Mapping the Future: Climate-Induced Changes in Aboveground Live-Biomass Carbon Density Across Mexico’s Coniferous Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Data Acquisition and Cleaning Process
2.3. Predictive Modeling of cdAGB
2.4. Current and Future Prediction and Rate of Change of cdAGB
2.5. Bioclimatic Predictors: Current Analysis and Future Projections
3. Results
3.1. Distribution Carbon Density of Aboveground Live Biomass
3.2. Models for Predicting Carbon Density in the Aboveground Live Biomass
3.3. Validation of Predictive Models for cdAGB
3.4. Current and Future Prediction of Carbon Density of Aboveground Live Biomass
3.5. Evaluation of Climate Projections on Variables Predicting cdAGB
4. Discussion
4.1. Predictor Variables of Aboveground Biomass
4.2. Correlation Between Bioclimatic Variables and Carbon Density
4.3. Predictive Capacity of Bioclimatic Models
4.4. Current and Future Projection of cdAGB
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Comprehensive Dataset of Physical and Biological Biomass and Carbon Content Parameters in Mexico’s National Forest Inventory
# | Name | Short Name | Unit |
1 | Identification (Cluster no.) * | ID | |
2 | Type* (Conifers forests) * | Type | |
3 | Tenure | Tenure | |
4 | Slope | Slope | deg |
5 | DEPTH, soil | Depth soil | m |
6 | Structural richness | Structural rich | |
7 | Tree richness | Tree rich | |
8 | Number of stumps | Stumps | # |
9 | Biomass, aboveground | Biom abovegr | t/ha |
10 | Biomass, belowground | Biom belowgr | t/ha |
11 | Biomass, total | Biom total | t/ha |
12 | Carbon, aboveground * | C abovegr | t/ha |
13 | Carbon, belowground | C belowgr | t/ha |
14 | Soil carbon stock | C stock | t/ha |
15 | Fires index | Fires | |
16 | Pests index | Pests | |
17 | Temperature, air, annual mean | MAAT | °C |
18 | Precipitation, annual mean | MAP | mm |
19 | Longitude * | Longitude | |
20 | Latitude * | Latitude | |
21 | Trees, diameter at breast height | DBH | cm |
22 | Height | Height | m |
Appendix B. Bioclimatic Variables
Variable | Description | Units | Scale |
Bio 1 | Annual Mean Temperature | °C | Annual |
Bio 2 | Mean Diurnal Range (max temp–min temp) | °C | Monthly |
Bio 3 | Isothermality (Bio02/Bio07) (×100) | % | Annual |
Bio 4 | Temperature Seasonality (standard deviation × 100) | % | Annual |
Bio 05 | Max Temperature of Warmest Month | °C | Monthly |
Bio 06 | Min Temperature of Coldest Month | °C | Monthly |
Bio 07 | Temperature Annual Range (Bio5–Bio6) | °C | Annual |
Bio 08 | Mean Temperature of Wettest Quarter | °C | Quarterly |
Bio 09 | Mean Temperature of Driest Quarter | °C | Quarterly |
Bio 10 | Mean Temperature of Warmest Quarter | °C | Quarterly |
Bio 11 | Mean Temperature of Coldest Quarter | °C | Quarterly |
Bio 12 | Annual Precipitation | mm | Annual |
Bio 13 | Precipitation of Wettest Month | mm | Monthly |
Bio 14 | Precipitation of Driest Month | mm | Monthly |
Bio 15 | Precipitation Seasonality (Coefficient of variation) | % | Quarterly |
Bio 16 | Precipitation of Wettest Quarter | mm | Quarterly |
