Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Study Sites
2.2. Climatic and Edaphic Conditions
2.3. Sampling of Soil
2.4. Sampling of Rootlets
2.5. Soil Analyses
2.6. Molecular Analysis
2.7. Bioinformatics
2.8. Statistical Analyses
3. Results
3.1. Soil Properties
3.2. Fungal Communities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Milanović, S.; Kaczmarowski, J.; Ciesielski, M.; Trailović, Z.; Mielcarek, M.; Szczygieł, R.; Kwiatkowski, M.; Bałazy, R.; Zasada, M.; Milanović, S.D. Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods. Forests 2023, 14, 46. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta’, G.; Oom, D.; Branco, A.; De Rigo, D.; Suarez Moreno, M.; Ferrari, D.; et al. Advance Report on Forest Fires in Europe, Middle East and North Africa 2023; Publications Office of the European Union: Luxembourg, 2024. [Google Scholar] [CrossRef]
- Alexandrian, D.; Esnault, F.; Calabri, G. Forest Fire in Medierranean Area, FAO Report 1998. Available online: https://www.fao.org/4/x1880e/x1880e07.htm (accessed on 1 July 2024).
- Jovanović, B. Dendrology, 6th ed.; Faculty of Forestry, University of Belgrade: Belgrade, Serbia, 2007; p. 536. (In Serbian) [Google Scholar]
- Lazarević, J.; Menkis, A. Fungal diversity in the phyllosphere of Pinus heldreichii H. Christ—An endemic and high-altitude pine of the Mediterranean region. Diversity 2020, 12, 172. [Google Scholar] [CrossRef]
- Vendramin, G.G.; Fineschi, S.; Fady, B. Euforgen Technical Guidelines for Genetic Conservation and Use for Bosnian Pine (Pinus heldreichii); Bioversity International: Rome, Italy, 2008; ISBN 978-92-9043-789-5. [Google Scholar]
- The Second National Communication on Climate Change of Montenegro to the United Nations Framework Convention on Climate Change (UNFCCC), Montenegro Ministry of Sustainable Development and Tourism and the Centre for Sustainable Development, Office of the United Nations Development Programme (UNDP), Jablan, N., Ed. 2015. Available online: https://www.undp.org/montenegro/publications/second-national-communication-climate-change (accessed on 1 July 2024).
- Borja, M.E.L. Climate Change and Forest Natural Regeneration in Mediterranean Mountain Areas. Forest Res. 2014, 3, e108. [Google Scholar] [CrossRef]
- Ambs, D.; Schmied, G.; Zlatanov, T.; Kienlein, S.; Pretzsch, H.; Simeonova Nikolova, P. Regeneration dynamics in mixed mountain forests at their natural geographical distribution range in the Western Rhodopes. For. Ecol. Manag. 2024, 552, 121550. [Google Scholar] [CrossRef]
- Lazarević, J. Forests and biodiversity of Kuči mountains. In The Katuns of the Kuči Mountains; Laković, I., Ed.; University of Montenegro: Podgorica, Montenegro, 2017; pp. 62–78. [Google Scholar]
- Stevanović, V.; Vasić, V. Overview of anthropogenic factors that threaten the biodiversity of Yugoslavia. In Biodiversity of Yugoslavia with List of Species of Special Importance; Radović, I., Angelus, J., Eds.; Ecolibri: Beograd, Serbia, 1995; pp. 19–36. [Google Scholar]
- Baar, J.; Horton, T.R.; Kretzer, A.M.; Bruns, T.D. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol. 1999, 143, 409–418. [Google Scholar] [CrossRef]
