Incidence, Level of Damage and Identification of Insect Pests of Fruits and Leaves of Ziziphus Tree Species in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Data Collection
2.3. Insect Rearing and Identifications
2.4. DNA Extraction
2.5. Polymerase Chain Reaction (PCR), DNA Sequencing and Phylogenetic Analyses
2.6. Statistical Analysis
3. Results
3.1. Factors Influencing Ziziphus Fruit and Leaves Insect Pest Incidences
3.2. Ziziphus Tree Fruits and Leaves Insect Pests Infestation Levels
3.3. Morphological Characterization and Molecular Identification
3.4. Phylogenetic Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ara, H.; Hassan, A.; Khanam, M. Taxonomic study of the genus Ziziphus mill. (Rhamnaceae) of Bangladesh. Bangladesh J. Plant Taxon. 2008, 15, 47–61. Available online: https://www.banglajol.info/index.php/BJPT/article/view/917/983 (accessed on 2 October 2022). [CrossRef]
- Pasternak, D.; Nikiema, A.; Ibrahim, A.; Senbeto, D.; Djibrilla, I. How domesticated Ziziphus mauritiana Lam. spread in the Sahel region of Africa and in Ethiopia. Chron. Hortic. 2016, 56, 21–25. Available online: https://www.researchgate.net/publication/303935328_How_domesticated_Ziziphus_mauritiana_Lam_spread_in_the_Sahel_region_of_Africa_and_in_Ethiopia (accessed on 12 July 2023).
- Dejene, T.; Agamy, M.S.; Agúndez, D.; Martin-Pinto, P. Ethnobotanical survey of wild edible fruit tree species in lowland areas of Ethiopia. Forests 2020, 11, 177. [Google Scholar] [CrossRef]
- Mongalo, N.I.; Mashele, S.S.; Makhafola, T.J. Ziziphus mucronata Willd. (Rhamnaceae): Its botany, toxicity, phytochemistry and pharmacological activities. Heliyon 2020, 6, e03708. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Tientcheu, A.M.L.; Awazi, N.P.; Assogbadjo, A.E.; Mabhaudhi, T.; Hendre, P.S.; Degrande, A.; Hlahla, S.; Manda, L. The future of food: Domestication and commercialization of indigenous food crops in Africa over the third decade (2012–2021). Sustainability 2022, 14, 2355. [Google Scholar] [CrossRef]
- Leakey, R.R.B.; Weber, J.C.; Page, T.; Cornelius, J.P.; Akinnifesi, F.K.; Roshetko, J.M.; Tchoundjeu, Z.; Jamnadass, R. Tree Domestication in Agroforestry: Progress in the Second Decade (2003–2012). In Advances in Agroforestry—The Future of Global Land Use; Springer: New York, NY, USA, 2012; pp. 145–173. [Google Scholar]
- Kalaba, F.K.; Chirwa, P.W.; Prozesky, H. The contribution of indigenous fruit trees in sustaining rural livelihoods and conservation of natural resources. Afr. J. Wood Sci. For. 2019, 7, 1–6. [Google Scholar]
- Karuppaiah, V. Biology and management of ber fruit fly, Carpomyia vesuviana Costa (Diptera: Tephritidae): A review. Afr. J. Agric. Res. 2014, 9, 1310–1317. [Google Scholar]
- Yadav, J.; Gaur, R.K.; Kumar, Y. Evaluation of antixenotic and allelochemical traits of ber (Ziziphus mauritiana Lamk.) fruits as a source of host plant resistance against fruit fly (Carpomyia vesuviana Costa) (Diptera: Tephritidae) in a semi-arid region of India. Phytoparasitica 2020, 48, 607–620. [Google Scholar] [CrossRef]
- Dhaliwal, G.S.; Singh, R. Host Plant Resistance to Insects: Concepts and Applications; Panima Publishing Corporation: New Delhi, India, 2014; p. 578. [Google Scholar]
- Ibrahim, A.S.; Samira, A.M.; Mahmoud, M.E.E.; Salih, A.I.S.; Saqib, A.; Ali, A. Monitoring of Tephritidae of Fruit Trees and Their Level of Infestation in South Kordofan State, Sudan. International Journal of Agriculture Institute. Can. J. Plant Prot. 2014, 2, 687–693. [Google Scholar]
- Haldhar, S.M.; Deshwal, H.L.; Jat, G.C.; Berwal, M.K. Pest scenario of ber (Ziziphus mauritiana Lam.) in arid regions of Rajasthan: A review. J. Agric. Ecol. 2016, 1, 10–21. [Google Scholar] [CrossRef]
