Spatial Variability of Soil CO2 Emissions and Microbial Communities in a Mediterranean Holm Oak Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Soil CO2 Emissions Measurement
2.3. Soil Sampling for Chemical Properties and Microbial Abundance, Diversity, and Processes
2.4. Soil Chemical Analysis
2.5. Assessment of Microbial Processes
2.6. Microbiological Analytical Procedures
2.6.1. Extraction of Genomic DNA and PCR Amplification
2.6.2. Terminal Restriction Fragment Length Polymorphism (T-RFLP)
2.6.3. Quantitative Polymerase Chain Reaction (qPCR)
2.7. Statistical Analysis
3. Results
3.1. Soil CO2 Emissions Measurement with Chambers and Soil Chemical Properties
3.2. Assessment of Soil Microbial Composition and Processes
3.3. Soil Microbial Structure and Diversity Along the Depth Gradient
3.4. Main Patterns of Chemical, Physical, and Microbiological Parameters as Affected by Soil Depth in Three Different Plots
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the Mediterranean over the last 900 years. J. Geophys. Res. Atmos. 2016, 121, 2060–2074. [Google Scholar] [CrossRef] [PubMed]
- Fares, S.; Alivernini, A.; Conte, A.; Maggi, F. Ozone and particle fluxes in a Mediterranean forest predicted by the AIRTREE model. Sci. Total Environ. 2019, 682, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Bou Dagher-Kharrat, M.; de Arano, I.M.; Zeki-Bašken, E.; Feder, S.; Adams, S.; Briers, S.; Fady, B.; Lefèvre, F.; Górriz-Mifsud, E.; Mauri, E.; et al. Mediterranean Forest Research Agenda 2030; European Forest Institute: Barcelona, Spain, 2022; ISBN 978-952-7426-30-2/978-952-7426-31-9. [Google Scholar] [CrossRef]
- Escobedo, F.; Kroeger, T.; Wagner, J. Urban forests and pollution mitigation: Analyzing ecosystem services and disservices. Environ. Pollut. 2011, 159, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Bussotti, F.; Pollastrini, M.; Holland, V.; Brüggemann, W. Functional traits and adaptive capacity of European forests to climate change. Environ. Exp. Bot. 2015, 111, 91–113. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Francioso, O.; Concheri, G.; Muscolo, A.; Nardi, S. Land Use Affects the Soil C Sequestration in Alpine Environment NE Italy. Forests 2017, 8, 197. [Google Scholar] [CrossRef]
- Dobbs, C.; Escobedo, F.J.; Zipperer, W.C. A framework for developing urban forest ecosystem services and goods indicators. Landsc. Urban Plan. 2011, 99, 196–206. [Google Scholar] [CrossRef]
- Maier, M.; Paulus, S.; Nicolai, C.; Stutz, K.P.; Nauer, P.A. Drivers of Plot-Scale Variability of CH4 Consumption in a Well-Aerated Pine Forest Soil. Forests 2017, 8, 193. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.P.; Yang, Z.F.; Yin, X.A.; Tan, Q. Microbial nitrification denitrification and respiration in the leached cinnamon soil of the upper basin of Miyun Reservoir. Sci. Rep. 2017, 7, 42032. [Google Scholar] [CrossRef]
- Vesterdal, L.; Clarke, N.; Sigurdsson, B.D.; Gundersen, P. Do tree species influence soil carbon stocks in temperate and boreal forests? For. Ecol. Manag. 2013, 309, 4–18. [Google Scholar] [CrossRef]
- Mou, R.; Jian, Y.; Zhou, D.; Li, J.; Yan, Y.; Tan, B.; Xu, Z.; Cui, X.; Li, H.; Zhang, L.; et al. Divergent responses of woody plant leaf and root non-structural carbohydrates to nitrogen addition in China: Seasonal variations and ecological implications. Sci. Total Environ. 2024, 950, 175425. [Google Scholar] [CrossRef]
- Shvaleva, A.; Costa e Silva, F.; Costa, J.M.; Correia, A.; Anderson, M.; Lobo-do-Vale, R.; Fangueiro, D.; Bicho, C.; Pereira, J.S.; Chaves, M.M.; et al. Comparison of methane nitrous oxide fluxes and CO2 respiration rates from a Mediterranean cork oak ecosystem and improved pasture. Plant Soil 2014, 374, 883–898. [Google Scholar] [CrossRef]
