Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling and Climate Data
2.3. Data Analysis
3. Results
3.1. Characteristics of Standardized Chronology
3.2. Response of Growth to Climate
3.3. Long-Term Growth Trend
4. Discussion
4.1. Elevational Effects of Temperature on Tree Growth
4.2. Growth Response Pattern to Climate
4.3. Growth Trends and Decline
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aubin, I.; Messier, C.; Kneeshaw, D. Population structure and growth acclimation of mountain maple along a successional gradient in the southern boreal forest. Ecoscience 2005, 12, 540–548. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Zhang, W.; Wang, M.; Wang, S.; Liu, X. Assessing the stability of radial growth responses to climate change by two dominant conifer trees species in the Tianshan Mountains, northwest China. For. Ecol. Manag. 2019, 433, 667–677. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Chang. Biol. 2010, 16, 399–415. [Google Scholar] [CrossRef]
- Berner, L.T.; Beck, P.S.A.; Bunn, A.G.; Goetz, S.J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Chang. Biol. 2013, 19, 3449–3462. [Google Scholar] [CrossRef] [PubMed]
- Churakova, O.V.; Porter, T.J.; Zharkov, M.S.; Fonti, M.V.; Barinov, V.V.; Taynik, A.V.; Kirdyanov, A.V.; Knorre, A.A.; Wegmann, M.; Trushkina, T.V.; et al. Climate impacts on tree-ring stable isotopes across the Northern Hemispheric boreal zone. Sci. Total Environ. 2023, 870, 161644. [Google Scholar] [CrossRef]
- Gaire, N.P.; Zaw, Z.; Bräuning, A.; Grießinger, J.; Sharma, B.; Rana, P.; Bhandari, S.; Basnet, S.; Fan, Z.-X. The impact of warming climate on Himalayan silver fir growth along an elevation gradient in the Mt. Everest region. Agric. For. Meteorol. 2023, 339, 109575. [Google Scholar] [CrossRef]
- Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B.; Thomas, C.D. Rapid range shifts of species associated with high levels of climate warming. Science 2011, 333, 1024–1026. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Wang, W.; Jia, M.; Wang, G.; Zhu, W.; McDowell, N.G. Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan Plateau. For. Ecol. Manag. 2017, 402, 135–144. [Google Scholar] [CrossRef]
- Zhang, W.-t.; Jiang, Y.; Dong, M.-y.; Kang, M.-y.; Yang, H.-c. Relationship between the radial growth of Picea meyeri and climate along elevations of the Luyashan Mountain in North-Central China. For. Ecol. Manag. 2012, 265, 142–149. [Google Scholar] [CrossRef]
- Cao, J.; Liu, H.; Zhao, B.; Li, Z.; Drew, D.M.; Zhao, X. Species-specific and elevation-differentiated responses of tree growth to rapid warming in a mixed forest lead to a continuous growth enhancement in semi-humid NorthEast Asia. For. Ecol. Manag. 2019, 448, 76–84. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, H.; Wu, X.; Hao, Q. Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Glob. Chang. Biol. 2015, 21, 816–826. [Google Scholar] [CrossRef]
- Wu, G.; Xu, G.; Chen, T.; Liu, X.; Zhang, Y.; An, W.; Wang, W.; Fang, Z.-a.; Yu, S. Age-dependent tree-ring growth responses of Schrenk spruce (Picea schrenkiana) to climate—A case study in the Tianshan Mountain, China. Dendrochronologia 2013, 31, 318–326. [Google Scholar] [CrossRef]
- Gou, X.; Zhang, T.; Yu, S.; Liu, K.; Zhang, R.; Shang, H.; Qin, L.; Fan, Y.; Jiang, S.; Zhang, H.; et al. Climate response of Picea schrenkiana based on tree-ring width and maximum density. Dendrochronologia 2023, 78, 126067. [Google Scholar] [CrossRef]
- Wang, T.; Bao, A.; Xu, W.; Zheng, G.; Nzabarinda, V.; Yu, T.; Huang, X.; Long, G.; Naibi, S. Dynamics of forest net primary productivity based on tree ring reconstruction in the Tianshan Mountains. Ecol. Indic. 2023, 146, 109713. [Google Scholar] [CrossRef]
