Dickson Quality Index of Cocoa Genotypes Under Water Deficit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Conditions
2.2. Irrigation
2.3. Growth Analysis
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muller, M.F.; Valle, R.R. Ecofisiologia do cacaueiro. In Ciência, Tecnologia e Manejo do Cacaueiro, 2nd. ed.; CEPLAC: Ilhéus, BA, Brazil, 2012; pp. 31–66. [Google Scholar]
- Zhou, H.; Zhou, G.; He, Q.; Zhou, L.; Ji, Y.; Lv, X. Capability of leaf water content and its threshold values in reflection of soil–plant water status in maize during prolonged drought. Ecol. Indic. 2021, 124, 107395. [Google Scholar] [CrossRef]
- Almeida, A.A.F.; e Gattward, J.N. Respostas do Cacaueiro às Variações da Intensidade de Luz. In Cacau, Cultivo, Pesquisa e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, BA, Brazil, 2018; pp. 59–84. [Google Scholar]
- dos Santos, E.A.; de Almeida, A.-A.F.; Ahnert, D.; Branco, M.C.d.S.; Valle, R.R.; Baligar, V.C. Diallel analysis and growth parameters as selection tools for drought tolerance in young Theobroma cacao plants. PLoS ONE 2016, 11, e0160647. [Google Scholar] [CrossRef]
- Bae, H.; Kim, S.-H.; Kim, M.S.; Sicher, R.C.; Lary, D.; Strem, M.D.; Natarajan, S.; Bailey, B.A. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol. Biochem. 2008, 46, 174–188. [Google Scholar] [CrossRef]
- Gateau-Rey, L.; Tanner, E.V.J.; Rapidel, B.; Marelli, J.-P.; Royaert, S. Climate change could threaten cocoa production: Effects of 2015-16 El Nino-related drought on cocoa agroforests in Bahia, Brazil. PLoS ONE 2018, 13, e0200454. [Google Scholar] [CrossRef]
- Ayegboyin, K.O.; Akinrinde, E.A. Effect of Water Deficit Imposed during the Early Developmental Phase on Photosynthesis of Cocoa (Theobroma cacao L.). Agric. Sci. 2016, 07, 11–19. [Google Scholar] [CrossRef]
- Niether, W.; Glawe, A.; Pfohl, K.; Adamtey, N.; Schneider, M.; Karlovsky, P.; Pawelzik, E. The effect of short-term vs. long-term soil moisture stress on the physiological response of three cocoa (Theobroma cacao L.) cultivars. Plant Growth Regul. 2020, 92, 295–306. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron. Sustain. Dev. 2019, 39, 5. [Google Scholar] [CrossRef]
- Alvim, P.T. Relações entre fatores climáticos e produção do cacaueiro. In Proceedings of the Conferencia Internacional de Investigación em Cacao, Santo Domingo, Dominican Republic, 17–23 May 1988; Volume 10, pp. 159–167. [Google Scholar]
- Läderach, P.; Martinez-Valle, A.; Schroth, G.; Castro, N. Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim. Chang. 2013, 119, 841–854. [Google Scholar] [CrossRef]
- dos Santos, I.C.; Silva, G.S.; Silva, J.P.L.; Souza, J.d.S.; dos Santos, M.S.; Junior, J.O.d.S.; de Almeida, A.-A.F.; Corrêa, R.X.; Baligar, V.C.; Zhang, D.; et al. Screening of cacao clones for drought tolerance by assessing predawn leaf water potential, growth, and leaf gas exchange. Plant Stress 2023, 10, 100245. [Google Scholar] [CrossRef]
- Lahive, F.; Hadley, P.; Daymond, A.J. The impact of elevated CO2 and water deficit stress on growth and photosynthesis of juvenile cacao (Theobroma cacao L.). Photosynthetica 2018, 56, 911–920. [Google Scholar] [CrossRef]
- Tezara, W.; Pereyra, G.; Ávila-Lovera, E.; Herrera, A. Variability in physiological responses of Venezuelan cacao to drought. Exp. Agric. 2020, 56, 407–421. [Google Scholar] [CrossRef]
