Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations
Abstract
:1. Introduction
2. Study Site and Data
2.1. Overview of the Study Site
2.2. Data Source and Pre-Processing
3. Methods
3.1. Compact Polarimetric SAR Data Acquisition and Feature Extraction
3.1.1. Compact Polarimetric SAR Data Acquisition
3.1.2. Feature Extraction
3.2. Optimal Feature Selection
3.3. Supervised Classifications
3.3.1. SVM Classification
3.3.2. ML Classification
3.3.3. ANN Classification
- Input layer: receive external input data and pass it to the next layer.
- Hidden layer: The middle layer. The number of neurons in it can be adjusted as needed. The hidden layer introduces nonlinearity through linear transformation and activation function so it can handle complex nonlinear relationships.
- Output layer: responsible for outputting the prediction results of the model.
4. Results
4.1. Feature Analysis and Selection of Optimal Polarimetric Feature Combination
- Figure 3a: the best performance in differentiating mangroves from water was f39(SE), with EM-W = 8.937, followed by f40(SEI), f22(VB).
- Figure 3b: the best performance in differentiating mangroves from the land was f22(VB), with EM-L = 2.596, followed by f39(SE) and f40(SEI).
- Figure 3c: the best performance in differentiating mangroves from seawater was f39(SE), with EM-S = 8.754, followed by f40(SEI), f22(VB).
- Figure 3d: the best performance in differentiating water from land was f40(SEI), with EW-L = 5.728, followed by 39(SE), f22(VB).
- Figure 3e: the best performance in differentiating water from seawater was f20(VG), with EW-S = 2.079, followed by f40(SEI) and f26(l1).
- Figure 3f: the best performance in distinguishing land from seawater was f39(SE), with EL-S = 4.972, followed by f40(SEI) and f22(VB).
4.2. Mangrove Identification and Land Cover Classification Results
4.2.1. Classification Results Based on a Single Feature Input
4.2.2. Classification Results Based on Optimal Feature Combination Input
5. Discussion
6. Conclusions
- Among the 52 CP features, f39(SE) is the most optimal for distinguishing mangroves from water and land from seawater; f22(VB) is optimal for distinguishing mangroves from land; f40(SEI) is optimal for distinguishing water from land; and f20(VG) is optimal for distinguishing water from seawater.
- Comparison of the classification results of different features shows that f22(VB) has the best performance in mangrove extraction and that f40(SEI) has the best comprehensive performance in the classification of the four classes.
- Compared with the SVM classification results based on a single polarimetric feature input, the results of the optimal polarimetric feature combination, selected based on Euclidean distance analysis, not only reduced data redundancy and computational effort but also improved classification efficiency and accuracy. The feature combinations included f39(SE), f40(SEI), f22(VB) and f20(VG). Among the three supervised classifiers (SVM, ML, and ANN), SVM has the best performance in mangrove extraction, and ML has the best performance in overall classification accuracy.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, K.; Li, X.; Shi, X.; Wang, S. Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetl. Ecol. Manag. 2008, 28, 336. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Sui, S.Z. The mangrove wetland resources and their conservation in China. J. Nat. Resour. 2001, 16, 9. [Google Scholar]
- Glaser, M. Interrelations between mangrove ecosystem, local economy and social sustainability in Caeté Estuary, North Brazil. Wetl. Ecol. Manag. 2003, 11, 265–272. [Google Scholar] [CrossRef]
