Study on the Water Mechanism of Sparse Grassland Decline of Ulmus pumila L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Setting and Investigation of Sample Plots
2.3. Experimental Design
2.4. Determination of Soil Moisture Content
2.5. Stem Sap Flow Measurement
2.6. Meteorological Data Acquisitio
2.7. Data Processing
3. Results
3.1. Soil Moisture Characteristics of Degraded Ulmus pumila L. Forest Land
3.1.1. Monthly Scale Water Characteristics of Degraded Ulmus pumila L. Forest Land
3.1.2. Change Rule of Soil Moisture After Rainfall in Degraded Forest Land
3.2. Variation Characteristics of Sap Flow Velocity of Decaying Ulmus pumila L.
3.2.1. Variation Characteristics of Daytime Sap Flow Velocity of Decaying Ulmus pumila L.
3.2.2. Variation Characteristics of Nighttime Sap Flow Velocity of Decaying Ulmus pumila L. Trees
3.2.3. Diurnal Variation Characteristics of Sap Flow Rate of Decaying Ulmus pumila L. Trees
3.3. Variation Characteristics of Evapotranspiration of Decaying Ulmus pumila L. Trees
3.3.1. Single-Day Variation Characteristics of Water Consumption of Decaying Ulmus pumila L. Trees
3.3.2. Variation Characteristics of Daily Scale Water Consumption of Decaying Ulmus pumila L.
3.4. Effects of Meteorological Factors on Sap Flow Rate of Trees
4. Discussion
4.1. Daily Variations of Sap Flow Rate in Different Stages of Declining Ulmus Trees
4.2. Relationship Between Sap Flow Rate in Declining Ulmus Trees and Environmental Factors
4.3. Changes in Ulmus Tree Response to Environmental Factors During Decline
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vega-Grau, A.M.; McDonnell, J.; Schmidt, S.; Annandale, M.; Herbohn, J. Isotopic fractionation from deep roots to tall shoots: A forensic analysis of xylem water isotope composition in mature tropical savanna trees. Sci. Total Environ. 2021, 795, 148675. [Google Scholar] [CrossRef] [PubMed]
- Buisson, E.; Le Stradic, S.; Silveira, F.A.; Durigan, G.; Overbeck, G.E.; Fidelis, A.; Fernandes, G.W.; Bond, W.J.; Hermann, J.-M.; Mahy, G.; et al. Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biol. Rev. Camb. Philos. Soc. 2019, 94, 590–609. [Google Scholar] [CrossRef] [PubMed]
- van der Ent, R.J.; Coenders-Gerrits AM, J.; Nikoli, R.; Savenije, H.H. The importance of proper hydrology in the forest cover-water yield debate: Commentary on Ellison et al. (2012) Global Change Biology, 18, 806–820. Glob. Change Biol. 2012, 18, 2677–2680. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, J.; Skiadaresis, G.; Kohler, M.; Kunz, J.; Schnabel, F.; Vitali, V.; Bauhus, J. Quantifying growth responses of trees to drought—A critique of commonly used resilience indices and recommendations for future studies. Curr. For. Rep. 2020, 6, 185–200. [Google Scholar] [CrossRef]
- Grote, R.; Gessler, A.; Hommel, R.; Poschenrieder, W.; Priesack, E. Importance of tree height and social position for drought-related stress on tree growth and mortality. Trees 2016, 30, 1467–1482. [Google Scholar] [CrossRef]
- Férriz, M.; Martin-Benito, D.; Cañellas, I.; Gea-Izquierdo, G. Sensitivity to water stress drives differential decline and mortality dynamics of three co-occurring conifers with different drought tolerance. For. Ecol. Manag. 2021, 486, 118964. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Tian, P. Carbon quality and soil microbial property control the latitudinal pattern in temperature sensitivity of soil microbial respiration across Chinese forest ecosystems. Glob. Chang. Biol. 2018, 24, 2841–2849. [Google Scholar] [CrossRef]
- Lal, R. Forest soils and carbon sequestration. For. Ecol. Manag. 2005, 220, 242–258. [Google Scholar] [CrossRef]
- McDowell, N.G.; Michaletz, S.T.; Bennett, K.E.; Solander, K.C.; Xu, C.; Maxwell, R.M.; Middleton, R.S. Predicting Chronic Climate-Driven Disturbances and Their Mitigation. Trends Ecol. Evol. 2018, 33, 15–27. [Google Scholar] [CrossRef]