- Pulido-Chavez, M.F.; Alvarado, E.C.; DeLuca, T.H.; Edmonds, R.L.; Glassman, S.I. High-severity wildfire reduces richness and alters composition of ectomycorrhizal fungi in low-severity adapted ponderosa pine forests. For. Ecol. Manag. 2021, 485, 118923. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Sci. Rev. 2014, 139, 47–58. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, Y.; Zheng, X.; Cui, X. Effect of severe wildfire on soil phosphorus fractions and adsorption in a cold temperate coniferous forest after 5 years. Eur. J. Soil Sci. 2024, 75, e13464. [Google Scholar] [CrossRef]
- Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opin. Environ. Sci. Health 2021, 22, 100264. [Google Scholar] [CrossRef]
- Pérez-Valera, E.; Goberna, M.; Verdú, M. Fire modulates ecosystem functioning through the phylogenetic structure of soil bacterial communities. Soil Biol. Biochem. 2018, 120, 80–88. [Google Scholar] [CrossRef]
- Bastias, B.A.; Huang, Z.Q.; Cairney, J.W.G. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi. New Phytol. 2006, 172, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Noske, P.J.; Nyman, P.; Lane, P.N.J.; Rengers, F.K.; Sheridan, G.J. Changes in soil erosion caused by wildfire: A conceptual biogeographic model. Geomorphology 2024, 459, 109272. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; 800p. [Google Scholar]
- Holden, S.R.; Treseder, K.K. A meta-analysis of soil microbial biomass responses to forest disturbances. Front. Microbiol. 2013, 4, 163. [Google Scholar] [CrossRef]
- Treseder, K.K.; Maltz, M.; Hawkins, B.A.; Fierer, N.; Stajich, J.E.; McGuire, K.L. Evolutionary histories of soil fungi are reflected in their large-scale biogeography. Ecol. Lett. 2014, 17, 1086–1093. [Google Scholar] [CrossRef]
- Burić, D.; Ducić, V.; Mihajlović, J. The climate of Montenegro: Modificators and types-part two. Bull. Serbian Geogr. Soc. 2014, 44, 73–90. [Google Scholar] [CrossRef]
- Fuštić, B.; Đuretić, G. Soils of Montenegro, Biotechnical Institute; University of Montenegro: Podgorica, Montenegro, 2000; pp. 156–172. (In Serbian) [Google Scholar]
- Lazarević, J.; Menkis, A. Fungi inhabiting fine roots of Pinus heldreichii in the Montenegrin montane forests. Symbiosis 2018, 74, 189–197. [Google Scholar] [CrossRef]
- Blečić, V.; Lakušić, R. Forests of Pinius heldreichii Christ at Štitovo and Bjelasica in Montenegro. Bull. Repub. Inst. Prot. Nat. Mus. Nat. Hist. Titogr. 1969, 4, 5–10. [Google Scholar]
- Topalović, A. Practicum in Agrochemistry—Methods of Chemical Analysis and Data Processing; University of Montenegro: Podgorica, Montenegro, 2022; 220p. [Google Scholar]
- Topalović, A.; Knežević, M.; Trifunović, S.; Novaković, M.; Pešić, M.; Đurović, D. Effects of Soil Properties and Fertilization on Quality and Biological Activity of Swiss Chard. Eur. J. Hortic. Sci. 2018, 83, 374–381. [Google Scholar] [CrossRef]
- Menkis, A.; Ihrmark, K.; Stenlid, J.; Vasaitis, R. Root-associated fungi of Rosa rugosa grown on the frontal dunes of the Baltic Sea coast in Lithuania. Microb. Ecol. 2014, 67, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Ihrmark, K.; Bodeker, I.T.M.; Cruz-Martinez, K.; Friberg, H.; Kubartova, A.; Schenck, J.; Strid, Y.; Stenlid, J.; Brandstrom-Durling, M.; Clemmensen, K.E.; et al. New primers to amplify the fungal ITS2 region—Evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 2012, 82, 666–677. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Lazarević, J.; Menkis, A. Cytospora friesii and Sydowia polyspora are associated with the sudden dieback of Abies concolor in Southern Europe. Plant Protect. Sci. 2022, 58, 258–263. [Google Scholar] [CrossRef]