- Mumby, P.J. Connectivity of reef fish between mangroves and coral reefs: Algorithms for the design of marine reserves at seascape scales. Biol. Conserv. 2006, 128, 215–222. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Dan, X.Q.; Liao, B.W.; Wu, Z.B.; Wu, H.J.; Bao, D.M.; Dan, W.; Liu, S.H. Resources, Conservation Status and Main Threats of Mangrove Wetlands in China. Ecol. Environ. Sci. 2016, 25, 1237–1243. [Google Scholar]
- Borana, S.L.; Yadav, S.K. Chapter 10—Urban land-use susceptibility and sustainability. In Water, Land, and Forest Susceptibility and Sustainability; Chatterjee, U., Pradhan, B., Kumar, S., Saha, S., Zakwan, M., Brian, Fath, D., Fiscus, D., Eds.; Academic Press: Cambridge, UK, 2023; Volume 2, pp. 261–286. [Google Scholar]
- Pastor-Guzman, J.; Dash, J.; Atkinson, P.M. Remote sensing of mangrove forest phenology and its environmental drivers. Remote Sens. Environ. 2018, 205, 71–84. [Google Scholar] [CrossRef]
- Bui, T.D.; Maier, S.W.; Austin, C.M. Land cover and land use change related to shrimp farming in coastal areas of Quang Ninh, Vietnam using remotely sensed data. Environ. Earth Sci. 2014, 72, 441–455. [Google Scholar] [CrossRef]
- Quoc, V.; Natascha, O.; Patrick, L.; Claudia, K. Remote Sensing in Mapping Mangrove Ecosystems—An Object-Based Approach. Remote Sens. 2013, 5, 183–201. [Google Scholar] [CrossRef]
- Sabel, D.; Bartalis, Z.; Wagner, W.; Doubkova, M.; Klein, J.P. Development of a Global Backscatter Model in support to the Sentinel-1 mission design. Remote Sens. Environ. 2012, 120, 102–112. [Google Scholar] [CrossRef]
- Rodriguez, W.; Feller, I.C.; Cavanaugh, K.C. Spatio-temporal changes of a mangrove–saltmarsh ecotone in the northeastern coast of Florida, USA. Glob. Ecol. Conserv. 2016, 7, 245–261. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Itoh, T.; Simard, M.; Fatoyinbo, L.; Bunting, P.; Rosenqvist, A. An approach to monitoring mangrove extents through time-series comparison of JERS-1 SAR and ALOS PALSAR data. Wetl. Ecol. Manag. 2015, 23, 3–17. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Simard, M. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.J.; Singh, S.K.; Kushwaha, S.P.S.; Ashutosh, S.; Singh, R.K. Assessment and monitoring of estuarine mangrove forests of Goa using satellite remote sensing. J. Indian Soc. Remote Sens. 2004, 32, 167–174. [Google Scholar] [CrossRef]
- Simard, M.; Grandi, G.D.; Saatchi, S.; Mayaux, P. Mapping tropical coastal vegetation using JERS-1 and ERS-1 radar data with a decision tree classifier. Int. J. Remote Sens. 2002, 23, 1461–1474. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Fromard, F. Investigating correlations between radar data and mangrove forests characteristics. In Proceedings of the International Geoscience & Remote Sensing Symposium, Beijing, China, 4–14 August 1996. [Google Scholar]
- Mougin, E.; Proisy, C.; Marty, G.; Fromard, F.; Puig, H.; Betoulle, J.L.; Rudant, J.P. Multifrequency and multipolarization radar backscattering from mangrove forests. IEEE Trans. Geosci. Remote Sens. 1999, 37, 94–102. [Google Scholar] [CrossRef]
- Proisy, C.; Mougin, E.; Fromard, F.; Karam, M.A. Interpretation of Polarimetric Radar Signatures of Mangrove Forests. Remote Sens. Environ. 2000, 71, 56–66. [Google Scholar] [CrossRef]
- Aschbacher, J.; Ofren, R.; Delsol, J.P.; Suselo, T.B.; Vibulsresth, S.; Charrupat, T. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: Preliminary results. Hydrobiologia 1995, 295, 285–294. [Google Scholar] [CrossRef]
- Pasqualini, V.; Iltis, J.; Dessay, N.; Lointier, M.; Polidori, L. Mangrove mapping in North-Western Madagascar using SPOT-XS and SIR-C radar data. Hydrobiologia 1999, 413, 127–133. [Google Scholar] [CrossRef]