- dos Santos, E.A.; de Almeida, A.-A.F.; Branco, M.C.d.S.; dos Santos, I.C.; Ahnert, D.; Baligar, V.C.; Valle, R.R. Path analysis of phenotypic traits in young cacao plants under drought conditions. PLoS ONE 2018, 13, e0191847. [Google Scholar] [CrossRef]
- Santos, I.C.D.; Almeida, A.A.F.D.; Anhert, D.; Conceição, A.S.D.; Pirovani, C.P.; Pires, J.L.; Valle, R.R.; Baligar, V.C. Molecular, physiological and biochemical responses of Theobroma cacao L. genotypes to soil water deficit. PLoS ONE 2014, 9, e115746. [Google Scholar] [CrossRef]
- Araque, O.; Jaimez, R.E.; Tezara, W.; Coronel, I.; Urich, R.; Espinoza, W. Comparative photosynthesis, water relations, growth and survival rates in juvenile Criollo cacao cultivars (Theobroma cacao) during dry and wet seasons. Exp. Agric. 2012, 48, 513–522. [Google Scholar] [CrossRef]
- Lahive, F.; Handley, L.R.; Hadley, P.; Daymond, A.J. Climate Change Impacts on Cacao: Genotypic Variation in Responses of Mature Cacao to Elevated CO2 and Water Deficit. Agronomy 2021, 11, 818. [Google Scholar] [CrossRef]
- Adet, L.; Rozendaal, D.M.; Tapi, A.; Zuidema, P.A.; Vaast, P.; Anten, N.P. Genotypic differences in water deficit effects on leaf and crown traits in mature field-grown cocoa. Sci. Hortic. 2024, 325, 112658. [Google Scholar] [CrossRef]
- Ahnert, D.; Melo, H.L.; Santos, F.F.J.; Lima, L.R.; Baligar, V.C. Melhoramento genético e produtividade do cacaueiro no Brasil. In Cacau Cultiv. Pesqui. e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, Brazil, 2018; pp. 151–181. [Google Scholar]
- Susilo, A.W.; Sobir, S.; Wuriandani, A.; Wirnas, D. Seedling performance of cocoa genotypes (Theobroma cacao L.) in drought stress condition. Pelita Perkeb. (Coffee Cocoa Res. J.) 2019, 35, 167–176. [Google Scholar] [CrossRef]
- Dushimimana, C.; Magomere, T.; Mulatya, J.; Vandenabeele, J.; Olubayo, F.; Smagghe, G.; Werbrouck, S.P.O. Variation of morphological traits and quality indices of micropropagated Melia volkensii gürke clones before field planting. Forests 2022, 13, 337. [Google Scholar] [CrossRef]
- Gallegos-Cedillo, V.M.; Diánez, F.; Nájera, C.; Santos, M. Plant agronomic features can predict quality and field performance: A bibliometric analysis. Agronomy 2021, 11, 2305. [Google Scholar] [CrossRef]
- Posse, R.P.; Oliveira, V.d.S.; Valani, F.; Silveira, S.S.; da Silva, S.M.F.; Souza, C.A.S.; Posse, S.C.P.; Costa, G.S.; Schmildt, E.R. Sexual propagation of common Bahia cocoa seedlings (Theobroma cacao L.) influenced by irrigation depths and the planting seasons. Austr. Jour. of Crop Sci. 2020, 14, 1583–1588. [Google Scholar] [CrossRef]
- Pimentel, N.; Gazzana, D.; Spanevello, J.d.F.; Lencina, K.H.; Bisognin, D.A. Effect of mini-cutting size on adventitious rooting and morphophysiological quality of Ilex paraguariensis plantlets. J. For. Res. 2021, 32, 815–822. [Google Scholar] [CrossRef]
- Sodré, G.A.; Marrocos, P.C.L. Manual da Produção Vegetativa de Mudas de Cacaueiro, 1st ed.; Editus: Ilhéus, Brasil, 2009; pp. 23–28. [Google Scholar]
- Karimi, A.; Tabari, M.; Javanmard, Z.; Bader, M.K.-F. Drought effects on morpho-physiological and biochemical traits in persian oak and black poplar seedlings. Forests 2022, 13, 399. [Google Scholar] [CrossRef]