- Menkis, A.; Marčiulynas, A.; Gedminas, A.; Lynikienė, J.; Povilaitienė, A. High-throughput sequencing reveals drastic changes in fungal communities in the phyllosphere of Norway spruce (Picea abies) following invasion of the spruce bud scale (Physokermes piceae). Microb. Ecol. 2015, 70, 904–911. [Google Scholar] [CrossRef]
- Lynikienė, J.; Marčiulynienė, D.; Marčiulynas, A.; Gedminas, A.; Vaičiukynė, M.; Menkis, A. Managed and unmanaged Pinus sylvestris forest stands harbour similar diversity and composition of the phyllosphere and soil fungi. Microorganisms 2020, 8, 259. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Magurran, A.E. Ecological Diversity and Its Measurement; Princeton University Press: Princeton, NJ, USA, 1988; p. 192. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research, 4th ed.; H. Freeman & Company: New York, NY, USA, 2005; 896p. [Google Scholar]
- Shannon, C.E. A mathematical theory of communicastion. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- ter Braak, C.J.F.; Smilauer, P. Canoco Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, Version 4; Microcomputer Power: Ithaca, NY, USA, 1998; p. 351. [Google Scholar]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Waskom, M. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Hawkes, C.; Kivlin, S.; Rocca, J.; Huguet, V.; Thomsen, M.; Suttle, K. Fungal community responses to precipitation. Glob. Change Biol. 2010, 17, 1637–1645. [Google Scholar] [CrossRef]
- Lilleskov, E.A.; Bruns, T.D. Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 2005, 97, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-Q.; Li, X.-L.; Zhao, D.-X.; Wei, Y.-L.; Yuan, H.-S. Four New Species of Tomentella (Thelephorales, Basidiomycota) from Subtropical Forests in Southwestern China. J. Fungi 2024, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Kjoller, R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. FEMS Microbiol. Ecol. 2006, 58, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, S.; Jones, M.; Bradfield, G.; Gillespie, M.; Durall, D. Effects of clear-cut logging on the diversity and persistence of ectomycorrhizae at a subalpine forest. Can. J. Forest Res. 1999, 29, 124–134. [Google Scholar] [CrossRef]
- Lazar, A.; Mushinski, R.M.; Bending, G.D. Landscape scale ecology of Tetracladium spp. fungal root endophytes. Environ. Microbiome 2022, 17, 40. [Google Scholar] [CrossRef]
- Abrego, N.; Roslin, T.; Huotari, T.; Tack, A.J.M.; Lindahl, B.D.; Tikhonov, G.; Somervuo, P.; Schmidt, N.M.; Ovaskainen, O. Accounting for environmental variation in co-occurrence modelling reveals the importance of positive interactions in root-associated fungal communities. Mol. Ecol. 2020, 29, 2736–2746. [Google Scholar] [CrossRef]
- Alberton, O.; Kuyper, T.W.; Summerbell, R.C. Dark septate root endophytic fungi increase growth of Scots pine seedlings under elevated CO2 through enhanced nitrogen use efficiency. Plant Soil 2010, 328, 459–470. [Google Scholar] [CrossRef]
