. Manag. 2011, 262, 2133–2141. [Google Scholar] [CrossRef]
- Nyman, P.; Baillie, C.C.; Duff, T.J.; Sheridan, G.J. Eco-hydrological controls on microclimate and surface fuel evaporation in complex terrain. Agric. For. Meteorol. 2018, 252, 49–61. [Google Scholar] [CrossRef]
- Walsh, S.F.; Nyman, P.; Sheridan, G.J.; Baillie, C.C.; Tolhurst, K.G.; Duff, T.J. Hillslope-scale prediction of terrain and forest canopy effects on temperature and near-surface soil moisture deficit. Int. J. Wildland Fire 2017, 26, 191–208. [Google Scholar] [CrossRef]
- Gould, W.A.; González, G.; Hudak, A.T.; Hollingsworth, T.N.; Hollingsworth, J. Forest Structure and Downed Woody Debris in Boreal, Temperate, and Tropical Forest Fragments. Ambio 2008, 37, 577–587. [Google Scholar] [CrossRef]
- Buckley, S. NASADEM_HGT v001 (NASADEM Merged DEM Global 1 Arc Second), EarthData, NASA. 2019. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (accessed on 1 July 2023).
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 1994, 32, 243–253. [Google Scholar] [CrossRef]
- Wang, M.M.; He, G.J.; Zhang, Z.M.; Wang, G.Z.; Yin, R.Y.; Long, T.F. Atmospheric Water Vapor Retrieval from Landsat-8TIRS Data Using Split-window Algorithm. Remote Sens. Technol. Appl. 2017, 32, 166–172. [Google Scholar]
- Smith, W.L. Note on the Relationship Between Total Precipitable Water and Surface Dew Point. J. Appl. Meteorol. Climatol. 1966, 5, 726–727. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Rissi, M.N.; Baeza, M.J.; Gorgone-Barbosa, E.; Zupo, T.; Fidelis, A. Does season affect fire behaviour in the Cerrado? Int. J. Wildland Fire 2017, 26, 427–433. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling, R Package v 3.6-26 edn; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- R Development Core Team. R: The R Project for Statistical Computing, 4.3.2 edn; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Tin, K.H. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Bigelow, S.W.; North, M.P. Microclimate effects of fuels-reduction and group-selection silviculture: Implications for fire behavior in Sierran mixed-conifer forests. For. Ecol. Manag. 2012, 264, 51–59. [Google Scholar] [CrossRef]
- Kirshbaum, D.J.; Durran, D.R. Atmospheric factors governing banded orographic convection. J. Atmos. Sci. 2005, 62, 3758–3774. [Google Scholar] [CrossRef]
- Morales, A.; Morrison, H.; Posselt, D.J. Orographic Precipitation Response to Microphysical Parameter Perturbations for Idealized Moist Nearly Neutral Flow. J. Atmos. Sci. 2018, 75, 1933–1953. [Google Scholar] [CrossRef]
- Slijepcevic, A.; Anderson, W.R.; Matthews, S.; Anderson, D.H. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. Int. J. Wildland Fire 2018, 27, 190–202. [Google Scholar] [CrossRef]
- Yuan, W.P.; Zheng, Y.; Piao, S.L.; Ciais, P.; Lombardozzi, D.; Wang, Y.P.; Ryu, Y.; Chen, G.X.; Dong, W.J.; Hu, Z.M.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.; Chiang, J.; Lan, C.W.; Chung, C.H.; Liao, Y.C.; Lee, C.J. Increase in the range between wet and dry season precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Wypych, A.; Bochenek, B.; Rózycki, M. Atmospheric Moisture Content over Europe and the Northern Atlantic. Atmosphere. 2018, 9, 18. [Google Scholar] [CrossRef]