Bio 17 | Precipitation of Driest Quarter | mm | Quarterly |
Bio 18 | Precipitation of Warmest Quarter | mm | Quarterly |
Bio 19 | Precipitation of Coldest Quarter | mm | Quarterly |
References
- FAO. El Estado de Los Bosques Del Mundo 2022; FAO: Rome, Italy, 2022. [Google Scholar]
- Arasa-Gisbert, R.; Vayreda, J.; Román-Cuesta, R.M.; Villela, S.A.; Mayorga, R.; Retana, J. Forest Diversity Plays a Key Role in Determining the Stand Carbon Stocks of Mexican Forests. For. Ecol. Manag. 2018, 415–416, 160–171. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Saatchi, S.; Tansey, K.; Balzter, H. Magnitude, Spatial Distribution and Uncertainty of Forest Biomass Stocks in Mexico. Remote Sens. Environ. 2016, 183, 265–281. [Google Scholar] [CrossRef]
- Guo, Y.; Peng, C.; Trancoso, R.; Zhu, Q.; Zhou, X. Stand Carbon Density Drivers and Changes under Future Climate Scenarios across Global Forests. For. Ecol. Manag. 2019, 449, 117463. [Google Scholar] [CrossRef]
- Ma, Y.; Eziz, A.; Halik, Ü.; Abliz, A.; Kurban, A. Precipitation and Temperature Influence the Relationship between Stand Structural Characteristics and Aboveground Biomass of Forests—A Meta-Analysis. Forests 2023, 14, 896. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021; pp. 3–32. [Google Scholar]
- Climate Risk Profile: Mexico (2023): The World Bank Group.Washington, DC, USA. 41 p. Available online: https://climateknowledgeportal.worldbank.org/sites/default/files/country-profiles/15634-WB_Mexico%20Country%20Profile-WEB%20%282%29.pdf (accessed on 22 June 2024).
- Bennett, A.C.; Penman, T.D.; Arndt, S.K.; Roxburgh, S.H.; Bennett, L.T. Climate More Important than Soils for Predicting Forest Biomass at the Continental Scale. Ecography 2020, 43, 1692–1705. [Google Scholar] [CrossRef]
- Cysneiros, V.C.; Coelho de Souza, F.; Gaui, T.D.; Pelissari, A.L.; Orso, G.A.; Machado, S.d.A.; de Carvalho, D.C.; Silveira-Filho, T.B. Integrating Climate, Soil and Stand Structure into Allometric Models: An Approach of Site-Effects on Tree Allometry in Atlantic Forest. Ecol. Indic. 2021, 127, 107794. [Google Scholar] [CrossRef]
- Gao, J.; Zhao, P.; Shen, W.; Rao, X.; Hu, Y. Physiological Homeostasis and Morphological Plasticity of Two Tree Species Subjected to Precipitation Seasonal Distribution Changes. Perspect. Plant Ecol. Evol. Syst. 2017, 25, 1–19. [Google Scholar] [CrossRef]
- Yuan, J.; Yan, Q.; Wang, J.; Xie, J.; Li, R. Different Responses of Growth and Physiology to Warming and Reduced Precipitation of Two Co-Existing Seedlings in a Temperate Secondary Forest. Front. Plant Sci. 2022, 13, 946141. [Google Scholar] [CrossRef]
- Xin, S.; Wang, J.; Mahardika, S.B.; Jiang, L. Sensitivity of Stand-Level Biomass to Climate for Three Conifer Plantations in Northeast China. Forests 2022, 13, 2022. [Google Scholar] [CrossRef]