- Breshears, D.D.; Myers, O.B.; Meyer, C.W.; Barnes, F.J.; Zou, C.B.; Allen, C.D.; McDowell, N.G.; Pockman, W.T. Tree Die-Off in Response to Global Change-Type Drought: Mortality Insights from a Decade of Plant Water Potential Measurements. Front. Ecol. Environ. 2009, 7, 185–189. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Lewis, S.L.; Brando, P.M.; Phillips, O.L.; Van Der Heijden, G.M.; Nepstad, D. 2010 Amazon Drought. Sci. Am. Assoc. Adv. Sci. 2011, 331, 554. [Google Scholar] [CrossRef]
- Zeppel, M.J.B.; Adams, H.D.; Anderegg, W.R.L. Mechanistic causes of tree drought mortality: Recent results, unresolved questions and future research needs. New Phytol. 2011, 192, 800–803. [Google Scholar] [CrossRef]
- Qi, K.; Zhu, J.; Zheng, X.; Wang, G.G.; Li, M. Impacts of the world’s largest afforestation program (Three-North Afforestation Program) on desertification control in sandy land of China. GIScience Remote Sens. 2023, 60, 2167574. [Google Scholar] [CrossRef]
- Dobson, A.; Eckersley, R. Political Theory and the Ecological Challenge; Cambridge University Press: New York, NY, USA; Cambridge, UK, 2006. [Google Scholar]
- Soheili, F.; Abdul-Hamid, H.; Almasi, I.; Heydari, M.; Tongo, A.; Woodward, S.; Naji, H.R. How Tree Decline Varies the Anatomical Features in Quercus brantii. Plants 2023, 12, 377. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, Y.; Wang, L. Characteristics and modelling of sap flow of degraded Populus simonii in areas where the ecology is vulnerable. Land Degrad. Dev. 2023, 34, 493–505. [Google Scholar] [CrossRef]
- Nadezhdina, N. Sap flow index as an indicator of plant water status. Tree Physiol. 1999, 19, 960. [Google Scholar] [CrossRef]
- Kume, T.; Otsuki, K.; Du, S.; Yamanaka, N.; Wang, Y.L.; Liu, G.B. Spatial variation in sap flow velocity in semiarid region trees: Its impact on stand-scale transpiration estimates. Hydrol. Process. 2012, 26, 1161–1168. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Dawson, T.E. Using branch and basal trunk sap flow measurements to estimate whole-plant water capacitance: A caution. Plant Soil 2008, 305, 5–13. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agric. For. Meteorol. 2017, 244–245, 151–161. [Google Scholar] [CrossRef]
- Cermak, J.; Kucera, J.; Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Zhao, P.; Mei, T.T.; Ni, G.Y.; Yu, M.H.; Zeng, X.P. Application of thermal dissipation probe in the study of Bambusa chungii sap flow. Ying Yong Sheng Tai Xue Bao 2012, 23, 979–984. [Google Scholar] [PubMed]
- Ping, L.U.; Urban, L.; Ping, Z. Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice. Acta Bot. Sin. 2004, 46, 631–646. [Google Scholar]
- Jiang, D.; Tang, Y.; Busso, C.A. Effects of vegetation cover on recruitment of Ulmus pumila L. in Horqin Sandy Land, northeastern China. J. Arid. Land 2014, 6, 343–351. [Google Scholar] [CrossRef]
- Kim, Y.C.; Chae, H.; Hong, B. Community Regeneration and Development Traits of Ulmus pumila L. Korean J. Environ. Ecol. 2023, 37, 13–34. [Google Scholar] [CrossRef]
- Qiang, Y.; Xu, X.; Zhang, J. Study on the Dynamics of Stem Sap Flow in Minqin Wind and Sand Control Haloxylon ammodendron Forest, China. Sustainability 2023, 15, 609. [Google Scholar] [CrossRef]
- Han, H.; Zhang, X.; Dang, H.; Xu, G.; Zhang, B.; You, G. Study on Proper Stand Density of Pinus sylvestris var. mongolica Plantation in Sandy Land Based on Stem Sap Flow Velocity. For. Res. 2015, 28, 797–803. [Google Scholar]
- Lyu, J.L.; He, Q.Y.; Yan, M.J.; Li, G.Q.; Du, S. Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China. Ying Yong Sheng Tai Xue Bao 2018, 29, 725–731. [Google Scholar]
- Bárek, V.; Kováčová, M.; Kišš, V.; Paulen, O. Water Regime Monitoring of the Royal Walnut (Juglans regia L.) Using Sap Flow and Dendrometric Measurements. Plants 2021, 10, 2354. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, J.; Xu, X.; Liu, H.; Duan, X. Stem sap flow of Haloxylon ammodendron at different ages and its response to physical factors in the Minqin oasis-desert transition zone, China. J. Arid. Land 2023, 15, 842–857. [Google Scholar] [CrossRef]
- Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Hayat, M.; Iqbal, S.; Zha, T.; Jia, X.; Qian, D.; Bourque, C.P.A.; Khan, A.; Tian, Y.; Bai, Y.; Liu, P.; et al. Biophysical control on nighttime sap flow in Salix psammophila in a semiarid shrubland ecosystem. Agric. For. Meteorol. 2021, 300, 108329. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Si, J.H.; Feng, Q.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, S.; Xu, L.; Wang, Y.; Yu, P.; Chao, Y. Differentiated responses of daytime and nighttime sap flow to soil water deficit in a larch plantation in Northwest China. Agric. Water Manag. 2023, 289, 108540. [Google Scholar] [CrossRef]
- Fang, W.; Lu, N.; Zhang, Y.; Jiao, L.; Fu, B. Responses of nighttime sap flow to atmospheric and soil dryness and its potential roles for shrubs on the Loess Plateau of China. J. Plant Ecol. 2018, 11, 717–729. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Sun, G.; Chen, L.; Xu, H.; Chen, S. Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agric. For. Meteorol. 2020, 284, 107904. [Google Scholar] [CrossRef]
- Antezana-Vera, S.A.; Marenco, R.A. Sap flow rates of Minquartia guianensis in central Amazonia during the prolonged dry season of 2015–2016. J. For. Res. 2021, 32, 2067–2076. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Schooling, J.T. Tree traits and meteorological factors influencing the initiation and rate of stemflow from isolated deciduous trees. Hydrol. Process. 2015, 29, 4083–4099. [Google Scholar] [CrossRef]
- André, F.; Jonard, M.; Ponette, Q. Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak-beech stand. Hydrol. Process. 2008, 22, 4455–4466. [Google Scholar] [CrossRef]
- Korakaki, E.; Fotelli, M.N. Sap flow in Aleppo pine in Greece in relation to sapwood radial gradient, temporal and climatic variability. Forests 2020, 12, 2. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, X.J.; Yin, X.W.; Yue, Y.M.; Liu, R.; Xu, G.Q.; Li, Y. Seasonal variation in the groundwater dependency of two dominant woody species in a desert region of Central Asia. Plant Soil 2019, 444, 39–55. [Google Scholar] [CrossRef]
- Harrison, J.L.; Reinmann, A.B.; Maloney, A.S.; Phillips, N.; Juice, S.M.; Webster, A.J.; Templer, P.H. Transpiration of Dominant Tree Species Varies in Response to Projected Changes in Climate: Implications for Composition and Water Balance of Temperate Forest Ecosystems. Ecosystems 2020, 23, 1598–1613. [Google Scholar] [CrossRef]
- Molina, A.J.; Aranda, X.; Llorens, P.; Galindo, A.; Biel, C. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions: Assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity. Agric. Water Manag. 2019, 218, 222–233. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, J.; Han, X.; Zhang, T.; Dong, Y.; Wu, M.; Qin, S.; Wei, Y.; Chen, Z.; Zhou, Y. Radial and seasonal variation of sap flow and its response to meteorological factors in sandy Pinus sylvestris var. mongolica plantations in the Three North Shelterbelt of China. Agric. For. Meteorol. 2023, 328, 109239. [Google Scholar] [CrossRef]
- Galeano, E.; Vasconcelos, T.S.; Novais de Oliveira, P.; Carrer, H. Physiological and molecular responses to drought stress in teak (Tectona grandis L.f.). PLoS ONE 2019, 14, e0221571. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Gill, S.S.; Fujita, M. Drought stress responses in plants, oxidative stress, and antioxidant defense. In Climate Change and Plant Abiotic Stress Tolerance; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 209–250. [Google Scholar]
- Li, S.; Lu, S.; Wang, J.; Chen, Z.; Zhang, Y.; Duan, J.; Liu, P.; Wang, X.; Guo, J. Responses of physiological, morphological and anatomical traits to abiotic stress in woody plants. Forests 2023, 14, 1784. [Google Scholar] [CrossRef]
- Li, M. Functional Response of Ulmus minor Mill. to Drought, Flooding and Dutch elm Disease. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2015. [Google Scholar]