- Nyman, P.; Metzen, D.; Noske, P.J.; Lane, P.N.J.; Sheridan, G.J. Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel. Int. J. Wildland Fire 2015, 24, 1129–1142. [Google Scholar] [CrossRef]
- Zhang, L.B.; Sun, P.; Jin, S. Effects of wind speed on drying processes of fuel bedscomposed of Mongolian oak broadleaves. Chin. J. Appl. Ecol. 2016, 27, 3463–3468. [Google Scholar] [CrossRef]
- Zou, C.B.; Barron-Gafford, G.A.; Breshears, D.D. Effects of topography and woody plant canopy cover on near-ground solar radiation: Relevant energy inputs for ecohydrology and hydropedology. Geophys. Res. Lett. 2007, 34, 24. [Google Scholar] [CrossRef]
- Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks. For. Ecol. Manag. 2021, 496, 119379. [Google Scholar] [CrossRef]
- Babera, I.; Paritsis, J.; Ammassari, L.; Morales, J.M.; Kitzberger, T. Microclimate and species composition shape the contribution of fuel moisture to positive fire-vegetation feedbacks. Agric. For. Meteorol. 2023, 330, 109289. [Google Scholar] [CrossRef]
- Pinto, A.; Fernandes, P.M. Microclimate and Modeled Fire Behavior Differ Between Adjacent Forest Types in Northern Portugal. Forests 2014, 5, 2490–2504. [Google Scholar] [CrossRef]
Data Type | Variable | Abbreviate |
---|---|---|
Vegetation index | Normalized difference vegetation index | NDVI |
Topography data | Slope (°) | SLP |
Aspect | ASP | |
Elevation (m) | EVL | |
Regional-scale meteorological data | Precipitation (mm) | P |
Days since last precipitation (day) | DSLP | |
Sample-scale meteorological data | In-forest temperature (°) | IFT |
Canopy temperature (°) | CT | |
In-forest vapor pressure deficit (kPa) | IFD | |
Canopy vapor pressure deficit (kPa) | CD | |
In-forest relative humidity (%) | IFRH | |
Canopy relative humidity (%) | CRH | |
Season | Four seasons (1–12) | SEAS |
ID | ASP | SLP (°) | EVL (m) | Vegetation Form | ID | ASP | SLP (°) | EVL (m) | Vegetation Form |
---|---|---|---|---|---|---|---|---|---|
1 | 12.5 | 8.7 | 150 | Coniferous forest | 14 | 171 | 15 | 43 | Broadleaf forest |
2 | 11.3 | 8.4 | 168 | Mixed forest | 15 | 151 | 21 | 78 | Broadleaf forest |
3 | 16.2 | 22 | 215 | Mixed forest | 16 | 151 | 20 | 126 | Broadleaf forest |
4 | 5 | 12.5 | 172 | Mixed forest | 17 | 164 | 13 | 97 | Coniferous forest |
5 | 20 | 15.2 | 184 | Broadleaf forest | 18 | 238 | 4 | 126 | Coniferous forest |
6 | 42 | 15.9 | 176 | Mixed forest | 19 | 258 | 5 | 92 | Mixed forest |
7 | 67.8 | 23.9 | 182 | Coniferous forest | 20 | 232 | 4 | 165 | Coniferous forest |
8 | 4 | 17 | 183 | Broadleaf forest | 21 | 260 | 4.5 | 53.7 | Coniferous forest |
9 | 42 | 18 | 185 | Broadleaf forest | 22 | 314 | 7.8 | 132 | Coniferous forest |
10 | 87 | 5.5 | 151 | Coniferous forest | 23 | 293 | 7.1 | 135 | Coniferous forest |