- Tian, J.; McCormack, L.; Wang, J.; Guo, D.; Wang, Q.; Zhang, X.; Yu, G.; Blagodatskaya, E.; Kuzyakov, Y. Linkages between the soil organic matter fractions and the microbial metabolic functional diversity within a broad-leaved Korean pine forest. E. J. Soil Biol. 2015, 66, 57–64. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 1999, 96, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Ettema, C.H.; Wardle, D.A. Spatial soil ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Coleman, D.C.; Whitman, W.B. Linking species richness biodiversity and ecosystem function in soil systems. Pedobiologia 2005, 49, 479–497. [Google Scholar] [CrossRef]
- Levine, U.Y.; Teal, T.K.; Robertson, G.P.; Schmidt, T.M. Agriculture’s impact on microbial diversity and associated fluxes of carbon dioxide and methane. ISME J. 2011, 5, 1683–1691. [Google Scholar] [CrossRef]
- Alele, P.O.; Sheif, D.; Surget-Groba, Y.; Lingling, S.; Cannon, C.H. How does conversion of natural tropical rainforest ecosystems affect soil bacterial and fungal communities in the Nile River watershed of Uganda? PLoS ONE 2014, 9, e104818. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys; USDA-SCS Agric. Handb. 436. U.S. Gov. Print: Washington, DC, USA, 1975. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006. [Google Scholar]
- Savi, F.; Di Bene, C.; Canfora, L.; Mondini, C.; Fares, S. Environmental and biological controls on CH4 exchange over an evergreen Mediterranean forest. Agric. For. Meteorol. 2016, 226–227, 67–79. [Google Scholar] [CrossRef]
- Fusaro, L.; Mereu, S.; Salvatori, E.; Agliari, E.; Fares, S.; Manes, F. Modelling ozone uptake by urban and peri-urban forest: A case study in the Metropolitan City of Rome. Environ. Sci. Pollut. Res. 2018, 25, 8190–8205. [Google Scholar] [CrossRef]
- Napoli, R.; Paolanti, M.; Di Ferdinando, S. Atlante dei Suoli del Lazio; ARSIAL Regione Lazio; Società Elaborazioni Cartografiche (S EL. CA. s.r.l.): Firenze, Italy, 2019; ISBN 978-88-90484I-2-4. [Google Scholar]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment; Elsevier: London, UK, 2006; p. 316. [Google Scholar]
- Kutsch, W.L.; Bahn, M.; Heinemeyer, A. Soil Carbon Dynamics: An Integrated Methodology; Cambridge University Press: New York, NY, USA, 2009; p. 286. [Google Scholar]
- Heinemeyer, A.; Di Bene, C.; Lloyd, A.R.; Tortorella, D.; Baxter, R.; Huntley, B.; Gelsomino, A.; Ineson, P. Soil respiration: Implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO2 efflux rates in three ecosystems. Eur. J. Soil Sci. 2011, 62, 82–94. [Google Scholar] [CrossRef]
- Pumpanen, J.; Kolari, P.; Ilvesniemi, H.; Minkkinen, K.; Vesala, T.; Niinistö, S. Comparison of different chamber techniques for measuring soil CO2 efflux. Agr. Forest Meteorol. 2004, 123, 159–176. [Google Scholar] [CrossRef]
- Asensio, D.; Peñuelas, J.; Llusià, J.; Ogaya, R.; Filella, I. Interannual and interseasonal soil CO2 efflux and VOC exchange rates in a Mediterranean holm oak forest in response to experimental drought. Soil Biol Biochem. 2007, 39, 2471–2484. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; de Parri, I.; Jarvis, P.G.; Valentini, R. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Chang. Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- FAO. Guidelines for Soil Description, 4th ed.; Food and Agriculture Organisation of the United States: Rome, Italy, 2006; p. 109. Available online: http://www.fao.org/3/a-a0541e.pdf (accessed on 27 August 2024).