- Bose, A.K.; Gessler, A.; Büntgen, U.; Rigling, A. Tamm review: Drought-induced Scots pine mortality–trends, contributing factors, and mechanisms. For. Ecol. Manag. 2024, 561, 121873. [Google Scholar] [CrossRef]
- Benisiewicz, B.; Pawełczyk, S.; Niccoli, F.; Kabala, J.P.; Battipaglia, G. Drought Impact on Eco-Physiological Responses and Growth Performance of Healthy and Declining Pinus sylvestris L. Trees Growing in a Dry Area of Southern Poland. Forests 2024, 15, 741. [Google Scholar] [CrossRef]
- McDowell, N.G.; Sapes, G.; Pivovaroff, A.; Adams, H.D.; Allen, C.D.; Anderegg, W.R.; Breshears, D.D.; Brodribb, T.; Choat, B.; Cochard, H.; et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ. 2022, 3, 294–308. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Nyambayar, S.; Bader, M.; Osokhjargal, D.; Oyungerel, S.; Leuschner, C. Performance of Siberian elm (Ulmus pumila) on steppe slopes of the northern Mongolian mountain taiga: Drought stress and herbivory in mature trees. Environ. Exp. Bot. 2009, 66, 18–24. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.; Yan, H.; Xie, B.; Zhao, J.; Wang, N.; Wang, X. Canopy Transpiration and Stomatal Conductance Dynamics of Ulmus pumila L. and Caragana korshinskii Kom. Plantations on the Bashang Plateau, China. Forests 2022, 13, 1081. [Google Scholar] [CrossRef]
- Song, L.; Zhu, J.; Zheng, X.; Li, X.; Wang, K.; Zhang, J.; Wang, C.; Sun, H. Water use dynamics of trees in a Pinus tabuliformis plantation in semiarid sandy regions, Northeast China. Agric. Water Manag. 2023, 275, 107995. [Google Scholar] [CrossRef]
- Pragya; Kumar, P.; Singh, H. Sapflow and Gas Exchange in Plants Under Changing Climate and Environment, Forests and Climate Change: Biological Perspectives on Impact, Adaptation, and Mitigation Strategies; Springer Nature: Singapore, 2024; pp. 73–96. [Google Scholar]
- Huang, J.; Kong, F.; Yin, H.; Middel, A.; Liu, H.; Zheng, X.; Wen, Z.; Wang, D. Transpirational cooling and physiological responses of trees to heat. Agric. For. Meteorol. 2022, 320, 108940. [Google Scholar] [CrossRef]
- Ouyang, L.; Lu, L.; Wang, J.; Zhao, X.; Gao, L.; Zhao, P. Soil warming effects on the transpiration of trees and shrubs in a subtropical secondary forest: A manipulative experiment. For. Ecol. Manag. 2024, 563, 121994. [Google Scholar] [CrossRef]
- Linares, J.C.; Camarero, J.J. From pattern to process: Linking intrinsic water-use efficiency to drought-induced forest decline. Glob. Chang. Biol. 2012, 18, 1000–1015. [Google Scholar] [CrossRef]
- Lu, W.; Yu, X.; Jia, G. Retrospective Analysis of Tree Decline Based on Intrinsic Water-Use Efficiency in Semi-Arid Areas of North China. Atmosphere 2020, 11, 577. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.; Tian, F.; Guan, H.; Lin, H. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric. For. Meteorol. 2017, 240–241, 46–57. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, J.; Ruan, H. Meta-analyses of responses of sap flow to changes in environmental factors. Meta-J. Nanjing For. Univ. 2022, 46, 113–120. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, T.; Zhang, P.; Ma, J.; Zhao, Y.; Yang, X.; Wu, H.; Feng, X.; Jin, L.; Zhang, K. Study on the Water Mechanism of Sparse Grassland Decline of Ulmus pumila L. Forests 2024, 15, 2061. https://doi.org/10.3390/f15122061
Xia T, Zhang P, Ma J, Zhao Y, Yang X, Wu H, Feng X, Jin L, Zhang K. Study on the Water Mechanism of Sparse Grassland Decline of Ulmus pumila L. Forests. 2024; 15(12):2061. https://doi.org/10.3390/f15122061
Chicago/Turabian StyleXia, Tianbo, Ping Zhang, Jinluo Ma, Yuan Zhao, Xiaohui Yang, Hao Wu, Xuejuan Feng, Lei Jin, and Kaifang Zhang. 2024. "Study on the Water Mechanism of Sparse Grassland Decline of Ulmus pumila L." Forests 15, no. 12: 2061. https://doi.org/10.3390/f15122061
APA StyleXia, T., Zhang, P., Ma, J., Zhao, Y., Yang, X., Wu, H., Feng, X., Jin, L., & Zhang, K. (2024). Study on the Water Mechanism of Sparse Grassland Decline of Ulmus pumila L. Forests, 15(12), 2061. https://doi.org/10.3390/f15122061