- Yalamanchili, S.R.; Turkar, V.; Venkataraman, G. Classification of polarimetric SAR data over wet and arid regions of India. In Proceedings of the Geoscience & Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009. [Google Scholar]
- Ouchi, K.; Ipor, I.B. Comparison of SAR and optical images of the rainforests of Borneo, Malaysia with field data. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Chrétien, N.; Tiafack, O.; Charly, D. Mapping and monitoring urban growth on wetlands in humid tropical context using earth observation technology: Case study of Mangrove zones around Douala in Cameroon. In Proceedings of the Geoscience & Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Souza-Filho, P.W.M.; Gonçalves, F.D.; Rodrigues, S.W.P.; Costa, F.R.; Miranda, F.R. Multi-Sensor Data Fusion for Geomorphological and Environmental Sensitivity Index Mapping in the Amazonian Mangrove Coast, Brazil. In Special Issue No. 56. Proceedings of the 10th International Coastal Symposium ICS 2009, Lisboa, Portugal, 13–18 April 2009; Coastal Education & Research Foundation, Inc.: Charlotte, NC, USA, 2009; Volume II, pp. 1592–1596. [Google Scholar]
- Rodrigues, S.W.P.; Souza-Filho, P.W.M. Use of Multi-Sensor Data to Identify and Map Tropical Coastal Wetlands in the Amazon of Northern Brazil. Wetl. Ecol. Manag. 2011, 31, 11–23. [Google Scholar] [CrossRef]
- Kim, S.W.; Wdowinski, S.; Amelung, F.; Dixon, T.H.; Won, J.S. Interferometric Coherence Analysis of the Everglades Wetlands, South Florida. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5210–5224. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Vandenberg, C.V.; Flores-Verdugo, W.F. The Use of Multipolarized Spaceborne SAR Backscatter for Monitoring the Health of a Degraded Mangrove Forest. J. Coast. Res. 2008, 24, 248–254. [Google Scholar] [CrossRef]
- Wang, D.; Lin, H.; Chen, J.; Zhang, Y.; Zeng, Q. Application of multi-temporal ENVISAT ASAR data to agricultural area mapping in the Pearl River Delta. Int. J. Remote Sens. 2010, 31, 1555–1572. [Google Scholar] [CrossRef]
- Wong, F.K.; Fung, T. Combining hyperspectral and radar imagery for mangrove leaf area index modeling. Photogramm. Eng. Remote Sens. 2013, 79, 479–490. [Google Scholar] [CrossRef]
- Kovacs, J.; Lu, X.; Flores-Verdugo, F.; Zhang, C.; de Santiago, F.F.; Jiao, X. Applications of ALOS PALSAR for monitoring biophysical parameters of a degraded black mangrove (Avicennia germinans) forest. ISPRS J. Photogramm. Remote Sens. 2013, 82, 102–111. [Google Scholar] [CrossRef]
- Ian, B.; Simon, M.; Lars-Ove, W. L-Band Polarimetric Target Decomposition of Mangroves of the Rufiji Delta, Tanzania. Remote Sens. 2016, 8, 140. [Google Scholar] [CrossRef]
- Lagomasino, D.; Fatoyinbo, T.; Lee, S.K.; Feliciano, E.; Trettin, C.; Simard, M. A Comparison of Mangrove Canopy Height Using Multiple Independent Measurements from Land, Air, and Space. Remote Sens. 2016, 8, 327. [Google Scholar] [CrossRef]
- Kovacs, J.M.; Jiao, X.; Flores-De-Santiago, F.; Zhang, C.; Flores-Verdugo, F. Assessing relationships between Radarsat-2 C-band and structural parameters of a degraded mangrove forest. Int. J. Remote Sens. 2013, 34, 7002–7019. [Google Scholar] [CrossRef]
- Zhen, J.; Liao, J.; Shen, G. Mapping Mangrove Forests of Dongzhaigang Nature Reserve in China Using Landsat 8 and Radarsat-2 Polarimetric SAR Data. Sensors 2018, 18, 4012. [Google Scholar] [CrossRef]
- Hongsheng, Z.; Ting, W.; Mingfeng, L.; Mingming, J.; Hui, L.; Chu, L.M.; Adam, D. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest. Remote Sens. 2018, 10, 467. [Google Scholar] [CrossRef]
- Bangqian, C.; Xiangming, X.; Xiangping, L.; Lianghao, P.; Russell, D. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar]