- Eamus, D. How Does Ecosystem Water Balance Affect Net Primary Productivity of Woody Ecosystems? Funct. Plant Biol. 2003, 30, 187–205. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, G.; Wang, Q.; Zhang, Y. How Temperature, Precipitation and Stand Age Control the Biomass Carbon Density of Global Mature Forests. Glob. Ecol. Biogeogr. 2014, 23, 323–333. [Google Scholar] [CrossRef]
- Han, S.H.; Kim, D.H.; Kim, G.N.; Lee, J.C.; Yun, C.W. Changes on Initial Growth and Physiological Characteristics of Larix Kaempferi and Betula Costata Seedlings under Elevated Temperature. Korean J. Agric. For. Meteorol. 2012, 14, 63–70. [Google Scholar] [CrossRef]
- Devi, V.; Kaur, A.; Sethi, M.; Avinash, G. Perspective Chapter: Effect of Low-Temperature Stress on Plant Performance and Adaptation to Temperature Change. In Plant Abiotic Stress Responses and Tolerance Mechanisms; IntechOpen: London, UK, 2023. [Google Scholar]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Jackson, R.B. The Structure, Distribution, and Biomass of the World’s Forests. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 593–622. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-Evaluation of Forest Biomass Carbon Stocks and Lessons from the World’s Most Carbon-Dense Forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lei, X.; Zeng, W.; Feng, L.; Zhou, C.; Wu, B. Quantifying the Effects of Stand and Climate Variables on Biomass of Larch Plantations Using Random Forests and National Forest Inventory Data in North and Northeast China. Sustainability 2022, 14, 5580. [Google Scholar] [CrossRef]
- Chen, X.; Luo, M.; Larjavaara, M. Effects of Climate and Plant Functional Types on Forest Above-Ground Biomass Accumulation. Carbon Balance Manag. 2023, 18, 5. [Google Scholar] [CrossRef]
- Dai, L.; Ke, X.; Guo, X.; Du, Y.; Zhang, F.; Li, Y.; Li, Q.; Lin, L.; Peng, C.; Shu, K.; et al. Responses of Biomass Allocation across Two Vegetation Types to Climate Fluctuations in the Northern Qinghai–Tibet Plateau. Ecol. Evol. 2019, 9, 6105–6115. [Google Scholar] [CrossRef] [PubMed]
- Girón-Gutiérrez, D.; Méndez-González, J.; Osorno-Sánchez, T.G.; Cerano-Paredes, J.; Soto-Correa, J.C.; Cambrón-Sandoval, V.H. Climate as a Driver of Aboveground Biomass Density Variation: A Study of Ten Pine Species in Mexico. Forests 2024, 15, 1160. [Google Scholar] [CrossRef]
- Khan, D.; Muneer, M.A.; Nisa, Z.U.; Shah, S.; Amir, M.; Saeed, S.; Uddin, S.; Munir, M.Z.; Lushuang, G.; Huang, H. Effect of Climatic Factors on Stem Biomass and Carbon Stock of Larix Gmelinii and Betula Platyphylla in Daxing’anling Mountain of Inner Mongolia, China. Adv. Meteorol. 2019, 1–10. [Google Scholar] [CrossRef]
- David, H.C.; de Araújo, E.J.G.; Morais, V.A.; Scolforo, J.R.S.; Marques, J.M.; Péllico Netto, S.; MacFarlane, D.W. Carbon Stock Classification for Tropical Forests in Brazil: Understanding the Effect of Stand and Climate Variables. For. Ecol. Manag. 2017, 404, 241–250. [Google Scholar] [CrossRef]
- López-Serrano, P.M.; Domínguez, J.L.C.; Corral-Rivas, J.J.; Jiménez, E.; López-Sánchez, C.A.; Vega-Nieva, D.J. Modeling of Aboveground Biomass with Landsat 8 Oli and Machine Learning in Temperate Forests. Forests 2020, 11, 11. [Google Scholar] [CrossRef]