- Posse, R.P.; Valani, F.; Souza, C.A.S.; Silveira, S.S.; da Silva, S.M.F.; Partelli, R.L.; Trindade, I.d.M.; Costa, G.S. Growth and quality of Genotype TSH1188 cacao tree seedlings produced under different seasons and irrigation depths. J. Exp. Agric. Int. 2018, 28, 1–17. [Google Scholar] [CrossRef]
- Leite, J.B.V.; Fonseca, E.V.; Sodré, G.A.; Valle, R.R.M.; Nascimento, M.N.; Marrocos, P.C.L. Comportamento produtivo de cacau no semiárido do Brasil. Agrotrópica 2012, 24, 85–90. [Google Scholar] [CrossRef]
- Ramos, A.; Sodré, G.A.; Leite, M.S.B. Irrigação em cacaueiros. In Cacau, Cultivo, Pesquisa e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, Brasil, 2018; pp. 437–481. [Google Scholar]
- Alban, M.K.A.; Apshara, S.E.; Hebbar, K.B.; Mathias, T.G.; Séverin, A. Morpho-physiological criteria for assessment of two month old cocoa (Theobroma cacao L.) genotypes for drought tolerance. Indian J. Plant Physiol. 2016, 21, 23–30. [Google Scholar] [CrossRef]
- De Almeida, J.; Tezara, W.; Herrera, A. Physiological responses to drought and experimental water deficit and waterlogging of four clones of cacao (Theobroma cacao L.) selected for cultivation in Venezuela. Agric. Water Manag. 2016, 171, 80–88. [Google Scholar] [CrossRef]
- Ofori, A.; Konlan, S.; Dadzie, M.A.; Amoah, F.M. Genotypic performance of cocoa (Theobroma cacao L.) during establishment under natural drought stress. J. Crops Improv. 2014, 28, 804–824. [Google Scholar] [CrossRef]
- Dzandu, E.; Enu-Kwesi, L.; Markwei, C.M.; Ayeh, K.O. Screening for drought tolerance potential of nine cocoa (Theobroma cacao L.) genotypes from Ghana. Heliyon 2021, 7, e08389. [Google Scholar] [CrossRef]
- Sodré, G.A.; Gomes, A.R.S. Cocoa propagation, technologies for production of seedlings. Rev. Bras. de Frutic. 2019, 41, e-782. [Google Scholar] [CrossRef]
- Monteiro, W.R.; Ahnert, D. Melhoramento genético do cacaueiro. In Ciência, Tecnologia e Manejo do Cacaueiro, 1st ed.; Valle, R.R., Ed.; CEPLAC: Ilhéus, Brasil, 2012; pp. 11–30. [Google Scholar]
- Souza Júnior, J.O.; Sodré, G.A.; Neves, J.C.L. Fertilidade do solo, correção de acidez e recomendação de adubação para o cacaueiro. In Cacau, Cultivo, Pesquisa e Inovação, 1st ed.; Souza Júnior, J.O., Ed.; Editus: Ilhéus, Brazil, 2018; pp. 13–33. [Google Scholar]
- Souza, C.C.D.; Oliveira, F.A.D.; Silva, I.D.F.D.; Amorim Neto, M.D.S. Avaliação de métodos de determinação de água disponível e manejo da irrigação em terra roxa sob cultivo de algodoeiro herbáceo. Rev. Bras. Eng. Agricola Ambient. 2000, 4, 338–342. [Google Scholar] [CrossRef]
- Casaroli, D.; Lier, Q.d.J.v. Critérios para determinação da capacidade de vaso. Rev. Bras. De Cienc. Do Solo 2008, 32, 59–66. [Google Scholar] [CrossRef]
- Hunt, R. Basic Growth Analysis: Plant Growth Analysis for Beginners; Springer Science Business Media: Sydnei, Australia, 2012; pp. 5–40. [Google Scholar]
- Dickson, A.; Leaf, A.L.; Hosner, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. For. Chron. 1960, 36, 10–13. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST-palaeontological statistics, ver. 2.17c. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar] [CrossRef]
- Cran, R. The Comprehensive R Archive Network Project. 2021. Available online: https://cran.r-project.org (accessed on 20 February 2022).