- Meghwal, P.R.; Kumar, P.; Singh, D. Climate variability during flowering and fruiting reduces fruit yield of ber (Ziziphus mauritiana) in Western Rajasthan. J. Agric. Ecol. 2018, 6, 31–38. [Google Scholar] [CrossRef]
- Karuppaiah, V. Seasonality and management of stone weevil, Aubeus himalayanus Voss (Curculionidae: Coleoptera): An emerging pest in Indian Jujube (Ziziphus mauritiana L.). Afr. J. Agric. Res. 2015, 10, 871–876. [Google Scholar]
- Sharma, V.P.; Lal, O.P.; Rohidas, S.B.; Pramanick, P.K. Varietal resistance in ber (Ziziphus mauritiana Lamk.) against the fruit fly, Carpomyia vesuviana Costa (Diptera: Tephritidae) under the field conditions. J. Entomol. Res. 1998, 22, 61–67. [Google Scholar]
- Karuppaiah, V.; More, T.A.; Sivalingam, P.N.; Hanif, K.; Bagle, B.G. Prevailing insect pests of ber (Zizipus mauritiana Lamk) and their natural enemies in a hot arid ecosystem. Haryana J. Hortic. Sci. 2010, 39, 214–216. [Google Scholar]
- Singh, M.P. Managing menace of insect pests on ber. Indian Hortic. 2018, 53, 31–32. [Google Scholar]
- Gaur, R.K.; Kumar, M.; Sharma, S.; Singh, B. Survey studies on insects and non-insect pests associated with ber crop in South West Haryana. J. Entomol. Zool. Stud. 2020, 8, 856–863. [Google Scholar]
- Girma, N.; Zinabu, N.; Mubarek, E. Assessment of Diseases and Insect Pests on Ziziphus Species Fruit in Waghimra Administrative Zone, Amhara National Regional State, Ethiopia. In Proceedings of the 10th and 11th Annual Regional Conference on Completed Research Activities of Forestry, Amhara Agricultural Research Institute (ARARI), Bahir Dar, Ethiopia, 6–13 March 2017. [Google Scholar]
- Bagle, B. Incidence and control of fruitfly (Carpomyia vesuviana Costa) of ber (Ziziphus mauritiana Lamk.). Indian J. Plant Prot. 1992, 20, 205–207. [Google Scholar]
- Sonawane, B.R. Study of Pest of Tropical ber with Special Reference to Fruit Borer Meridarchis Scyrodes Meyr. Master’s Thesis, Poona University, Poona, India, 1965. [Google Scholar]
- Mayhew, P.J. Explaining global insect species richness: Lessons from a decade of macro-evolutionary entomology. Entomol. Exp. Appl. 2018, 166, 225–250. [Google Scholar] [CrossRef]
- Whiting, D. Key to insect orders. In CMG Garden Notes; Colorado State University, U.S. Department of Agriculture and Colorado Counties Cooperating: Fort Colins, CO, USA, 2017; pp. 314–316. [Google Scholar]
- Tahir, H.; Noor, M.; Mehmood, A.; Sherawat, S.M.; Qazi, M.A. Evaluating the accuracy of morphological identification of insect pests of rice crops using DNA barcoding. Mitochondrial DNA Part B 2018, 3, 1220–1224. [Google Scholar] [CrossRef]
- Smith, M.A.; Eveleigh, E.S.; Mccann, K.S. Barcoding a quantified food web: Crypsis, concepts, ecology and hypotheses. PLoS ONE 2011, 6, e14424. [Google Scholar] [CrossRef]
- Wallace, L.J.; Boilard, S.M.; Eagle, S.H. DNA barcodes for everyday life: Routine authentication of natural health products. Food Res. Int. 2012, 49, 446–452. [Google Scholar] [CrossRef]
- Bihon, W.; Burgess, T.; Slippers, B.; Wingfield, M.J.; Wingfield, B.D. Distribution of Diplodia pinea and its genotypic diversity within asymptomatic Pinus patula trees. Australas. Plant Pathol. 2011, 40, 540–548. [Google Scholar] [CrossRef]
- Chacón, I.A.; Janzen, D.H.; Hallwachs, W. Cryptic species within cryptic moths: New species of Dunama Schaus (Notodontidae, Nystaleinae) in Costa Rica. ZooKeys 2013, 264, 11–45. [Google Scholar] [CrossRef]
- NMSA. Addis Ababa National Meteorology Service Agency (NMSA); NMSA: Addis Ababa, Ethiopia, 2020.