- Wu, G.; Liu, X.; Chen, T.; Xu, G.; Wang, W.; Zeng, X.; Zhang, X. Elevation-dependent variations of tree growth and intrinsic water-use efficiency in Schrenk spruce (Picea schrenkiana) in the western Tianshan Mountains, China. Front. Plant Sci. 2015, 6, 309. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zhang, T.; Jiang, S.; Zhang, R.; Qin, L.; Shang, H.; Zhang, H. Tree-ring minimum density chronologies of Picea schrenkiana along an elevation gradient in the Tien shan Mountains, China. Geogr. Ann. A Phys. Geogr. 2020, 102, 209–221. [Google Scholar] [CrossRef]
- Ding, C.; Huang, W.; Liu, M.; Zhao, S. Change in the elevational pattern of vegetation Greenup date across the Tianshan Mountains in Central Asia during 2001–2020. Ecol. Indic. 2022, 136, 108684. [Google Scholar] [CrossRef]
- Panthi, S.; Fan, Z.X.; van der Sleen, P.; Zuidema, P.A. Long-term physiological and growth responses of Himalayan fir to environmental change are mediated by mean climate. Glob. Chang. Biol. 2020, 26, 1778–1794. [Google Scholar] [CrossRef]
- Yao, J.; Mao, W.; Hu, W.; Chen, J.; Fan, Y. A dataset of drought indices based on the standardized precipitation evapotranspiration index (SPEI) over Xinjiang, China (1961–2015). China Sci. Data 2019, 4, 112–121. [Google Scholar] [CrossRef]
- Peng, Z.; Li, X.; Zhang, R.; Qin, L.; Zhang, H.; Chen, Y.; Liu, R. The response of tree-ring chronologies of Schrenk spruce (Picea schrenkiana Fisch. et Mey) to climate change at high- and low- elevations of the eastern Tianshan Mountains, Xinjiang, using different detrending methods. Acta Ecol. Sin. 2019, 39, 1595–1604. [Google Scholar]
- Castellaneta, M.; Rita, A.; Camarero, J.J.; Colangelo, M.; Ripullone, F. Declines in canopy greenness and tree growth are caused by combined climate extremes during drought-induced dieback. Sci. Total Environ. 2022, 813, 152666. [Google Scholar] [CrossRef] [PubMed]
- Chmura, D.J.; Modrzyński, J. Sensitivity of height growth response to climate change does not vary with age in common garden among Norway spruce populations from elevational gradients. For. Ecol. Manag. 2023, 542, 121118. [Google Scholar] [CrossRef]
- Gazol, A.; Camarero, J.J.; Sánchez-Salguero, R.; Vicente-Serrano, S.M.; Serra-Maluquer, X.; Gutiérrez, E.; de Luis, M.; Sangüesa-Barreda, G.; Novak, K.; Rozas, V.; et al. Drought legacies are short, prevail in dry conifer forests and depend on growth variability. J. Ecol. 2020, 108, 2473–2484. [Google Scholar] [CrossRef]
- Giebink, C.L.; DeRose, R.J.; Castle, M.; Shaw, J.D.; Evans, M.E.K. Climatic sensitivities derived from tree rings improve predictions of the Forest Vegetation Simulator growth and yield model. For. Ecol. Manag. 2022, 517, 120256. [Google Scholar] [CrossRef]
- Jucker, T.; Avăcăriței, D.; Bărnoaiea, I.; Duduman, G.; Bouriaud, O.; Coomes, D.A.; Gilliam, F. Climate modulates the effects of tree diversity on forest productivity. J. Ecol. 2016, 104, 388–398. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, X.; Zhang, F.; Liu, W.; Zhang, Y.; Gao, L. Divergent responses of Qinghai spruce (Picea crassifolia) to recent warming along elevational gradients in the central Qilian Mountains, Northwest China. J. Geogr. Sci. 2023, 33, 151–168. [Google Scholar] [CrossRef]
- Dimri, A.P.; Palazzi, E.; Daloz, A.S. Elevation dependent precipitation and temperature changes over Indian Himalayan region. Clim. Dyn. 2022, 59, 1–21. [Google Scholar] [CrossRef]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate changes and their elevational patterns in the mountains of the world. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Andreassen, K.; Solberg, S.; Tveito, O.E.; Lystad, S.L. Regional differences in climatic responses of Norway spruce (Picea abies L. Karst) growth in Norway. For. Ecol. Manag. 2006, 222, 211–221. [Google Scholar] [CrossRef]