- Castillo, J.; Apan, A.A.; Maraseni, T.N.; Salmo, S. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery. ISPRS J. Photogramm. Remote Sens. 2017, 134, 70–85. [Google Scholar] [CrossRef]
- Antonio, N.J.; Nur, A.; Alfredo, F.-L.; Jessica, E.; Pablo, R.-N. Integration of UAV, Sentinel-1, and Sentinel-2 Data for Mangrove Plantation Aboveground Biomass Monitoring in Senegal. Remote Sens. 2019, 11, 77. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K. Aboveground biomass estimation of mangrove species using ALOS-2 PALSAR imagery in Hai Phong City, Vietnam. J. Appl. Remote Sens. 2017, 11, 026010. [Google Scholar] [CrossRef]
- Pham, T.D.; Bui, D.T.; Yoshino, K.; Le, N.N. Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region. Environ. Earth Sci. 2018, 77, 159. [Google Scholar] [CrossRef]
- Pham, T.D.; Yoshino, K.; Le, N.N.; Bui, D.T. Estimating aboveground biomass of a mangrove plantation on the Northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and Sentinel-2A data. Int. J. Remote Sens. 2018, 39, 7761–7788. [Google Scholar] [CrossRef]
- Ferrentino, E.; Nunziata, F.; Zhang, H.; Migliaccio, M. On the ability of PolSAR measurements to discriminate among mangrove species. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2729–2737. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Myint, S.W.; Du, Z.; Li, Y.; Cao, J.; Liu, L.; Wu, Z. Integration of GF2 Optical, GF3 SAR, and UAV Data for Estimating Aboveground Biomass of China’s Largest Artificially Planted Mangroves. Remote Sens. 2020, 12, 2039. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, G.; Chen, S.W. Polarimetric Autocorrelation Matrix: A New Tool for Joint Characterizing of Target Polarization and Doppler Scattering Mechanism. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5213522. [Google Scholar] [CrossRef]
- Shu, S.; Yang, J.; Yang, C.; Hu, H.; Jing, W.; Hu, Y.; Li, Y. Performance analysis of ocean eddy detection and identification by L-Band compact polarimetric synthetic aperture radar. Remote Sens. 2021, 13, 4905. [Google Scholar] [CrossRef]
- Fanghong, X.; Xiaodong, W.; Yuechao, C.; Weisheng, P.; Yiming, L.; Wei, Z. Tree Species Selection for Mangrove Afforestation on the FrontierHarsh Intertidal Mudflats in Leizhou Peninsula. Prot. For. Sci. Technol. 2013, 6, 7–9. [Google Scholar] [CrossRef]
- Wang, X.; Tan, L.; Fan, J. Performance Evaluation of Mangrove Species Classification Based on Multi-Source Remote Sensing Data Using Extremely Randomized Trees in Fucheng Town, Leizhou City, Guangdong Province. Remote. Sens. 2023, 15, 1386. [Google Scholar] [CrossRef]
- Souyris, J.C.; Imbo, P.; Fjortoft, R.; Sandra, M.; Jong-Sen, L. Compact polarimetry based on symmetry properties of geophysical media: The /spl pi//4 mode. IEEE Trans. Geosci. Remote Sens. 2005, 43, 634–646. [Google Scholar] [CrossRef]
- Stacy, N.; Preiss, M. Compact polarimetric analysis of X-band SAR data. In Proceedings of the EUSAR, Dresden, Germany, 16–18 May 2006. [Google Scholar]
- Raney, R.K. Hybrid-polarity SAR architecture. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3397–3404. [Google Scholar] [CrossRef]
- Nord, M.E.; Ainsworth, T.L.; Jong-Sen, L.; Stacy, N.J.S. Comparison of Compact Polarimetric Synthetic Aperture Radar Modes. IEEE Trans. Geosci. Remote Sens. 2009, 47, 174–188. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; He, Y.; Lehner, S.; Brusch, S. Target Detection on the Ocean with the Relative Phase of Compact Polarimetry SAR. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3299–3305. [Google Scholar] [CrossRef]