- Rezashobairi, S.; Lin, H.; Usoltsev, V.; Osmirko, A.; Tsepordey, I.; Ye, Z.; Anees, S. A Comparative Pattern for Populus Spp. and Betula Spp. Stand Biomass in Eurasian Climate Gradients. Croat. J. For. Eng. 2022, 43, 457–467. [Google Scholar] [CrossRef]
- Stegen, J.C.; Swenson, N.G.; Enquist, B.J.; White, E.P.; Phillips, O.L.; Jørgensen, P.M.; Weiser, M.D.; Monteagudo Mendoza, A.; Núñez Vargas, P. Variation in Above-Ground Forest Biomass across Broad Climatic Gradients. Glob. Ecol. Biogeogr. 2011, 20, 744–754. [Google Scholar] [CrossRef]
- Reich, P.B.; Luo, Y.; Bradford, J.B.; Poorter, H.; Perry, C.H.; Oleksyn, J. Temperature Drives Global Patterns in Forest Biomass Distribution in Leaves, Stems, and Roots. Proc. Natl. Acad. Sci. USA 2014, 111, 13721–13726. [Google Scholar] [CrossRef]
- Ellis, C.J. Climate Change, Bioclimatic Models and the Risk to Lichen Diversity. Diversity 2019, 11, 54. [Google Scholar] [CrossRef]
- Gernandt, D.S.; Pérez-De La Rosa, J.A. Biodiversity of Pinophyta (Conifers) in Mexico. Rev. Mex. Biodivers. 2014, 85, 215–223. [Google Scholar] [CrossRef]
- Rzedowski, J.; Huerta, L. Vegetación de México; Editorial Limusa: Ciudad de México, Mexico, 2006. [Google Scholar]
- Granados-Sánchez, D.; López-Ríos, G.F.; Hernández-García, M.A. Ecología Y Silvicultura Bosques Templados. Rev. Chapingo Ser. Cienc. For. Y Ambiente 2007, 13, 67–80. [Google Scholar]
- Challenger, A. Utilización y Conservación de Los Ecosistemas Terrestres de México; Instituto de Biología: Distrito Federal, Mexico, 1998; 847p, ISBN 970-9000-02-0. Available online: https://biblioteca.ecosur.mx/cgi-bin/koha/opac-detail.pl?biblionumber=23389 (accessed on 12 August 2024).
- Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC). Orientación Sobre las Buenas Prácticas para uso de la Tierra, Cambio de uso de la Tierra y Silvicultura. Available online: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_languages.html (accessed on 12 August 2024).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.; Wang, Y. Forest Aboveground Biomass Estimation and Response to Climate Change Based on Remote Sensing Data. Sustainability 2022, 14, 14222. [Google Scholar] [CrossRef]
- Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 3.6-26. 2023. Available online: https://CRAN.R-project.org/package=raster (accessed on 6 October 2024).
- Lê, S.; Josse, J.; Rennes, A.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Corcoran, D.C. GeoStratR: Simple Spatial Stratification of Rasters. 2024. Available online: https://sustainscapes.github.io/GeoStratR/ (accessed on 12 August 2024).
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Grömping, U. Relative Importance for Linear Regression in R: The Package Relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Luo, M.; Wang, Y.; Xie, Y.; Zhou, L.; Qiao, J.; Qiu, S.; Sun, Y. Combination of Feature Selection and Catboost for Prediction: The First Application to the Estimation of Aboveground Biomass. Forests 2021, 12, 216. [Google Scholar] [CrossRef]