- Pritchett, W.L.; Fisher, R.F. Properties and Management of Forest Soils, 2nd ed.; Wiley: New York, NY, USA, 1982; p. 494. [Google Scholar]
- Pinzari, F.; Trinchera, A.; Benedetti, A.; Sequi, P. Use of biochemical indices in the mediterranean environment: Comparison among soils under different forest vegetation. J. Microbiol. Meth 1999, 36, 21–28. [Google Scholar] [CrossRef]
- Mocali, S.; Paffetti, D.; Emiliani, G.; Benedetti, A.; Fani, R. Diversity of heterotrophic aerobic cultivable microbial communities of soils treated with fumigants and dynamics of metabolic microbial and mineralization quotients. Biol. Fert. Soils 2008, 44, 557–569. [Google Scholar] [CrossRef]
- USDA-NRCS. Soil Survey Laboratory Methods Manual; Soil Survey Inv. Rep. N. 42 Version 3.0; USDA: Washington, DC, USA, 1996. [Google Scholar]
- McLean, E.O. Soil pH and lime requirement. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Agronomy Monograph 9 American Society of Agronomy: Madison, WI, USA, 1982; pp. 199–224. [Google Scholar]
- Munz, H.; Ingwersen, J.; Streck, T. On-site sensor calibration procedure for quality assurance of Barometric Process Separation (BaPS) measurements. Sensors 2023, 23, 4615. [Google Scholar] [CrossRef]
- Creamer, R.E.; Schulte, R.P.O.; Stone, D.; Gal, A.; Krogh, P.H.; Lo Papa, G.; Murray, P.J.; Pérès, G.; Foerster, B.; Rutgers, M.; et al. Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter? Ecol. Indicator 2014, 36, 409–418. [Google Scholar] [CrossRef]
- Lu, X.; Yan, Y.; Fan, J.; Wang, X. Gross Nitrification and Denitrification in Alpine Grassland Ecosystems on the Tibetan Plateau. Arct. Antarct. Alp. Res. 2012, 44, 188–196. [Google Scholar] [CrossRef]
- Brunori, E.; Farina, R.; Blasi, R. Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agr. Ecosyst. Environ. 2016, 223, 10–21. [Google Scholar] [CrossRef]
- Canfora, L.; Lo Papa, G.; Vittori Antisari, L.; Dazzi, C.; Benedetti, A. Spatial microbial community structure and biodiversity analysis in “extreme” hypersaline soils of a semiarid Mediterranean area. Appl. Soil Ecol. 2015, 93, 120–129. [Google Scholar] [CrossRef]
- Liu, W.T.; Marsh, T.L.; Cheng, H.; Forney, L.J. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16 S rRNA. App Environ. Microb. 1997, 63, 4516–4522. [Google Scholar] [CrossRef] [PubMed]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for Basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistic software package for education and data analysis. Paleontol. Eletron. 2001, 4, 1–9. Available online: http://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 27 August 2024).