- Sidor, C.G.; Popa, I.; Vlad, R.; Cherubini, P. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees 2015, 29, 985–997. [Google Scholar] [CrossRef]
- Zhang, Y.; Wilmking, M. Divergent growth responses and increasing temperature limitation of Qinghai spruce growth along an elevation gradient at the northeast Tibet Plateau. For. Ecol. Manag. 2010, 260, 1076–1082. [Google Scholar] [CrossRef]
- Blume-Werry, G.; Kreyling, J.; Laudon, H.; Milbau, A. Short-term climate change manipulation effects do not scale up to long-term legacies: Effects of an absent snow cover on boreal forest plants. J. Ecol. 2016, 104, 1638–1648. [Google Scholar] [CrossRef]
- Christiansen, C.T.; Lafreniére, M.J.; Henry, G.H.R.; Grogan, P. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO2 gain but reduces soil carbon and nutrient pools. Glob. Chang. Biol. 2018, 24, 3508–3525. [Google Scholar] [CrossRef]
- Hu, J.; Moore, D.J.P.; Burns, S.P.; Monson, R.K. Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob. Chang. Biol. 2010, 16, 771–783. [Google Scholar] [CrossRef]
- Du, D.; Jiao, L.; Wu, X.; Qi, C.; Xue, R.; Chen, K.; Liu, X. Responses of radial growth of Picea crassifolia to climate change over three periods at different elevations in the Qilian Mountains, northwest China. Trees 2022, 36, 1721–1734. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Bräuning, A.; Cao, K.-F.; Zhu, S.-D. Growth-climate responses of high-elevation conifers in the central Hengduan Mountains, southwestern China. For. Ecol. Manag. 2009, 258, 306–313. [Google Scholar] [CrossRef]
- Marqués, L.; Camarero, J.J.; Gazol, A.; Zavala, M.A. Drought impacts on tree growth of two pine species along an altitudinal gradient and their use as early-warning signals of potential shifts in tree species distributions. For. Ecol. Manag. 2016, 381, 157–167. [Google Scholar] [CrossRef]
- Kujansuu, J.; Yasue, K.; Koike, T.; Abaimov, A.P.; Kajimoto, T.; Takeda, T.; Tokumoto, M.; Matsuura, Y. Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia. J. Wood Sci. 2007, 53, 87–93. [Google Scholar] [CrossRef]
- Qin, L.; Bolatov, K.; Shang, H.; Yu, S.; Gou, X.; Bagila, M.; Bolatova, A.; Ainur, U.; Zhang, R. Reconstruction of alpine snowfall in southern Kazakhstan based on oxygen isotopes in tree rings. Theor. Appl. Climatol. 2022, 148, 727–737. [Google Scholar] [CrossRef]
- Italiano, S.S.P.; Julio Camarero, J.; Borghetti, M.; Colangelo, M.; Pizarro, M.; Ripullone, F. Radial growth, wood anatomical traits and remote sensing indexes reflect different impacts of drought on Mediterranean forests. For. Ecol. Manag. 2023, 548, 121406. [Google Scholar] [CrossRef]
- Itter, M.S.; D’Orangeville, L.; Dawson, A.; Kneeshaw, D.; Duchesne, L.; Finley, A.O.; Battipaglia, G. Boreal tree growth exhibits decadal-scale ecological memory to drought and insect defoliation, but no negative response to their interaction. J. Ecol. 2018, 107, 1288–1301. [Google Scholar] [CrossRef]
- Keyimu, M.; Li, Z.; Wu, X.; Fu, B.; Liu, G.; Shi, S.; Fan, Z.; Wang, X. Recent decline of high altitude coniferous growth due to thermo-hydraulic constrains: Evidence from the Miyaluo Forest Reserve, Western Sichuan Plateau of China. Dendrochronologia 2020, 63, 125751. [Google Scholar] [CrossRef]
- Du, H.; Xu, L.; Camarero, J.J.; Cherubini, P.; Li, M.-H.; He, H.S.; Meng, X.; Wu, Z. Radial growth responses of Larix gmelinii to drought events in dry and wet areas of northern temperate forests. Dendrochronologia 2024, 84, 126185. [Google Scholar] [CrossRef]
- Peng, Z.; Zhang, Y.; Zhu, L.; Lu, Q.; Mo, Q.; Cai, J.; Guo, M. Divergent tree growth and the response to climate warming and humidification in the Tianshan Mountains, China. Forests 2022, 13, 886. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.; Duan, X.; Ma, P.; Lu, G.; Zhu, B.; Liu, X.; Yue, P.; Wang, Y.; Liu, W. The eastward expansion of the climate humidification trend in northwest China and the synergistic influences on the circulation mechanism. Clim. Dyn. 2022, 59, 2481–2497. [Google Scholar] [CrossRef]