- FAO (Food and Agriculture Organization of the United Nations). Success Stories. Climate-Smart Agriculture (CSA) on the Ground Understanding; FAO: Rome, Italy, 2015. [Google Scholar]
- Madden, L.V.; Hughes, G.; van den Bosch, F. The Study of Plant Disease Epidemics; APS Press: St. Paul, MN, USA, 2007. [Google Scholar]
- Nagrare, V.S.; Kranthi, S.; Biradar, V.K.; Zade, N.N.; Sangode, V.; Kakde, G.; Shukla, R.M.; Shivare, D.; Khadi, B.M.; Kranthi, K.R. Widespread infestation of the exotic mealybug species Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) on cotton in India. Bull. Entomol. Res. 2011, 99, 537–541. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Costa, F.O.; Dewaard, J.R.; Boutillier, J. Biological identifications through DNA barcodes: The case of the Crustacea. Can. J. Fish. Aquat. Sci. 2007, 62, 272–295. [Google Scholar] [CrossRef]
- Saiki, R.K.; Gelfand, D.H.; Stoffel, S.; Scharf, S.J.; Higuchi, R.; Horn, G.T.; Mullis, K.B.; Erlich, H.A. Primer directed enzymatic ampliÞcation of DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491. [Google Scholar] [CrossRef]
- Marion, C.; Jade, L.; Laury-Ann, D.; Ariane, T.; Grégoire, C.; Cloé, L.; Eric, P.; Geneviève, J. Optimized QIAGEN DNeasy Blood & Tissue Kit Protocol for Environmental DNA Extraction; Fisheries and Oceans Canada: Nunavut, QC, Canada, 2023. [Google Scholar] [CrossRef]
- Borghuis, A.; Pinto, J.D.; Platner, G.R.; Stouthamer, R. Partial cytochrome oxidase II sequences distinguish the sibling species Trichograma minutum Riley and T. platneri Nagarkatti. Biol. Control 2004, 30, 90–94. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular cloning: A laboratory manual. In Selection of the Formosan subterranean termite, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1989; Volume 19, pp. 764–773. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Bio. Biot. 1994, 3, 294–299. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5413–5467. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment [ed.], and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Serous 1999, 41, 95–98. [Google Scholar]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2011, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles and Practice of Statistics in Biological Research; W. H. Freeman and Company: New York, NY, USA, 2012. [Google Scholar]
- McCullagh, P.; Nelder, J.A. Generalized Linear Models; Chapman and Hall: London, UK, 1989. [Google Scholar]
- White, H. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica 1980, 48, 817–838. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 2 August 2023).