- Hill, T.C.J.; Walsh, K.A.; Harris, J.A.; Moffett, B.F. Using ecological diversity measures with bacterial communities. FEMS Microbiol. Ecol. 2003, 43, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, M.A.; Martin, F.E.; Jacques, N.A.; Hunter, N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 2002, 148, 257–266. [Google Scholar] [CrossRef]
- Ochsenreiter, T.; Selezi, D.; Quaiser, A.; Bonch-Osmolovskaya, L.; Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 2003, 5, 787–797. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hopple, J.S.; Hibbett, D.S. Phylogenetic implications of generic concepts in fungal taxonomy: The impact of molecular systematic studies. Mycol. Res. 1994, 6, 73–91. [Google Scholar] [CrossRef]
- Töwe, S.; Albert, A.; Kleineidam, K.; Brankatschk, R.; Dümig, A.; Welzl, G.; Munch, J.C.; Zeye, J.; Schloter, M. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (L.) HEYWOOD grown in soils from different sites of the Damma glacier forefield. Microb. Ecol. 2010, 60, 762–770. [Google Scholar] [CrossRef]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microb. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef]
- Flores-Rentería, D.; Rincón, A.; Morán-López, T.; Hereş, A.M.; Pérez-Izquierdo, L.; Valladares, F.; Curiel Yuste, J. Habitat fragmentation is linked to cascading effects on soil functioning and CO2 emissions in Mediterranean holm-oak-forests. Peer J. 2018, 30, e5857. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature sensitivity of soil carbon decomposition and feedback to climate change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Webster, K.L.; Creed, I.F.; Skowronski, M.D.; Kaheil, Y.H. Comparison of the performance of statistical models that predict soil respiration from forests. Soil Sci. Am. J. 2009, 73, 1157–1167. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Fernandez-Gonzalez, A.J.; Fernandez-Lopez, M.; Ogaya, R.; Penuelas, J.; Lloret, F. Functional diversification within bacterial lineages promotes wide functional overlapping between taxonomic groups in a Mediterranean forest soil. FEMS Microbiol. Ecol. 2014, 90, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Haskl, E.; Zechmeister-Boltenstern, S.; Bodrossy, L.; Sessitsch, A. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. App. Environ. Microb. 2004, 70, 5057–5065. [Google Scholar] [CrossRef]
- Lejon, D.P.H.; Chaussod, R.; Ranger, J.; Ranjard, L. Microbial community structure and density under different tree species in an acid forest soil (Morvan France). Microb. Ecol. 2005, 50, 614–625. [Google Scholar] [CrossRef]
- Ruiz Gómez, F.J.; Navarro-Cerrillo, R.M.; Pérez-de-Luque, A.; Oβwald, W.; Vannini, A.; Morales-Rodríguez, C. Assessment of functional and structural changes of soil fungal and oomycete communities in holm oak declined dehesas through metabarcoding analysis. Sci. Rep. 2019, 9, 5315. [Google Scholar] [CrossRef]
- Hansel, C.M.; Fendorf, S.; Jardine, P.M.; Francis, C.A. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile. Appl. Environ. Microb. 2008, 74, 1620–1633. [Google Scholar] [CrossRef]
- Siciliano, S.D.; Palmer, A.S.; Winsley, T.; Lamb, E.; Bissett, A.; Brown, M.V.; Van Dorst, J.; Mukan, J.; Ferrari, B.C.; Grogan, P.; et al. Soil fertility is associated with fungal and bacterial richness whereas pH is associated with community composition in polar soil microbial communities. Soil Biol. Biochem. 2014, 78, 10–20. [Google Scholar] [CrossRef]