- Bjork, S.; Anfinsen, S.N.; Naesset, E.; Gobakken, T.; Zahabu, E. On the Potential of Sequential and Nonsequential Regression Models for Sentinel-1-Based Biomass Prediction in Tanzanian Miombo Forests. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 4612–4639. [Google Scholar] [CrossRef]
- Ortiz-Reyes, A.D.; Valdez-Lazalde, J.R.; Ángeles-Pérez, G.; de los Santos-Posadas, H.M.; Schneider, L.; Aguirre-Salado, C.A.; Peduzzi, A. Synergy of Landsat, Climate and LiDAR Data for Aboveground Biomass Mapping in Medium-Stature Tropical Forests of the Yucatan Peninsula, Mexico. Rev. Chapingo Ser. Cienc. For. Ambiente 2021, 27, 383–400. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Z.; Shen, C.; Li, Y.; Feng, Z.; Zeng, W.; Huang, G. Relationship between the Geographical Environment and the Forest Carbon Sink Capacity in China Based on an Individual-Tree Growth-Rate Model. Ecol. Indic. 2022, 138, 108814. [Google Scholar] [CrossRef]
- Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.M.M. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559–5588. [Google Scholar] [CrossRef]
- Yan, M.; Xia, Y.; Yang, X.; Wu, X.; Yang, M.; Wang, C.; Hou, Y.; Wang, D. Biomass Estimation of Subtropical Arboreal Forest at Single Tree Scale Based on Feature Fusion of Airborne LiDAR Data and Aerial Images. Sustainability 2023, 15, 1676. [Google Scholar] [CrossRef]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Xi, Y. Estimation of Forest Above-Ground Biomass by Geographically Weighted Regression and Machine Learning with Sentinel Imagery. Forests 2018, 9, 582. [Google Scholar] [CrossRef]
- Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E.; Heikinheimo, V.; Pellikka, P.K.E. Determinants of Aboveground Biomass across an Afromontane Landscape Mosaic in Kenya. Remote Sens. 2017, 9, 827. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Zhao, S.; Dong, M.; Chen, H.Y.H.; Kang, X. Different Responses of the Radial Growth of Conifer Species to Increasing Temperature along Altitude Gradient: Pinus Tabulaeformis in the Helan Mountains (Northwestern China). Pol. J. Ecol. 2016, 64, 509–525. [Google Scholar] [CrossRef]
- Opelele, O.M.; Yu, Y.; Fan, W.; Chen, C.; Kachaka, S.K. Biomass Estimation Based on Multilinear Regression and Machine Learning Algorithms in the Mayombe Tropical Forest, in the Democratic Republic of Congo. Appl. Ecol. Environ. Res. 2021, 19, 359–377. [Google Scholar] [CrossRef]
- Wang, Z.; Yi, L.; Xu, W.; Zheng, X.; Xiong, S.; Bao, A. Integration of UAV and GF-2 Optical Data for Estimating Aboveground Biomass in Spruce Plantations in Qinghai, China. Sustainability 2023, 15, 9700. [Google Scholar] [CrossRef]
- Zhou, R.; Zhang, Y.; Peng, M.; Jin, Y.; Song, Q. Effects of Climate Change on the Carbon Sequestration Potential of Forest Vegetation in Yunnan Province, Southwest China. Forests 2022, 13, 306. [Google Scholar] [CrossRef]
- Villers-Ruiz, L.; Trejo-Vazquez, I. Climate Research Clim Res Assessment of the Vulnerability of Forest Ecosystems to Climate Change in Mexico. Clim. Res. 1997, 9, 87–93. [Google Scholar] [CrossRef]