- Kavitha, Z.; Savithri, P. New record of some natural enemies on ber pests in Tirupati Region. South Indian Horti. 2002, 50, 513–514. [Google Scholar]
- Lakra, R.K.; Singh, Z. Seasonal fluctuations in the incidence of ber fruitfly Carpomyia vesuviana Costa (Diptera: Tephritidae) under agroclimatic conditions of Hisar. Haryana Agric. Univ. J. Res. 1985, 15, 42–50. [Google Scholar]
- Coissac, E.; Hollingsworth, P.M.; Lavergne, S. From barcodes to genomes: Extending the concept of DNA barcoding. Mol. Ecol. 2016, 25, 1423–1428. [Google Scholar] [CrossRef]
- Nandihalli, B.S.; Patil, D.R.; Jagginavar, S.B.; Biradar, A.P.; Guled, M.B.; Surkod, V.S. Incidence of fruit borer (Meridarchis scyrodes Meyr.), and fruit fly (Carpomyia vesuviana Costa) on different varieties of ber. Adv. Agri. Res. India 1996, 6, 13–18. [Google Scholar]
- Gopali, J.B.; Sharanabasappa, S.; Suhas Yelshetty, S.Y. Incidence of ber fruit borer, Meridarchi scyrodes Meyrick (Lepidoptera: Carposinidae) in relation to weather parameters. Insect Environ. 2003, 9, 165–166. [Google Scholar]
- Grewal, J.S. Relative incidence of infestation by two species of fruit flies Carpomyia vesuviana and Dacuszonatus (Diptera: Tephritidae) on ber in the Punjab. Indian J. Ecol. 1986, 8, 123–125. [Google Scholar]
- Farrar, N.; Golestaneh, R.; Askari, H.; Assareh, M.H. Studies on parasitism of Fopius carpomyie (Silvestri) (Hymenoptera: Braconidae), an egg-pupal parasitoid of ber fruit fly, Carpomyia vesuviana Costa (Diptera: Tephritidae). Bushehr-Iran. Acta Hortic. 2009, 840, 431–438. [Google Scholar] [CrossRef]
- Sander, N.L.; da Silva, C.J.; Duarte, A.V.M.; Zago, B.W.; Galbiati, C. The Influence of Environmental Features on the Morphological Variation in Mauritia flexuosa L.f. Fruits and Seeds. Plants 2020, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Arora, P.K.; Kaur, N.; Thind, S.K.; Aulakh, P.S. Screening of some ber varieties for resistance against fruit fly. Horti. J. 2001, 14, 117–120. [Google Scholar]
- Mitra, S.K.; Dhaliwal, S.S. Effect of potassium on fruit quality and their storage life. In Proceedings of the IPI-OUAT-IPNI International Symposium, Bhubaneswar, India, 5–7 November 2009. [Google Scholar]
- Karar, H.; Bashir, M.A.; Khan, K.A.; Farooq, A.B.; Aziz, I.; Ali, H.; Ghramh, H.A.; Abbas, G.; Alghanem, S.M. Response of leading ber (Zizyphus jujuba) varieties against fruit flies (Tephritidae: Diptera) and estimation of their losses. Fresenius Environ. Bull. 2020, 29, 10311–10319. [Google Scholar]
- Muhammad, S. Incidence of Insect Pests on Ber (Zizyphus jujube) Tree. J. Zool. 2006, 38, 261–263. [Google Scholar]
- Tembo, L.; Chiteka, Z.; Kadzere, I.; Akinnifesi, F.K.; Tagwira, F. Ripening stage and drying method affecting colour and quality attributes of Ziziphus mauritiana fruits in Zimbabwe. Afri. J. Biotec. 2008, 7, 2509–2513. [Google Scholar]
- Nizamani, I.A.; Rustamani, M.A.; Nizamani, S.M.; Khaskheli, M.I. Population Density of Foliage Insect Pest on Jujube, Ziziphus mauritiana Lam. Ecosystem. J. Basic Appl. Sci. 2015, 11, 304–313. [Google Scholar] [CrossRef]
- Al-Masudey, A.D.; Al-Yousuf, A.A. Effect of jujube fruit cultivars on chemical control of jujabe fruit fly Carpomyia incompleta. Kufa J. Agri. Sci. 2013, 5, 111–124. [Google Scholar]
- Hoddle, M.S.; Mound, L.A. The genus Scirtothrips in Australia (Thysanoptera, Thripidae). Zootaxa 2003, 268, 1–40. [Google Scholar] [CrossRef]
- Korneyev, V.A.; Mishustin, R.I.; Korneyev, S.V. The Carpomyini fruit flies (Diptera: Tephritidae) of Europe, Caucasus, and Middle East: New records of pests, with improved keys. Vestn. Zool. 2017, 51, 453–470. [Google Scholar] [CrossRef]
- CABI. Invasive Species Compendium. 2022. Available online: https://www.cabi.org/isc/datasheet/11408 (accessed on 26 January 2023).