- Rousk, J.; Baath, E.; Brookes, P.C.; Lauver, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2000, 4, 1340–1351. [Google Scholar] [CrossRef]
- Nacke, H.; Thurmer, A.; Wollherr, A.; Will, C.; Hodac, L.; Herold, N.; Schoning, I.; Schrumpf, M.; Daniel, R. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 2003, 6, e17000. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. App Environ. Microb. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Šrursová, M.; Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 2011, 338, 99–110. [Google Scholar] [CrossRef]
- De Boer, W.; Folman, L.B.; Summerbell, R.C.; Boddy, L. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microb. Rev. 2005, 29, 795–811. [Google Scholar] [CrossRef]
- Hayatsu, M.; Tago, K.; Saito, M. Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci. Plant Nutr. 2008, 54, 33–45. [Google Scholar] [CrossRef]
- Ho, A.; Di Lonardo, D.P.; Bodelier, P.L.E. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 2017, 93, fix006. [Google Scholar] [CrossRef]
Depth | pH | SOC | TN | C/N | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 | |
10 | 7.15 ± 0.02 | 7.22 ± 0.01 | 7.38 ± 0.01 | 57.19 ± 0.02 aB | 83.99 ± 0.02 aA | 70.69 ± 0.03 aA | 5.02 ± 0.02 | 7.23 ± 0.04 | 3.55 ± 0.02 | 11.40 ± 0.05 B | 11.60 ± 0.03 B | 19.89 ± 0.02 aA |
20 | 7.19 ± 0.01 | 7.41 ± 0.01 | 7.56 ± 0.01 | 23.93 ± 0.01 bB | 37.08 ± 0,01 bA | 25.24 ± 0.02 bB | 1.29 ± 0.04 | 3.91 ± 0.04 | 2.43 ± 0.02 | 18.53 ± 0.05 A | 9.49 ± 0.03 B | 10.39 ± 0.02 abB |
40 | 7.22 ± 0.01 | 7.34 ± 0.01 | 7.69 ± 0.01 | 7.09 ± 0.01 cB | 19.38 ± 0.02 cA | 11.93 ± 0.02 cAB | 1.72 ± 0.04 | 2.34 ± 0.04 | 2.16 ± 0.02 | 4.12 ± 0.03 | 8.29 ± 0.03 | 5.52 ± 0.03 b |
60 | 7.66 ± 0.01 | 7.45 ± 0.01 | 7.72 ± 0.01 | 14.70 ± 0.02 bcA | 11.63 ± 0.02 dA | 4.24 ± 0.02 dB | 2.07 ± 0.03 | 2.23 ± 0.01 | 0.92 ± 0.02 | 7.09 ± 0.03 | 5.22 ± 0.02 | 4.63 ± 0.02 b |
80 | 7.72 ± 0.01 | 7.89 ± 0.02 | 7.76 ± 0.02 | 2.92 ± 0.02 d | 3.35 ± 0.02 e | 3.31 ± 0.02 d | 0.58 ± 0.03 | 0.63 ± 0.02 | 0.69 ± 0.02 | 5.09 ± 0.02 | 5.29 ± 0.02 | 4.82 ± 0.02 b |
100 | 7.87 ± 0.01 | 7.95 ± 0.01 | 7.80 ± 0.02 | 1.12 ± 0.02 dB | 4.27 ± 0.04 eA | 7.20 ± 0.01 cdA | 0.14 ± 0.02 | 0.31 ± 0.01 | 0.44 ± 0.02 | 8.65 ± 0.02 | 13.95 ± 0.01 | 16.41 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bene, C.; Canfora, L.; Migliore, M.; Francaviglia, R.; Farina, R. Spatial Variability of Soil CO2 Emissions and Microbial Communities in a Mediterranean Holm Oak Forest. Forests 2024, 15, 2018. https://doi.org/10.3390/f15112018
Di Bene C, Canfora L, Migliore M, Francaviglia R, Farina R. Spatial Variability of Soil CO2 Emissions and Microbial Communities in a Mediterranean Holm Oak Forest. Forests. 2024; 15(11):2018. https://doi.org/10.3390/f15112018
Chicago/Turabian StyleDi Bene, Claudia, Loredana Canfora, Melania Migliore, Rosa Francaviglia, and Roberta Farina. 2024. "Spatial Variability of Soil CO2 Emissions and Microbial Communities in a Mediterranean Holm Oak Forest" Forests 15, no. 11: 2018. https://doi.org/10.3390/f15112018
APA StyleDi Bene, C., Canfora, L., Migliore, M., Francaviglia, R., & Farina, R. (2024). Spatial Variability of Soil CO2 Emissions and Microbial Communities in a Mediterranean Holm Oak Forest. Forests, 15(11), 2018. https://doi.org/10.3390/f15112018