- Poteri, M.; Kasanen, R.; Asiegbu, F.O. Mycobiome of forest tree nurseries. In Tree Microbiome: Phyllosphere, Endosphere and Rhizosphere, Forest Microbiology; Asiegbu, F.O., Kovalchuk, A., Eds.; Academic Press: New York, NY, USA, 2021; Chapter 17; pp. 305–325. [Google Scholar] [CrossRef]
- Koukol, O.; Macia-Vicente, J. Leptodophora gen. nov. (Helotiales, Leotiomycetes) proposed to accommodate selected root-associated members of the genus Cadophora. Czech Mycol. 2022, 74, 57–66. [Google Scholar] [CrossRef]
- Moore, D.; Robson, G.D.; Trinci, A.P.J. 21st Century Guidebook to Fungi; Cambridge University Press: Cambridge, UK, USA, 2011; pp. 200–202. [Google Scholar]
- Eriksson, O.E.; Winka, K. Supraordinal taxa of Ascomycota. Myconet 2017, 1, 1–16. [Google Scholar]
- Park, M.S.; Lee, J.W.; Kim, S.H.; Park, J.H.; You, Y.H.; Lim, Y.W. Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea. Mycobiology 2020, 48, 431–442. [Google Scholar] [CrossRef]
- Altaf, M.M.; Imran, M.; Abulreesh, H.; Khan, M.; Ahmad, I. Diversity and applications of Penicillium spp. in plant-growth promotion. In New and Future Developments in Microbial Biotechnology and Bioengineering: Penicillum System Properties and Applications; Gupta, V.K., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 261–276. [Google Scholar]
- Shi, L.; Dossa, G.G.O.; Paudel, E.; Zang, H.; Xu, J.; Harrison, R.D. Changes in Fungal Communities across a Forest Disturbance Gradient. Appl. Environ. Microbiol. 2019, 85, e00080-19. [Google Scholar] [CrossRef] [PubMed]
- Ozimek, E.; Hanaka, A. Mortierella Species as the Plant Growth-Promoting Fungi Present in the Agricultural Soils. Agriculture 2021, 11, 7. [Google Scholar] [CrossRef]
- Summerbell, E.C. Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: Influence of site factors on fungal distributions. Stud. Mycol. 2005, 53, 121–145. [Google Scholar] [CrossRef]
- Mašínová, T.; Doreen Bahnmann, B.; Větrovský, T.; Tomšovský, M.; Merunková, K.; Baldrian, P. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 2017, 93, fiw223. [Google Scholar] [CrossRef]
- Diez-Hermano, S.; Poveda, J.; Benito, Á.; Peix, Á.; Martín-Pinto, P.; Diez, J.J. Soil mycobiome and forest endophytic fungi: Is there a relationship between them? For. Ecol. Manag. 2024, 562, 121924. [Google Scholar] [CrossRef]
- Carvajal, M.; Godoy, L.; Gebauer, M.; Catrileo, D.; Albornoz, F. Screening for indole-3-acetic acid synthesis and 1-aminocyclopropane-carboxylate deaminase activity in soil yeasts from Chile uncovers Solicoccozyma aeria as an effective plant growth promoter. Plant Soil 2023, 496, 83–93. [Google Scholar] [CrossRef]
- Perić, B.; Perić, O. Diversity of macromycetes in Montenegro. MASA 1997, 11, 45–142. [Google Scholar]
- Perić, B.; Perić, O. Preliminary red list of Macromycetes of Montenegro 2. Mycol. Monten. 2004, 7, 7–33. [Google Scholar]
- Lazarević, J.; Topalović, A.; Menkis, A. Patterns of fungal diversity in needles, rootlets and soil of endemic Pinus peuce. Balt. For. 2022, 28, 58. [Google Scholar] [CrossRef]