- Ferreira, I.J.M.; Campanharo, W.A.; Fonseca, M.G.; Escada, M.I.S.; Nascimento, M.T.; Villela, D.M.; Brancalion, P.; Magnago, L.F.S.; Anderson, L.O.; Nagy, L.; et al. Potential Aboveground Biomass Increase in Brazilian Atlantic Forest Fragments with Climate Change. Glob. Chang. Biol. 2023, 29, 3098–3113. [Google Scholar] [CrossRef]
Stratum | Coefficient | Estimate | 2.5 | 97.5 | Std. | T | Pr | Residual | VIF | Imp. (%) |
---|---|---|---|---|---|---|---|---|---|---|
Err | Value | (>|t|) | Deviance | |||||||
I | β0 (intercept) | 64.8332 | 22.7606 | 97.3943 | 23.2221 | 2.79 | 0.00772 ** | 13.246 | ||
(n = 48) | β1 (Bio 5) | −0.1897 | −0.2932 | −0.0544 | 0.0737 | −2.57 | 0.01355 * | 1.02 | 10.33 | |
β2 (Bio 18) | 0.0586 | 0.0337 | 0.0829 | 0.0123 | 4.77 | 2.02 × 10−5 *** | 1.02 | 8.74 | ||
II | β0 (intercept) | 87.6362 | 66.3661 | 108.9076 | 10.4558 | 8.38 | 1.22 × 10−15 *** | 172.17 | ||
(n = 360) | β1 (Bio 5) | −0.2572 | −0.3296 | −0.1841 | 0.0376 | −6.84 | 3.37 × 10−11 *** | 1.03 | 8.04 | |
β2 (Bio 12) | 0.0190 | 0.0106 | 0.0272 | 0.0037 | 5.12 | 4.91 × 10−7 *** | 1.03 | 3.35 | ||
III | β0 (intercept) | 26.6379 | 12.3682 | 40.4383 | 8.4994 | 3.13 | 0.00186 ** | 132.39 | ||
(n = 370) | β1 (Bio 10) | −0.0959 | −0.1571 | −0.0293 | 0.0391 | −2.45 | 0.01461 * | 1.16 | 3.28 | |
β2 (Bio 13) | 0.0933 | 0.0708 | 0.1160 | 0.0135 | 6.93 | 1.8 × 10−11 *** | 1.16 | 14.95 |
Stratum | Parameter | n | Min | P25 | Mean | Median | P75 | Max | SD | CV | Shapiro | Anderson |
---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | p-Value | |||||||||||
I | cdAGB | 48 | 4.23 | 11.54 | 23.14 | 16.23 | 33.35 | 62.05 | 15.04 | 65 | 0.0001 | 0.0001 |
Bio 5 | 27.7 | 28.7 | 29.97 | 29.6 | 30.75 | 36 | 1.76 | 5.89 | 0.0001 | 0.0001 | ||
Bio 18 | 62 | 223 | 256.89 | 290 | 330.5 | 397 | 101.66 | 39.57 | 0.0001 | 0.0001 | ||
II | cdAGB | 360 | 4.46 | 19.87 | 42.57 | 34.35 | 54.75 | 179.69 | 33.01 | 77.54 | 0.0001 | 0.0001 |
Bio 5 | 17.5 | 22.78 | 25.72 | 25.3 | 28.7 | 34.6 | 3.93 | 15.28 | 0.0001 | 0.0001 | ||
Bio 12 | 426 | 895.25 | 1109.42 | 1092 | 1314.25 | 2216 | 367.25 | 33.1 | 0.0001 | 0.0001 | ||
III | cdAGB | 370 | 3.15 | 12.76 | 26.26 | 23.24 | 35.98 | 92.92 | 16.56 | 63.05 | 0.0001 | 0.0001 |
Bio 10 | 14.7 | 17.4 | 18.55 | 18.3 | 19.4 | 26.3 | 1.74 | 9.39 | 0.0001 | 0.0001 | ||
Bio13 | 53 | 154 | 184.03 | 181 | 219 | 357 | 52.54 | 28.55 | 0.0001 | 0.0001 |
Stratum | Method | Set | n | Pseudo R2 | RMSE | MAE |
---|---|---|---|---|---|---|
I | Training | 48 | ||||
LOOCV | Validation | 12 | 0.031 | 38.319 | 30.806 | |
CV | Validation | 12 | 0.177 | 29.908 | 29.379 | |
RCV | Validation | 12 | 0.177 | 31.949 | 31.272 | |
II | Bootstrap | Validation | 12 | 0.316 | 42.426 | 34.457 |
Training | 360 | |||||
LOOCV | Validation | 90 | 0.128 | 29.938 | 21.789 | |
CV | Validation | 90 | 0.249 | 28.493 | 21.720 | |
RCV | Validation | 90 | 0.246 | 28.620 | 21.685 | |
Bootstrap | Validation | 90 | 0.150 | 30.107 | 22.302 | |