- Haijiang, W. Study on Classification Methods of Polarimetric SAR Images; University of Electronic Science and Technology of China: Chengdu, China, 2008. [Google Scholar]
- Cloude, S.R.; Goodenough, D.G.; Chen, H. Compact Decomposition Theory. IEEE Geosci. Remote Sens. Lett. 2012, 9, 28–32. [Google Scholar] [CrossRef]
- Raney, R.K.; Cahill, J.; Patterson, G.W.; Bussey, D. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. Planets 2012, 117, E00H21. [Google Scholar] [CrossRef]
- Ainsworth, T.L.; Cloude, S.R.; Lee, J.S. Eigenvector analysis of polarimetric SAR data. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Refregier, P.; Morio, J. Shannon entropy of partially polarized and partially coherent light with Gaussian fluctuations. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2006, 23, 3036–3044. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, J.; Meng, J.; Zhang, X.; Mao, X. Analysis of Ship Detection Performance with Full-, Compact- and Dual-Polarimetric SAR. Remote Sens. 2019, 11, 2160. [Google Scholar] [CrossRef]
- Shu, S.; Meng, J.M.; Zhang, X.; Liu, G. Oil Spill Detection and Classification Method Based on Compact Polarization SAR. Adv. Mar. Sci. 2020, 39, 1671–6647. [Google Scholar]
- Quanhua, Z.; Linda, F.; Yu, L. Wetland Classification of SAR Image based on the Polarization Characteristics Combination. J. Geo-Inf. Sci. 2021, 23, 723–736. [Google Scholar] [CrossRef]
- Mjolsness, E.; Decoste, D. Machine Learning for Science: State of the Art and Future Prospects. Sci. China Earth Sci. 2001, 293, 2051–2055. [Google Scholar] [CrossRef]
- Ahmad, A.; Quegan, S. Analysis of maximum likelihood classification on multispectral data. Appl. Math. Sci. 2012, 6, 6425–6436. [Google Scholar]
- Kavzoglu, T.; Mather, P.M. The use of backpropagating artificial neural networks in land cover classification. Int. J. Remote Sens. 2003, 24, 4907–4938. [Google Scholar] [CrossRef]
Sensor | Start Year | Band | Polarimetric Mode | Resolution (m) | Ref. |
---|---|---|---|---|---|
AIRSAR | 1985 | P C L | Quad-polarimetric | / | [18,19,20] |
ERS-1 | 1991 | C | VV | 30 | [17,18,21] |
SIR-C | 1994 | C L X | Quad-polarimetric | 10–200 | [18,22,23] |
JERS-1 | 1992 | L | HH | 18 | [15,18,22] |
ERS-2 | 1995 | C | VV | 30 | [24,25] |
Radarsat-1 | 1995 | C | HH | 10–100 | [26,27,28] |
Envisat | 2002 | C | Dual-polarimetric | 28 | [29,30,31] |
ALOS | 2006 | L | Dual-polarimetric | 10–100 | [14,15,32,33] |
TerraSAR-X | 2007 | X | Dual-polarimetric | 1–40 | [34] |
Radarsat-2 | 2007 | C | Quad-polarimetric | 1.5–100 | [35,36,37] |
Sentinel-1 | 2014 | C | Dual-polarimetric | 5–40 | [38,39,40] |
ALOS-2 | 2014 | L | Quad-polarimetric | 3–100 | [41,42,43,44] |
GF-3 | 2017 | C | Quad-polarimetric | 1–500 | [45] |
Scene ID | Image Area | Incidence Angle | Date (UTC) | Band | Polarimetric Mode | Resolution |
---|---|---|---|---|---|---|
3405430 | Zhanjiang, China (20.836 N, 110.263 E) | 48.845°–49.887° | 7 March 2017, 10:55 | C (5.4 Hz, center frequency) | Quad-polarimetric strip I | 8 m |
No. | Feature | Ref. | Description |
---|---|---|---|
f1–f4 | C11, C12_imag, C12_real, C22 | [56] | Covariance matrix components |
f5–f11 | Linear representation of the wave anisotropy (Stokes_A), circular polarimetric ratio (CPR), degree of circular polarimetric (DoCP), degree of linear polarimetric (DoLP), linear representation of the wave entropy (Stokes_H), linear polarimetric ratio (LPR), linear representation of the wave polarimetric contrast (Stokes_Contrast) | [57] | Stokes decomposition |
f12–f15 | g0, g1, g2, g3 | [57] | Stokes components |
f16–f19 | Orientation angle (phi), ellipticity angle (tau), Poincaré planisphere (Stokes_xp, Stokes_yp) | [57] | Stokes Angles |
f20–f22 | Dbl (VG), Odd (VR), Rnd (VB) | [57] | m–χ decomposition |