- Nguyen, H.D.T.; Nickerson, N.L.; Seifert, K.A. Basidioascus and Geminibasidium: A new lineage of heat-resistant and xerotolerant basidiomycetes. Mycologia 2013, 105, 1231–1250. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Sogonov, M.; Schroers, H.-J.; Dijksterhuis, J.; Summerbell, R. The hyphomycete Teberdinia hygrophila gen. nov., sp. nov. and related anamorphs of Pseudeurotium species. Mycologia 2005, 97, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Bååth, E. Microfungi in a clearcut pine forest soil in central Sweden. Can. J. Bot. 1981, 59, 1331–1337. [Google Scholar] [CrossRef]
- Rosling, A.; Cox, F.; Cruz-Martinez, K.; Ihrmark, K.; Grelet, G.A.; Lindahl, B.D.; Menkis, A.; James, T.Y. Archaeorhizomycetes: Unearthing an ancient class of ubiquitous soil fungi. Science 2011, 333, 876–879. [Google Scholar] [CrossRef]
Site | Geographical Position | Altitude (m) | Inclination | Soil Type | Site Condition |
---|---|---|---|---|---|
Sovrh (S) | N42°35′ E19°37′ | 1720 | >30% | Molic leptosol | Unburned |
Kučka Korita (KK) | N 42°29′ E19°30′ | 1350 | >5% | Leptosol | Unburned |
Hum Orahovski (HO) | N 42°30′ E 19°31′ | 1800 | >40% | Molic leptosol | 2 y after fire |
Kastrat (K) | N 42°35′ E 19°29′ | 1500 | 5–10% | Leptosol | 4 y after fire |
Treskavac (T) | N 45°35′ E 19°30′ | 1550 | 5–10% | Molic leptosol | 6 y after fire |
Soil Parameter | Min | Max | Unburned | Post Fire |
---|---|---|---|---|
pH (H2O) | 6.6 (KK) | 7.7 (HO) | 7.1 ± 0.7 | 7.2 ± 0.4 |
pH (KCl) | 5.8 (KK) | 7.1 (S) | 6.5 ± 0.9 | 6.4 ± 0.5 |
CaCO3 (%) | 0 (T, K, KK, S) | 2.4 (HO) | 0.0 ± 0.0 | 0.8 ± 1.4 |
Organic C (%) | 9.1 (S) | 13.9 (T) | 10.1 ± 1.4 | 12.7 ± 1.0 |
Total N (%) | 0.52 (S) | 1.01 (K) | 0.65 ± 0.18 | 0.85 ± 0.18 |
P2O5 (mg/100 g) * | 0.3 (S) | 6.2 (HO) | 0.5 ± 0.3 | 5.0 ± 1.6 |
K2O (mg/100 g) | 13.6 (K) | 21.4 (T) | 15.6 ± 1.0 | 17.3 ± 3.9 |
Ca (mg/100 g) | 606 (KK) | 1321 (S) | 964 ± 506 | 914 ± 83 |
Mg (mg/100 g) | 34.4 (T) | 156 (HO) | 91.9 ± 74.9 | 76.8 ± 68.7 |
Fe (mg/kg) | 46.2 (S) | 77.1 (KK) | 61.7 ± 21.8 | 59.6 ± 9.5 |
Mn (mg/kg) | 5.6 (T) | 13.4 (KK) | 10.4 ± 4.3 | 7.2 ± 2.5 |
Zn (mg/kg) | 0.65 (T) | 3.81 (HO) | 1.7 ± 0.5 | 2.3 ± 1.6 |
Cu (mg/kg) | 0.48 (T) | 1.52 (KK) | 1.1 ± 0.6 | 0.8 ± 0.3 |
EC (μS/cm) | 96.5 (KK) | 229 (K) | 140 ± 61.7 | 182 ± 60 |
Coarse sand (%) | 1.60 (KK) | 6.84 (T) | 3.04 ± 2.04 | 4.86 ± 1.77 |
Fine sand (%) | 45.98 (S) | 55.99 (T) | 50.42 ± 6.27 | 51.50 ± 4.37 |
Silt (%) | 29.30 (T) | 40.80 (HO) | 35.95 ± 2.86 | 35.72 ± 5.87 |
Clay (%) | 7.63 (HO) | 11.57 (S) | 10.59 ± 1.38 | 7.92 ± 0.31 |
Total sand (%) | 50.46 (S) | 62.82 (T) | 53.46 ± 4.24 | 56.36 ± 5.81 |
Total clay (%) | 37.18 (T) | 49.54 (S) | 46.55 ± 4.24 | 43.64 ± 5.81 |
Site | Site Condition (Year of Forest Fire) | Substrate | No. of Reads | No. of OTUs | Shannon Diversity Index |
---|---|---|---|---|---|
Treskavac (T) | 6 years post-fire | Soil | 507 | 118 a | 4.06 |
Kastrat (K) | 4 years post-fire | Soil | 583 | 155 a | 4.46 |
Hum Orahovski (HO) | 2 years post-fire | Soil | 669 | 165 a | 4.39 |
Kučka Korita (KK) | Unburned | Soil | 2665 | 340 b | 4.78 |
Sovrh (S) | Unburned | Soil | 2456 | 344 b | 4.72 |
Kučka Korita (KK) | Unburned | Rootlets | 722 | 70 c | 2.98 |
Sovrh (S) | Unburned | Rootlets | 1656 | 120 c | 3.48 |
Total | 9258 | 690 |