- Zavitha, Z.; Savithri, P.; Vijayaragavan, C. Insect pests of ber, Ziziphus jujuba in Tirupati Region. Insect Environ. 2002, 7, 157–158. [Google Scholar]
- Balikai, R.A.; Kotikal, Y.K.; Prasanna, P.M. Global scenario of insect and non-insect pests of jujube and their management options. Acta Hortic. 2013, 993, 253–277. [Google Scholar] [CrossRef]
- Inmaculada, G.J.; Enrique, Q.M.; Meelad, Y.Y. Zizyphus fruit fly (Carpomya incompleta (Becker), Diptera: Tephritidae) is expanding its range in Europe. Span. J. Agric. Res. 2022, 20, e10SC02. [Google Scholar]
- Cini, A.; Ioriatti, C.; Anfora, A. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectol. 2012, 65, 149–160. [Google Scholar]
- Sasaki, M.; Sato, R. Bionomics of the cherry drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Futeushima prefecture. Annu. Rep. Soc. Plant Prot. North Jpn. 1995, 46, 164–172. [Google Scholar]
- Rota-Stabelli, O.; Blaxter, M.; Anfora, G. Drosophila suzukii. Curr. Biol. 2013, 23, R8–R9. [Google Scholar] [CrossRef]
- Commar, L.S.; Conceição, L.G.; Carlos, C.R.; Claudia, M.A.C. Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions. Genet. Mol. Biol. 2012, 35, 395–406. [Google Scholar] [CrossRef]
- Szépligeti, G. Sur un Braconide [Hym.] Nouveau, Parasite du Dacus Oleae. Bull. Société Entomol. Fr. 1910, 13, 243–244. [Google Scholar]
- Daniell, R.R.F.; Elton, L.A. Occurrence of Zaprionus indianus Gupta (Diptera: Drosophilidae) in “Juazeiro” Fruits Ziziphus Joazeiro Mart. (Rhamnaceae). In The State of Rio Grande Do Norte, Brazil. Rev. Bras. Frutic. Jaboticabal-SP 2011, 33, 1356–1358. [Google Scholar]
- EFSA PLH Panel (EFSA Panel on Plant Health); Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques, M.J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; et al. Pest categorisation of Zaprionus indianus. EFSA 2022, 20, 7144. [Google Scholar] [CrossRef]
- Brunner, P.C.; Flemming, C.; Frey, J.E. A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agric. For. Èntomol. 2002, 4, 127–136. [Google Scholar] [CrossRef]
- Rugman-Jones, P.F.; Robert, W.; van Noort, T.; Richard, S. Molecular differentiation of the Psyttalia concolor (Szépligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Africa. Biol. Control 2009, 49, 17–26. [Google Scholar] [CrossRef]
- Amiri, A.; Talebi, A.A.; Zamani, A.A.; Kamali, K. Effect of temperature on demographic parameters of the hawthorn red midget moth, Phyllonorycter corylifoliella, on apple. J. Insect Sci. 2010, 10, 134. [Google Scholar] [CrossRef]
Values | ANOVA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variables | Coefficients (B) | S.E | t-Statistics | P | VIF | R | R2adj | RMSE | F-Value | P-Level |
Constant | 95.8 | 2.43 | 39.4 | 0.000 | 0.298 | 0.096 | 10.1 | 11.6 | 0.000 | |
AEZ | −2.3 | 2.25 | −1.02 | 0.307 | 4.37 | |||||
LUT | 0.26 | 0.66 | 0.40 | 0.690 | 4.37 | |||||
AY | −6.14 | 1.07 | −5.71 | 0.000 | 1.00 | |||||
Constant | 39.42 | 2.47 | 15.9 | 0.000 | 0.187 | 0.027 | 13.5 | |||