f23–f25 | ) | ||
f26–f29 | Eigenvalues (l1, l2) and probabilities (p1, p2) | [52] | decomposition |
f30–f31 | Entropy (H) and anisotropy (A) | [56,58] | |
f32–f34 | Alpha, alpha1, alpha2 | [59] | |
f35 | Lambda | ||
f36–f38 | Delta, delta1, delta2 | ||
f39–f41 | Shannon entropy (SE, SEI, SEP) | [60] | |
f42–f45 | Combination (H, A): 1mH1mA, 1mHA, H1mA, HA | [61] | |
f46–f48 | Dihedral component power (Pd), surface-scattering component (Ps), volume power (Pv) | [56] | Three-component compact decomposition |
f49–f52 | Alpha_s, ms, mv, phi | [56] | Compact RVoG (random volume over ground) decomposition |
Input | Class | Mangrove | Water | Sea | Land | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|---|---|
SE | Mangrove | 97.97% | 0.00% | 0.00% | 6.69% | 0.8548 | 0.80632 |
Water | 0.00% | 66.08% | 11.74% | 0.00% | |||
Sea | 0.00% | 33.92% | 88.26% | 3.73% | |||
Land | 2.10% | 0.00% | 0.00% | 89.58% | |||
SEI | Mangrove | 97.90% | 0.00% | 0.00% | 8.87% | 0.88345 | 0.84455 |
Water | 0.00% | 78.44% | 8.49% | 0.00% | |||
Sea | 0.00% | 21.56% | 91.51% | 5.77% | |||
Land | 2.03% | 0.00% | 0.00% | 85.36% | |||
VG | Mangrove | 66.57% | 0.00% | 2.69% | 76.57% | 0.59776 | 0.46309 |
Water | 6.99% | 82.65% | 8.08% | 2.32% | |||
Sea | 26.43% | 17.35% | 89.23% | 21.11% | |||
Land | 0.00% | 0.00% | 0.00% | 0.00% | |||
VB | Mangrove | 97.69% | 0.00% | 0.00% | 5.21% | 0.72113 | 0.62763 |
Water | 0.00% | 0.07% | 0.48% | 3.38% | |||
Sea | 0.00% | 99.93% | 99.52% | 0.77% | |||
Land | 2.31% | 0.00% | 0.00% | 90.64% | |||
g0 | Mangrove | 96.85% | 0.00% | 0.00% | 6.40% | 0.68915 | 0.58484 |
Water | 0.00% | 0.00% | 0.00% | 0.00% | |||
Sea | 0.00% | 100.00% | 100.00% | 15.41% | |||
Land | 3.15% | 0.00% | 0.00% | 78.18% | |||
Pv | Mangrove | 97.48% | 0.00% | 0.00% | 4.57% | 0.7234 | 0.63068 |
Water | 0.00% | 1.33% | 1.73% | 3.45% | |||
Sea | 0.00% | 98.67% | 98.27% | 0.21% | |||
Land | 2.52% | 0.00% | 0.00% | 91.77% |
Classifier | Parameter |
---|---|
SVM | Kernel Type: ‘RBF’; Penalty = 100; gamma = 0.0001 |
ML | Probability Threshold = 0.7 |
ANN | learning rate = 0.05; alpha = 0.0001 |
Feature | Class | Mangrove | Water | Sea | Land | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|---|---|---|---|---|
C-SVM | Mangrove | 98.04% | 0.00% | 0.00% | 4.29% | 91.60% | 0.888 |
Water | 0.00% | 83.08% | 6.98% | 0.07% | |||
Sea | 0.00% | 16.92% | 93.02% | 3.38% | |||
Land | 1.96% | 0.00% | 0.00% | 92.26% | |||
C-ML | Mangrove | 95.80% | 0.00% | 0.00% | 2.11% | 91.99% | 0.893 |
Water | 0.00% | 86.66% | 11.12% | 0.70% | |||
Sea | 0.00% | 13.34% | 88.88% | 0.49% | |||
Land | 4.20% | 0.00% | 0.00% | 96.69% | |||
C-ANN | Mangrove | 97.76% | 0.00% | 0.00% | 5.84% | 91.61% | 0.888 |
Water | 0.00% | 86.45% | 10.43% | 0.00% | |||
Sea | 0.00% | 13.55% | 89.57% | 1.48% | |||
Land | 2.24% | 0.00% | 0.00% | 92.68% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shu, S.; Yang, J.; Jing, W.; Yang, C.; Wu, J. Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations. Forests 2024, 15, 2047. https://doi.org/10.3390/f15112047
Shu S, Yang J, Jing W, Yang C, Wu J. Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations. Forests. 2024; 15(11):2047. https://doi.org/10.3390/f15112047
Chicago/Turabian StyleShu, Sijing, Ji Yang, Wenlong Jing, Chuanxun Yang, and Jianping Wu. 2024. "Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations" Forests 15, no. 11: 2047. https://doi.org/10.3390/f15112047
APA StyleShu, S., Yang, J., Jing, W., Yang, C., & Wu, J. (2024). Mangrove Extraction from Compact Polarimetric Synthetic Aperture Radar Images Based on Optimal Feature Combinations. Forests, 15(11), 2047. https://doi.org/10.3390/f15112047