Strain | Taxon | Phylum * | Genbank No. | Reference No. | Identities | 6-y PFS (T) | 4-y PFS (K) | 2-y PFS (HO) | US (KK) | US (S) | R (KK) | R (S) | All |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3598_6 | Tomentella sp. | B | PQ364141 | LR873297 | 314/314(100%) | - | - | - | 4.7 | 0.0 | 32.4 | 1.1 | 4.1 |
3598_23 | Geminibasidium sp. | B | PQ364142 | LS447497 | 319/321(99%) | 0.4 | - | 3.1 | 3.6 | 6.7 | - | - | 3.1 |
3598_22 | Wilcoxina rehmii | A | PQ364143 | MF926519 | 254/254(100%) | 1.0 | - | - | - | 0.2 | - | 16.4 | 3.1 |
3598_36 | Unidentified sp. | A | PQ364144 | LR876984 | 215/215(100%) | 0.4 | 1.5 | - | 0.3 | 8.8 | - | 0.5 | 2.6 |
3598_33 | Penicillium sp. | A | PQ364145 | MT557492 | 257/257(100%) | 1.8 | 3.3 | 1.6 | 2.8 | 4.6 | 0.1 | - | 2.5 |
3598_11 | Unidentified sp. | B | PQ364146 | KC818337 | 303/303(100%) | 0.8 | - | 0.1 | 5.9 | 2.0 | - | - | 2.3 |
3598_14 | Amphinema sp. | B | PQ364147 | JN943914 | 263/280(94%) | - | - | - | 0.6 | 0.8 | 0.7 | 10.1 | 2.3 |
3598_25 | Saccharomycetales sp. | A | PQ364148 | MK627007 | 301/301(100%) | 0.4 | - | 0.1 | 5.8 | 1.8 | - | - | 2.2 |
3598_43 | Unidentified sp. | B | PQ364149 | KY322596 | 250/250(100%) | - | - | - | - | 0.2 | - | 11.7 | 2.1 |
3598_9 | Solicoccozyma aeria | B | PQ364150 | OM743906 | 325/325(100%) | 4.5 | 2.9 | 8.4 | 1.0 | 2.5 | - | 0.2 | 2.0 |
3598_26 | Unidenfied sp. | A | PQ364151 | MG207370 | 241/241(100%) | 4.3 | 0.2 | 0.4 | 3.4 | 2.0 | 0.1 | 0.1 | 1.8 |
3598_21 | Hygrocybe conica | B | PQ364152 | MN992415 | 333/335(99%) | 8.5 | - | 8.2 | - | 2.0 | - | - | 1.6 |
3598_29 | Leptodophora echinata | A | PQ364153 | NR_170730 | 241/242(99%) | 1.0 | 1.2 | 0.7 | 0.2 | 1.3 | 8.0 | 1.8 | 1.5 |
3598_47 | Cadophora fastigiata | A | PQ364154 | MF182432 | 242/242(100%) | 0.6 | - | 0.3 | 0.2 | 0.1 | 2.4 | 6.2 | 1.4 |
3598_77 | Tetracladium maxilliforme | A | PQ364155 | KU519119 | 238/239(99%) | 1.0 | 0.5 | 1.8 | 0.3 | 0.7 | 5.3 | 2.4 | 1.3 |
3598_86 | Archaeorhizomyces sp. | A | PQ364156 | OW846612 | 210/214(98%) | - | 1.5 | - | 0.5 | 3.8 | - | 0.1 | 1.3 |
3598_74 | Mortierella clonocystis | M | PQ364157 | LC515184 | 333/333(100%) | 2.0 | - | 0.6 | 2.4 | 0.4 | 2.5 | 0.1 | 1.2 |
3598_54 | Sagenomella verticillata | A | PQ364158 | MH860215 | 263/263(100%) | 3.7 | 0.5 | - | 0.6 | 2.5 | - | - | 1.1 |
3598_40 | Agaricomycetes sp. | B | PQ364159 | KT182914 | 284/284(100%) | - | - | - | 0.7 | - | 4.8 | 2.6 | 1.0 |
3598_88 | Pseudeurotium hygrophilum | A | PQ364160 | MF375774 | 236/241(98%) | - | 3.6 | 1.9 | 0.6 | 0.8 | 0.6 | 1.0 | 1.0 |
Total of 20 taxa | 30.4 | 15.3 | 27.5 | 28.9 | 41.0 | 24.5 | 53.2 | 35.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarević, J.; Topalović, A.; Menkis, A. Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line. Forests 2024, 15, 2012. https://doi.org/10.3390/f15112012
Lazarević J, Topalović A, Menkis A. Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line. Forests. 2024; 15(11):2012. https://doi.org/10.3390/f15112012
Chicago/Turabian StyleLazarević, Jelena, Ana Topalović, and Audrius Menkis. 2024. "Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line" Forests 15, no. 11: 2012. https://doi.org/10.3390/f15112012
APA StyleLazarević, J., Topalović, A., & Menkis, A. (2024). Fungal Diversity in Fire-Affected Pine Forest Soils at the Upper Tree Line. Forests, 15(11), 2012. https://doi.org/10.3390/f15112012