AEZ | −1.81 | 2.83 | −0.64 | 0.524 | 3.94 | 4.3 | 0.005 | |||
LUT | 0.42 | 0.83 | 0.51 | 0.609 | 3.94 | |||||
AM | −0.21 | 0.06 | −3.53 | 0.000 | 1.00 |
Fruits | ||||
Determinant Factors | Insect Pest Incidence | AEZ | Land Use Types | Assessment Year |
AEZ | 0.071 | |||
Land use type | 0.053 | 0.88 * | ||
Assessment year | 0.289 | 0.001 | 0.00 | |
Assessment month | 0.173 | 0.001 | 0.00 | 0.84 * |
Leaves | ||||
Determinant Factors | Insect Pest Incidence | AEZ | Land Use Types | Assessment Year |
AEZ | 0.02 | |||
Land use type | 0.01 | 0.86 * | ||
Assessment year | 0.27 | −0.02 | ||
Assessment month | 0.18 | 0.004 | 0.004 | 0.85 * |
Fruits | ||||||
LUT | Mean (±SE) Fruits Examined/Tree | Mean Infestation Level per Tree | ||||
Very Low | Low | Medium | Severe | Very Severe | ||
Farmland | 58.0 ± 1.4 | 6.0 ± 0.4 c | 20.8 ± 0.8 | 21 ± 0.9 | 9.0 ±0.7 | 5.3 ± 0.5 |
Home garden | 56.9 ± 1.1 | 7.1 ± 0.5 b | 19.9 ± 0.7 | 20.7 ± 0.9 | 8.6 ± 0.5 | 5.0 ± 0.5 |
Roadside | 59.4 ± 1.2 | 8 ± 0.5 a | 19.7 ± 0.7 | 21.7 ± 0.7 | 9.0 ± 0.6 | 5.1 ± 0.6 |
AEZ | ||||||
Lowland | 59.0 ± 0.9 | 9.8 ± 0.5 | 20.4 ± 0.5 | 21.6 ± 0.6 | 8.2 ± 0.4 a | 5.9 ± 0.4 b |
Midland | 57.1 ± 0.8 | 9.0 ± 0.5 | 19.8 ± 0.5 | 20.6 ± 0.5 | 9.3 ± 0.4 b | 4.2 ± 0.2 a |
Year | ||||||
2022 | 55.6 ± 0.6 | 7.1 ± 0.3 b | 20.1 ± 0.4 | 20.8 ± 0.4 | 7.9 ± 0.3 b | 4.9 ± 0.3 |
2023 | 60.6 ± 1 | 11.7 ± 0.6 a | 20.2 ± 0.6 | 21.4 ± 0.6 | 9.8 ± 0.5 a | 5.0 ± 0.3 |
Leaves | ||||||
LUT | Mean (±SE) Number of Leaves Examined/Tree | Mean Infestation Level per Tree | ||||
Nil | Low | Medium | Severe | |||
Farmland | 52.6 ± 1.1 | 34.5 ± 1.1 | 13.1 ± 0.5 | 6.6 ± 0.4 | 4.5 ± 0.4 | |
Home garden | 49.2 ± 1.1 | 32.7 ± 1.1 | 12.5 ± 0.4 | 6.5 ± 0.4 | 3.7 ± 0.4 | |
Roadside | 53 ± 1.2 | 33.8 ± 1.2 | 13.4 ± 0.5 | 7.3 ± 0.5 | 4.4 ± 0.2 | |
AEZ | ||||||
Lowland | 51.1 ± 0.8 | 32.9 ± 0.8 a | 12.8 ± 0.4 | 7.3 ± 0.3 b | 4.2 ± 0.3 | |
Midland | 52.7 ± 1.2 | 35.2 ± 1.1 b | 13.6 ± 0.4 | 6 ± 0.4 a | 4.1 ± 0.3 | |
Year | ||||||
2022 | 50 ± 0.8 | 30.5 ± 0.6 a | 14.2 ± 0.4 b | 7.7 ± 0.4 b | 4.1 ± 0.3 | |
2023 | 53.2 ± 1.1 | 36.9 ± 1.1 b | 11.8 ± 0.4 a | 6.0 ± 0.4 a | 4.2 ± 0.2 |
Species Name | Isolate Number | Host | Origin | Collector | Percent Identity | Accession |
---|---|---|---|---|---|---|
C. incompleta | AHL2 | Z. jujuba | Iraq | Tahir, H.M. | 99.85 | ON045003 |
C. incompleta | AHL1 | Z. jujuba | Iraq | Tahir, H.M. | 99.85 | ON045002 |
C. incompleta | Italy 01 | Z. jujuba | Italy | Zhang, Y. | 99.71 | NC_071720 |
C. vesuviana | I1 | Z. jujuba | Spain | Garrido, J.I. | 99.68 | OK147923 |
C. vesuviana | China, Xinjiang 01 | Z. jujuba | China | Zhang, Y. | 95.31 | MT121231 |
C. vesuviana | Iran 01 | Z. jujuba | Iran | Zhang, Y. | 95.31 | NC071721 |
C. vesuviana | FUN12 | Z. jujuba | China | Jing, L. | 95.43 | KU131576 |
C. vesuviana | ZFBO T01 022 | Ziziphus | Ethiopia | Tigabu, R. | QU5908887 | |
C. vesuviana | ZFBO T04 022 | Ziziphus | Ethiopia | Tigabu, R. | QU8343087 | |