11 | 81 | 11 | 154 | Broadleaf forest | 24 | 218 | 6.8 | 85 | Coniferous forest |
12 | 135 | 2 | 149 | Coniferous forest | 25 | 271 | 5.1 | 81 | Mixed forest |
13 | 149 | 4 | 84 | Coniferous forest |
Classification Scheme | Type of Feature | ||
---|---|---|---|
In-forest meteorological estimates | IFRH-scheme | IFRH-scheme1 | CRH+NDVI+P+DSLP+SEAS+SLP+ASP+EVL |
IFRH-scheme2 | CRH+NDVI+P+DSLP+SEAS | ||
IFT-scheme | IFT-scheme1 | CT+NDVI+P+DSLP+SEAS+ SLP+ASP+EVL | |
IFT-scheme2 | CT+NDVI+P+DSLP+SEAS | ||
IFD-scheme | IFD-scheme1 | CD+NDVI+P+DSLP+SEAS+ SLP+ASP+EVL | |
IFD-scheme2 | CD+NDVI+P+DSLP+SEAS | ||
Understory fine DFMC estimation | D-DFMC -scheme | D-DFMC-scheme1 | CD+CT+NDVI+P+DSLP+ SEAS+SLP+ASP+EVL |
D-DFMC-scheme2 | IFD+IFT+NDVI+P+DSLP+ SEAS+SLP+ASP+EVL | ||
D-DFMC-scheme3 | CD+CT+NDVI+P+DSLP+SEAS | ||
D-DFMC-scheme4 | IFD+IFT+NDVI+P+DSLP+SEAS | ||
RH-DFMC -scheme | RH-DFMC-scheme1 | CRH+CT+NDVI+P+DSLP+ SEAS+SLP+ASP+EVL | |
RH-DFMC-scheme2 | IFRH+IFT+NDVI+P+DSLP+ SEAS+SLP+ASP+EVL | ||
RH-DFMC-scheme3 | CRH+CT+NDVI+P+DSLP+ SEAS | ||
RH-DFMC-scheme4 | IFRH+IFT+NDVI+P+DSLP+SEAS |
Season | N | CRH | IFRH | CD | IFD | CT | IFT |
---|---|---|---|---|---|---|---|
Spring | 71 | 52.57% | 89% | 1.62 kPa | 0.3 kPa | 25.96° | 24.67° |
Summer | 64 | 67.50% | 93% | 1.69 kPa | 0.39 kPa | 31° | 33.7° |
Autumn | 111 | 50.06% | 78% | 2.16 kPa | 0.95 kPa | 28.95° | 28° |
Winter | 37 | 38.65% | 79% | 1.27 kPa | 0.35 kPa | 17.85° | 14° |
Type | Scheme | R2 | MAE | RMSE |
---|---|---|---|---|
IFRH-scheme | IFRH-scheme1 | 0.54 | 10.43% | 13.04% |
IFRH-scheme2 | 0.36 | 14.97% | 11.87% | |
IFT-scheme | IFT-scheme1 | 0.92 | 1.76° | 2.34° |
IFT-scheme2 | 0.9 | 1.91° | 2.53° | |
IFD-scheme | IFD-scheme1 | 0.47 | 0.47 kPa | 0.65 kPa |
IFD-scheme2 | 0.35 | 0.49 kPa | 0.73 kPa |
Type | Scheme | R2 | MAE (%) | RMSE (%) |
---|---|---|---|---|
RH-DFMC-scheme | RH-DFMC-scheme1 | 0.34 | 6.71 | 9.12 |
RH-DFMC-scheme2 | 0.5 | 6.42 | 8.5 | |
RH-DFMC-scheme3 | 0.16 | 7.82 | 10.43 | |
RH-DFMC-scheme4 | 0.22 | 7.32 | 9.86 | |
D-DFMC-scheme | D-DFMC-scheme1 | 0.4 | 6.47 | 8.92 |
D-DFMC-scheme2 | 0.53 | 6.15 | 8.25 | |
D-DFMC-scheme3 | 0.18 | 7.55 | 10.20 | |
D-DFMC-scheme4 | 0.23 | 7.17 | 9.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, Z.; Zhu, S.; Hou, X.; Li, S. Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images. Forests 2024, 15, 2002. https://doi.org/10.3390/f15112002
Li Z, Wu Z, Zhu S, Hou X, Li S. Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images. Forests. 2024; 15(11):2002. https://doi.org/10.3390/f15112002
Chicago/Turabian StyleLi, Zhengjie, Zhiwei Wu, Shihao Zhu, Xiang Hou, and Shun Li. 2024. "Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images" Forests 15, no. 11: 2002. https://doi.org/10.3390/f15112002
APA StyleLi, Z., Wu, Z., Zhu, S., Hou, X., & Li, S. (2024). Estimation of Understory Fine Dead Fuel Moisture Content in Subtropical Forests of Southern China Based on Landsat Images. Forests, 15(11), 2002. https://doi.org/10.3390/f15112002