- Stanghellini, C.; Van’t Ooster, B.; Heuvelink, E. Greenhouse horticulture: Technology for optimal crop production. In Greenhouse Horticulture, 2nd. ed.; Wageningen Academic: Wageningen, The Netherlands, 2019; p. 300. [Google Scholar] [CrossRef]
- Kul, R.; Ekinci, M.; Turan, M.; Ors, S.; Yildirim, E. How abiotic stress conditions affects plant roots. In Plant Roots; Yildirim, E., Turan, M., Ekince, M., Eds.; IntechOpen: London, United Kingdom, 2020; pp. 6–10. [Google Scholar] [CrossRef]
- Moradi, P. Key plant products and common mechanisms utilized by plants in water deficit stress responses. Bot. Sci. 2016, 94, 657–671. [Google Scholar] [CrossRef]
- Moser, G.; Leuschner, C.; Hertel, D.; Hölscher, D.; Köhler, M.; Leitner, D.; Michalzik, B.; Prihastanti, E.; Tjitrosemito, S.; Schwendenmann, L. Response of cocoa trees (Theobroma cacao) to a 13-month desiccation period in Sulawesi, Indonesia. Agrofor. Syst. 2010, 79, 171–187. [Google Scholar] [CrossRef]
- Baligar, V.C.; Almeida, A.A.F.; Ahnert, D.; Pires, J.L.; Arevalo-Gardini, E.; Goenaga, R.; He, Z.; Elson, M. Impact of drought on morphological, physiological and nutrient use efficiency of elite cacao genotypes from Bahia-Brazil, Tarapoto-Peru and Puerto Rico-USA. In Proceedings of the International Symposium on Cocoa research (ISCR), Lima, Peru, 13–17 November 2017; p. 1317. [Google Scholar]
- Tsakaldimi, M.; Ganatsas, P.; Jacobs, D.F. Prediction of planted seedling survival of five Mediterranean species based on initial seedling morphology. New For. 2013, 44, 327–339. [Google Scholar] [CrossRef]
- Sabir, M.A.; Rasheed, F.; Zafar, Z.; Khan, I.; Nawaz, M.F.; Haq, I.U.; Bilal, M. A consistent CO2 assimilation rate and an enhanced root development drives the tolerance mechanism in Ziziphus jujuba under soil water deficit. Arid. Land Res. Manag. 2020, 34, 392–404. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Setyawan, B.; Puspitasari, N.; Susilo, A.W.; Sari, I.A. Rootstock characteristics of three combinations of Theobroma cacao L. crosses on different water availability. Pelita Perkeb. 2018, 34, 137–145. [Google Scholar] [CrossRef]
- Zasari, M.; Wachjar, A.; Susilo, A.W.; Sudarsono, S. Prope legitimate rootstocks determine the selection criteria for drought-tolerant cocoa. Biodiversitas J. Biol. Divers. 2020, 21, 4067–4075. [Google Scholar] [CrossRef]
- Matias, S.S.R.; Dias, I.D.L.; Camelo, Y.M.; Souza, I.S.; de Castelo, F.R.; de Aguiar, W.R.; de Souza Ferreira, M.D. Quality of Carica papaya seedlings grown in an alternative substrate based on buriti wood (Mauritia flexuosa Lf). Científica 2019, 47, 337–343. [Google Scholar] [CrossRef]
- Nyoka, B.I.; Kamanga, R.; Njoloma, J.; Jamnadass, R.; Mng’omba, S.; Muwanje, S. Quality of tree seedlings produced in nurseries in Malawi: An assessment of morphological attributes. For. Trees Livelihoods 2018, 27, 103–117. [Google Scholar] [CrossRef]
- Ilyas, M.; Nisar, M.; Khan, N.; Hazrat, A.; Khan, A.H.; Hayat, K.; Fahad, S.; Khan, A.; Ullah, A. Drought Tolerance Strategies in Plants: A Mechanistic Approach. J. Plant Growth Regul. 2021, 40, 926–944. [Google Scholar] [CrossRef]