C. vesuviana | ZFBO T17 022 | Ziziphus | Ethiopia | Tigabu, R. | QU1834357 | |
C. vesuviana | ZFBA T06 022 | Ziziphus | Ethiopia | Tigabu, R. | QU6288145 | |
C. vesuviana | ZFBA T18 022 | Ziziphus | Ethiopia | Tigabu, R. | QU1912175 | |
D. hydei | CRX36794.1 | Melon | Italy | Patrizia, T. | 99.43 | LN867077 |
D. hydei | DHYDE20161106 | Berry | China | Qian, Z.Q. | 99.14 | MK659821 |
D. hydei | Africa | Berry | China | Wang, B.C. | 98.85 | DQ471603 |
D. hydei | CH55 | Melon | Iran | Oshaghi, M.A. | 99.7 | OR077700 |
D. hydei | DQ37 | Melon | New Zealand | Hodge, S. | 99.55 | KJ671602 |
D. hydei | Duke.Bio203L | Berry | USA | Spana, E. | 99.39 | MT807009 |
D. hydei | TEN104-102 | Melon | Spain | Vilchez, R.I. | 99.84 | OK037195 |
D. hydei | QDE57910.1 | Melon | South Africa | Liana, I.A. | 99.53 | MK251432 |
D. hydei | ABH5 | Melon | Spain | Vilchez, R.I. | 99.38 | OK037196 |
D. hydei | 15085-1641.58 | Melon | Spain | Evans, A.L. | 99.38 | EU390734 |
D. hydei | AQ49 | Berry | China | Wang, B.C. | 93.97 | DQ471601 |
D. hydei | ZFBO T03 022 | Ziziphus | Ethiopia | Tigabu, R. | QU3000047 | |
D. hydei | ZFBO T02 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2682351 | |
D. hydei | ZFBO T09 022 | Ziziphus | Ethiopia | Tigabu, R. | QU3295235 | |
D. hydei | ZFBO T14 022 | Ziziphus | Ethiopia | Tigabu, R. | QU7962979 | |
D. hydei | ZFBA T08 022 | Ziziphus | Ethiopia | Tigabu, R. | QU7664841 | |
D. hydei | ZFBA T12 022 | Ziziphus | Ethiopia | Tigabu, R. | QU7906397 | |
D. simulans | UKG21278.1 | Melon | China | Li, T. | 99.86 | MN046104 |
D. simulans | sm21 | Peach | Brazil | Montooth, K.L. | 99.86 | KC244283 |
D. simulans | AU023 | Ziziphus | Kenya | Ballard, J.W. | 99.86 | AY518674 |
D. simulans | Sc00 | Melon | Seychelles | Ballard, J.W. | 99.86 | AF200844 |
D. simulans | DSR | Apple | Madagascar | Ballard, J.W. | 99.86 | AF200841 |
D. simulans | DSW | Apple | USA | Ballard, J.W. | 99.86 | AF200840 |
D. simulans | C167 | Banana | Kenya | Ballard, J.W. | 99.86 | AF200839 |
D. simulans | KY215 | Banana | Kenya | Ballard, J.W. | 99.71 | AY518672 |
D. simulans | KY007 | Apple | USA | Ballard, J.W. | 99.71 | AY518670 |
D. simulans | SL3 | Melon | Spain | Satta, Y. | 99.71 | M57911.1 |
D. simulans | simw501 | Apple | Brazil | Montooth, K.L. | KC244284 | |
D. simulans | ZFBO T13 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2055377 | |
Z. indianus | haplotype 6 | Fig | Brazil | Mendonca, M.P. | 98.96 | KC994628 |
Z. indianus | Duke.Bio203L | Fig | USA | Mohamed, N. | 99.1 | MN448022 |
Z. indianus | haplotype 5 | Fig | DRC | Mendonca, M.P. | 98.81 | KC994627 |
Z. indianus | ABR08559.1 | Fig | Brazil | Amir, Y. | 98.81 | EF632369 |
Z. indianus | ABR08548.1 | Fig | Brazil | Amir, Y. | 98.66 | EF632358 |
Z. indianus | ABR08551.1 | Fig | Madagascar | Amir, Y. | 98.51 | EF632361 |
Z. indianus | ABR08549.1 | Fig | Madeira | Amir, Y. | 98.51 | EF632359 |
Z. indianus | ZFBO T05 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2155377 | |