III | Training | 370 | ||||
LOOCV | Validation | 92 | 0.153 | 13.887 | 10.699 | |
CV | Validation | 92 | 0.231 | 13.181 | 10.543 | |
RCV | Validation | 92 | 0.238 | 13.330 | 10.600 | |
Bootstrap | Validation | 92 | 0.192 | 14.175 | 10.986 |
Stratum | Changes in cdAGB | RCP 26 | RCP 45 | RCP 60 | RCP 85 | ||||
---|---|---|---|---|---|---|---|---|---|
2050 | 2070 | 2050 | 2070 | 2050 | 2070 | 2050 | 2070 | ||
I | (−20–−15 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(−15–-10 | ) | 0 | 0 | 0 | 0 | 0 | 35 | 0 | 107 | |
(−10–−5 | ) | 0 | 240 | 2361 | 2280 | 906 | 2885 | 3011 | 3180 | |
(−5–0 | ) | 3287 | 3047 | 926 | 1007 | 2381 | 367 | 276 | 0 | |
(0–5 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
II | (−20–−15 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1148 |
(−15–−10 | ) | 0 | 30 | 6 | 1526 | 0 | 3928 | 4796 | 22,466 | |
(−10–−5 | ) | 17,750 | 19,473 | 23,821 | 22,317 | 23,571 | 19,912 | 19,047 | 229 | |
(-5–0 | ) | 6093 | 4340 | 16 | 0 | 272 | 3 | 0 | 0 | |
(0–5 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
III | (−20–−15 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(−15–−10 | ) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
(−10–−5 | ) | 0 | 6 | 0 | 0 | 0 | 0 | 1290 | 3281 | |
(−5–0 | ) | 9680 | 9819 | 9825 | 9825 | 9825 | 9822 | 8535 | 6544 | |
(0–5 | ) | 145 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval-García, C.; Méndez-González, J.; Andrés, F.; Villavicencio-Gutiérrez, E.E.; Paz-Pellat, F.; Flores-López, C.; Cornejo-Oviedo, E.H.; Zermeño-González, A.; Sosa-Díaz, L.; García-Guzmán, M.; et al. Mapping the Future: Climate-Induced Changes in Aboveground Live-Biomass Carbon Density Across Mexico’s Coniferous Forests. Forests 2024, 15, 2032. https://doi.org/10.3390/f15112032
Sandoval-García C, Méndez-González J, Andrés F, Villavicencio-Gutiérrez EE, Paz-Pellat F, Flores-López C, Cornejo-Oviedo EH, Zermeño-González A, Sosa-Díaz L, García-Guzmán M, et al. Mapping the Future: Climate-Induced Changes in Aboveground Live-Biomass Carbon Density Across Mexico’s Coniferous Forests. Forests. 2024; 15(11):2032. https://doi.org/10.3390/f15112032
Chicago/Turabian StyleSandoval-García, Carmela, Jorge Méndez-González, Flores Andrés, Eulalia Edith Villavicencio-Gutiérrez, Fernando Paz-Pellat, Celestino Flores-López, Eladio Heriberto Cornejo-Oviedo, Alejandro Zermeño-González, Librado Sosa-Díaz, Marino García-Guzmán, and et al. 2024. "Mapping the Future: Climate-Induced Changes in Aboveground Live-Biomass Carbon Density Across Mexico’s Coniferous Forests" Forests 15, no. 11: 2032. https://doi.org/10.3390/f15112032
APA StyleSandoval-García, C., Méndez-González, J., Andrés, F., Villavicencio-Gutiérrez, E. E., Paz-Pellat, F., Flores-López, C., Cornejo-Oviedo, E. H., Zermeño-González, A., Sosa-Díaz, L., García-Guzmán, M., & Villarreal-Quintanilla, J. Á. (2024). Mapping the Future: Climate-Induced Changes in Aboveground Live-Biomass Carbon Density Across Mexico’s Coniferous Forests. Forests, 15(11), 2032. https://doi.org/10.3390/f15112032