- Silva, C.R.A.; Ribeiro, A.; de Oliveira, A.S.; Klippel, V.H.; Barbosa, R.L.P. Desenvolvimento biométrico de mudas de eucalipto sob diferentes lâminas de irrigação na fase de crescimento. Pesq. Florest. Bras. 2015, 35, 381–390. [Google Scholar]
Variable | Treatment | CCN-51 | CP-49 | PS-1319 | Cepec-2002 | Ipiranga-01 | SJ-02 | PH-16 |
---|---|---|---|---|---|---|---|---|
SD | WW | 0.53 ± 0.06a | 0.58 ± 0.1a | 0.60 ± 0.0a | 0.60 ± 0.0a | 0.53 ± 0.0a | 0.55 ± 0.1a | 0.45 ± 0.1b |
WD | 0.40 ± 0.05b | 0.45 ± 0.1b | 0.48 ± 0.1b | 0.50 ± 0.0b | 0.45 ± 0.0b | 0.40 ± 0.0b | 0.48 ± 0.1b | |
H | WW | 29.17 ± 4.3b | 26.60 ± 2.1b | 32.67 ± 3.8a | 32.68 ± 2.8a | 33.68 ± 2.43a | 29.12 ± 1.8b | 28.82 ± 1.7b |
WD | 20.70 ± 2.1b | 23.45 ± 1.4b | 26.90 ± 3.0b | 25.17 ± 2.3b | 27.27 ± 3.2b | 28.07 ± 2.0b | 22.75 ± 2.7b | |
STM | WW | 2.22 ± 0.3a | 2.11 ± 0.4a | 1.85 ± 0.2a | 2.76 ± 0.4a | 1.57 ± 0.4b | 1.92 ± 0.0a | 1.37 ± 0.2b |
WD | 1.89 ± 0.5b | 1.54 ± 0.3b | 2.16 ± 0.5a | 2.35 ± 0.4a | 1.24 ± 0.3b | 1.39 ± 0.2b | 1.16 ± 0.2b | |
LDM | WW | 3.74 ± 0.5a | 3.96 ± 1.4a | 2.14 ± 0.4b | 4.15 ± 0.3a | 2.79 ± 0.6b | 2.74 ± 0.4b | 3.42 ± 0.3a |
WD | 1.61 ± 0.5b | 3.59 ± 0.6a | 2.24 ± 0.5b | 3.39 ± 0.9a | 1.96 ± 0.7b | 1.98 ± 0.1b | 2.26 ± 0.6b | |
RDM | WW | 0.96 ± 0.0b | 0.85 ± 0.0b | 0.84 ± 0.0b | 1.88 ± 1.0a | 1.05 ± 0.3b | 1.43 ± 0.5a | 1.10 ± 0.4b |
WD | 1.49 ± 0.5a | 1.63 ± 0.2a | 1.63 ± 0.6a | 1.54 ± 1.2a | 1.44 ± 0.1a | 0.75 ± 0.1b | 0.92 ± 0.5b | |
TDM | WW | 6.86 ± 0.5b | 6.92 ± 1.7b | 4.93 ± 0.2b | 8.79 ± 1.1a | 5.38 ± 0.1b | 6.09 ± 0.9b | 5.89 ± 0.3b |
WD | 4.99 ± 0.7b | 6.76 ± 0.6b | 5.86 ± 0.2b | 7.37 ± 0.2b | 4.64 ± 0.3b | 4.11 ± 0.6b | 4.35 ± 1.4b | |
R:S | WW | 0.16 ± 0.0b | 0.15 ± 0.0b | 0.21 ± 0.0b | 0.27 ± 0.1b | 0.26 ± 0.0b | 0.31 ± 0.1b | 0.24 ± 0.1b |
WD | 0.44 ± 0.1a | 0.32 ± 0.1a | 0.37 ± 0.2a | 0.28 ± 0.2b | 0.50 ± 0.1a | 0.23 ± 0.0b | 0.26 ± 0.1b | |
DQI | WW | 0.11 ± 0.0a | 0.13 ± 0.0a | 0.08 ± 0.0b | 0.15 ± 0.0a | 0.08 ± 0.0b | 0.11 ± 0.0a | 0.09 ± 0.0b |
WD | 0.09 ± 0.0b | 0.12 ± 0.0a | 0.10 ± 0.0b | 0.13 ± 0.0a | 0.08 ± 0.0b | 0.05 ± 0.0b | 0.09 ± 0.0b |
RDM | SDM | LDM | H | SD | TDM | DQI | R:S | |
---|---|---|---|---|---|---|---|---|
RDM | 1 | |||||||
SDM | 0.6 ns | 1 | ||||||
LDM | 0.4 ns | 0.4 ns | 1 | |||||
H | −0.2 ns | 0.1 ns | 0.0 ns | 1 | ||||
SD | 0.3 ns | 0.5 ns | 0.6 ns | 0.1 ns | 1 | |||
TDM | 0.7 * | 0.8 ns | 0.8 ** | −0.1 | 0.6 ns | 1 | ||
DQI | 0.7 * | 0.6 ns | 0.8 ** | −0.4 ns | 0.7 ns | 0.9 * | 1 | |
R:S | 0.5 * | 0.0 ns | −0.4 ns | −0.08 ns | −0.17 ns | −0.06 ns | 0.0 ns | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, R.S.; Sodré, G.A.; Silva, D.C. Dickson Quality Index of Cocoa Genotypes Under Water Deficit. Forests 2024, 15, 2054. https://doi.org/10.3390/f15122054
Alonso RS, Sodré GA, Silva DC. Dickson Quality Index of Cocoa Genotypes Under Water Deficit. Forests. 2024; 15(12):2054. https://doi.org/10.3390/f15122054
Chicago/Turabian StyleAlonso, Rogerio S., George A. Sodré, and Delmira C. Silva. 2024. "Dickson Quality Index of Cocoa Genotypes Under Water Deficit" Forests 15, no. 12: 2054. https://doi.org/10.3390/f15122054
APA StyleAlonso, R. S., Sodré, G. A., & Silva, D. C. (2024). Dickson Quality Index of Cocoa Genotypes Under Water Deficit. Forests, 15(12), 2054. https://doi.org/10.3390/f15122054