Z. indianus | ZFBO T10 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2212817 | |
Z. indianus | ZFBO T11 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2280917 | |
Z. indianus | ZFBA T19 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2348287 | |
P. concolor | PRJ076 | Ziziphus | Morocco | Rugman-JP.F. | 99.09 | EU761024 |
P. concolor | TN0216 | Ziziphus | Italy | Rugman-JP.F. | 99.09 | EU761022 |
P. concolor | TN0222 | Ziziphus | USA | Rugman-JP.F. | 99.09 | EU761021 |
P. concolor | TN0227 | Ziziphus | Morocco | Rugman JP.F. | 98.94 | EU761025 |
P. concolor | TN0223 | Ziziphus | Italy | Rugman-JP.F. | 98.94 | EU761023 |
P. humilis | Ps29 | Ziziphus | South Africa | Barbara, V.A. | 95.61 | MH841897 |
P. humilis | Ps24 | Ziziphus | South Africa | Barbara, V.A. | 95.61 | MH841896 |
P. humilis | Ps25 | Ziziphus | South Africa | Barbara, V.A. | 95.61 | MH841895 |
P. humilis | QTC30726.1 | Ziziphus | Portugal | Powell, C. | 95.61 | MW279213 |
P. humilis | TN0220 | Ziziphus | South Africa | Rugman-JP.F. | 95.45 | EU761031 |
P. humilis | TN0223 | Ziziphus | Namibia | Rugman-JP.F. | 95 | EU761030 |
P. humilis | ZFBA T15 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2497311 | |
P. humilis | ZFBO T16 022 | Ziziphus | Ethiopia | Tigabu, R. | QU2608411 |
Type of Insect Pest | Percentage of Insect Pests Recorded Across the Different | |||||||
---|---|---|---|---|---|---|---|---|
Land Use Types | Assessment Months | AEZ | ||||||
Farm Land | Home Garden | Roadsides | September | October | November | Low Land | Mid Land | |
C. incompleta | 51.4 | 47.8 | 39.0 | 43.6 | 41.2 | 36.3 | 48.3 | 42.8 |
D. hydei | 18.6 | 23.9 | 22.9 | 15.7 | 15.9 | 17.0 | 22.9 | 20.2 |
D. simulans | 19.9 | 17.6 | 31.1 | 31.6 | 33.0 | 31.0 | 21.8 | 27.4 |
Z. indianus | 6.3 | 8.8 | 4.6 | 6.7 | 7.4 | 10.8 | 5.6 | 6.0 |
P. concolor | 3.7 | 1.9 | 2.5 | 2.4 | 2.5 | 5.0 | 1.3 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alle, T.R.; Gure, A.; Karlsson, M.F.; Andrew, S.M. Incidence, Level of Damage and Identification of Insect Pests of Fruits and Leaves of Ziziphus Tree Species in Ethiopia. Forests 2024, 15, 2063. https://doi.org/10.3390/f15122063
Alle TR, Gure A, Karlsson MF, Andrew SM. Incidence, Level of Damage and Identification of Insect Pests of Fruits and Leaves of Ziziphus Tree Species in Ethiopia. Forests. 2024; 15(12):2063. https://doi.org/10.3390/f15122063
Chicago/Turabian StyleAlle, Tigabu R., Abdella Gure, Miriam F. Karlsson, and Samora M. Andrew. 2024. "Incidence, Level of Damage and Identification of Insect Pests of Fruits and Leaves of Ziziphus Tree Species in Ethiopia" Forests 15, no. 12: 2063. https://doi.org/10.3390/f15122063
APA StyleAlle, T. R., Gure, A., Karlsson, M. F., & Andrew, S. M. (2024). Incidence, Level of Damage and Identification of Insect Pests of Fruits and Leaves of Ziziphus Tree Species in Ethiopia. Forests, 15(12), 2063. https://doi.org/10.3390/f15122063