- González de Andrés, E.; Camarero, J.J.; Blanco, J.A.; Imbert, J.B.; Lo, Y.-H.; Sangüesa-Barreda, G.; Castillo, F.J.; Turnbull, M. Tree-to-tree competition in mixed European beech-Scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 2018, 106, 59–75. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, J.; Zhou, J.; Guan, C.; Lei, S.; Meng, P.; Yin, C. Long-term effects of climate and competition on radial growth, recovery, and resistance in Mongolian pines. Front. Plant Sci. 2021, 12, 729935. [Google Scholar] [CrossRef] [PubMed]
- Zald, H.S.J.; Callahan, C.C.; Hurteau, M.D.; Goodwin, M.J.; North, M.P. Tree growth responses to extreme drought after mechanical thinning and prescribed fire in a Sierra Nevada mixed-conifer forest, USA. For. Ecol. Manag. 2022, 510, 120107. [Google Scholar] [CrossRef]
- Christopoulou, A.; Sazeides, C.I.; Fyllas, N.M. Size-mediated effects of climate on tree growth and mortality in Mediterranean Brutia pine forests. Sci. Total Environ. 2022, 812, 151463. [Google Scholar] [CrossRef] [PubMed]
- Aldea, J.; Ruiz-Peinado, R.; del Río, M.; Pretzsch, H.; Heym, M.; Brazaitis, G.; Jansons, A.; Metslaid, M.; Barbeito, I.; Bielak, K.; et al. Timing and duration of drought modulate tree growth response in pure and mixed stands of Scots pine and Norway spruce. J. Ecol. 2022, 110, 2673–2683. [Google Scholar] [CrossRef]
- Qin, L.; Liu, K.; Shang, H.; Zhang, T.; Yu, S.; Zhang, R. Minimum temperature during the growing season limits the radial growth of timberline Schrenk spruce (P. schrenkiana). Agric. For. Meteorol. 2022, 322, 109004. [Google Scholar] [CrossRef]
- He, J.; Ning, C.; Zhang, W.; Halik, Ü.; Shen, Z. The effect of elevation on the population structure, spatial patterning and intraspecific interactions of Picea schrenkiana in the Eastern Tianshan Mountains: A test of the stress gradient hypothesis. Forests 2023, 14, 2092. [Google Scholar] [CrossRef]
Elevation (m) | Trees | Cores | MS | Rbar | Start Year | End Year | EPS | Average Age | Average DBH (cm) | Density (Number/ha) | AC1 |
---|---|---|---|---|---|---|---|---|---|---|---|
1800 | 25 | 39 | 0.28 | 0.26 | 1928 | 2021 | 0.93 | 71 | 19.9 | 881 | 0.57 |
1900 | 21 | 31 | 0.18 | 0.36 | 1921 | 2021 | 0.95 | 71 | 20.2 | 725 | 0.51 |
2000 | 20 | 28 | 0.16 | 0.60 | 1920 | 2021 | 0.93 | 64 | 15.3 | 1481 | 0.33 |
2100 | 32 | 52 | 0.21 | 0.46 | 1890 | 2021 | 0.98 | 62 | 23.2 | 851 | 0.55 |
2200 | 20 | 26 | 0.17 | 0.59 | 1864 | 2021 | 0.97 | 127 | 30.5 | 492 | 0.46 |
2300 | 20 | 32 | 0.18 | 0.32 | 1846 | 2021 | 0.91 | 129 | 24.7 | 774 | 0.46 |
2400 | 18 | 21 | 0.19 | 0.07 | 1865 | 2021 | 0.55 | 114 | 16.1 | 1103 | 0.24 |
2500 | 22 | 31 | 0.19 | 0.23 | 1807 | 2021 | 0.90 | 137 | 18.4 | 811 | 0.44 |
2600 | 22 | 30 | 0.18 | 0.194 | 1887 | 2021 | 0.865 | 66 | 22.0 | 129 | 0.522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Shen, Z.; Ning, C.; Zhang, W.; Halik, Ü. Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains. Forests 2024, 15, 2052. https://doi.org/10.3390/f15122052
He J, Shen Z, Ning C, Zhang W, Halik Ü. Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains. Forests. 2024; 15(12):2052. https://doi.org/10.3390/f15122052
Chicago/Turabian StyleHe, Jianing, Zehao Shen, Caiwen Ning, Wentao Zhang, and Ümüt Halik. 2024. "Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains" Forests 15, no. 12: 2052. https://doi.org/10.3390/f15122052
APA StyleHe, J., Shen, Z., Ning, C., Zhang, W., & Halik, Ü. (2024). Elevational Effects of Climate Warming on Tree Growth in a Picea schrenkiana Forest in the Eastern Tianshan Mountains. Forests, 15(12), 2052. https://doi.org/10.3390/f15122052