Using Random Forest Regression to Model the Spatial Distribution of Concentrations of Selected Metals in Groundwater in Forested Areas of the Wielkopolska National Park, Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Flowchart
2.3. Groundwater Samples
2.4. Terrain Topography
2.5. Environmental Parameters
2.6. Random Forest Regression
3. Results and Discussion
3.1. Topography of the Area
3.2. Description of Metal Concentrations in Groundwater
3.3. RFR Modeling Results
3.4. Importance of Predictors
3.5. Result Maps
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Gleeson, T.; Befus, K.M.; Jasechko, S.; Luijendijk, E.; Cardenas, M.B. The Global Volume and Distribution of Modern Groundwater. Nat. Geosci. 2016, 9, 161–167. [Google Scholar] [CrossRef]
- Alagha, J.S.; Said, M.A.M.; Mogheir, Y. Modeling of Nitrate Concentration in Groundwater Using Artificial Intelligence Approach—A Case Study of Gaza Coastal Aquifer. Environ. Monit. Assess 2014, 186, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Luczaj, J. Groundwater Quantity and Quality. Resources 2016, 5, 10. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T. Assessing Groundwater Quality Using GIS. Water Resour. Manag. 2007, 21, 699–715. [Google Scholar] [CrossRef]
- Singha, K.; Navarre-Sitchler, A. The Importance of Groundwater in Critical Zone Science. Groundwater 2022, 60, 27–34. [Google Scholar] [CrossRef]
- Kiewiet, L.; Von Freyberg, J.; Van Meerveld, H.J. Spatiotemporal Variability in Hydrochemistry of Shallow Groundwater in a Small Pre-alpine Catchment: The Importance of Landscape Elements. Hydrol. Process. 2019, 33, 2502–2522. [Google Scholar] [CrossRef]
- Harter, T. Groundwater Quality and Groundwater Pollution; University of California, Agriculture and Natural Resources: St. Davis, CA, USA, 2003; ISBN 978-1-60107-259-7. [Google Scholar]
- Schilling, K.E.; Jacobson, P. Spatial Relations of Topography, Lithology and Water Quality in a Large River Floodplain. River Res. Apps. 2012, 28, 1417–1427. [Google Scholar] [CrossRef]
- Cirmo, C.P.; McDonnell, J.J. Linking the Hydrologic and Biogeochemical Controls of Nitrogen Transport in Near-Stream Zones of Temperate-Forested Catchments: A Review. J. Hydrol. 1997, 199, 88–120. [Google Scholar] [CrossRef]
- Lidman, F.; Boily, Å.; Laudon, H.; Köhler, S.J. From Soil Water to Surface Water—How the Riparian Zone Controls Element Transport from a Boreal Forest to a Stream. Biogeosciences 2017, 14, 3001–3014. [Google Scholar] [CrossRef]
- Fisher, R.S.; Mullican, W.F., III. Hydrochemical Evolution of Sodium-Sulfate and Sodium-Chloride Groundwater Beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol. J. 1997, 5, 4–16. [Google Scholar] [CrossRef]
- Moradpour, S.; Entezari, M.; Ayoubi, S.; Karimi, A.; Naimi, S. Digital Exploration of Selected Heavy Metals Using Random Forest and a Set of Environmental Covariates at the Watershed Scale. J. Hazard. Mater. 2023, 455, 131609. [Google Scholar] [CrossRef] [PubMed]
- Zavareh, M.; Maggioni, V.; Zhang, X. Assessing the Efficiency of a Random Forest Regression Model for Estimating Water Quality Indicators. Meteorol. Hydrol. Water Manag. 2024, 11, 52–69. [Google Scholar] [CrossRef]
- Motlagh, A.M.; Yang, Z.; Saba, H. Groundwater Quality. Water Environ. Res. 2020, 92, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- Tesoriero, A.J.; Wherry, S.A.; Dupuy, D.I.; Johnson, T.D. Predicting Redox Conditions in Groundwater at a National Scale Using Random Forest Classification. Environ. Sci. Technol. 2024, 58, 5079–5092. [Google Scholar] [CrossRef]
- Dankoub, Z.; Ayoubi, S.; Khademi, H.; Lu, S.-G. Spatial Distribution of Magnetic Properties and Selected Heavy Metals in Calcareous Soils as Affected by Land Use in the Isfahan Region, Central Iran. Pedosphere 2012, 22, 33–47. [Google Scholar] [CrossRef]
- Chen, S.; Fang, G.; Huang, X.; Zhang, Y. Water Quality Prediction Model of a Water Diversion Project Based on the Improved Artificial Bee Colony–Backpropagation Neural Network. Water 2018, 10, 806. [Google Scholar] [CrossRef]
- Jadhav, M.S.; Khare, K.C.; Warke, A.S. Water Quality Prediction of Gangapur Reservoir (India) Using LS-SVM and Genetic Programming. Lakes Reserv. 2015, 20, 275–284. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Gupta, M.; Mukherjee, S. Mapping Spatial Distribution of Pollutants in Groundwater of a Tropical Area of India Using Remote Sensing and GIS. Appl. Geomat. 2012, 4, 21–32. [Google Scholar] [CrossRef]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of Machine Learning in Groundwater Quality Modeling—A Comprehensive Review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hipsey, M.R.; Ahmed, S.; Oldham, C. The Impact of Landscape Characteristics on Groundwater Dissolved Organic Nitrogen: Insights from Machine Learning Methods and Sensitivity Analysis. Water Resour. Res. 2018, 54, 4785–4804. [Google Scholar] [CrossRef]
- Prasad, A.M.; Iverson, L.R.; Liaw, A. Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems 2006, 9, 181–199. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef]
- Wheeler, D.C.; Nolan, B.T.; Flory, A.R.; DellaValle, C.T.; Ward, M.H. Modeling Groundwater Nitrate Concentrations in Private Wells in Iowa. Sci. Total Environ. 2015, 536, 481–488. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Defourny, P.; Vanclooster, M. Application of Random Forest Regression and Comparison of Its Performance to Multiple Linear Regression in Modeling Groundwater Nitrate Concentration at the African Continent Scale. Hydrogeol. J. 2019, 27, 1081–1098. [Google Scholar] [CrossRef]
- Knoll, L.; Breuer, L.; Bach, M. Large Scale Prediction of Groundwater Nitrate Concentrations from Spatial Data Using Machine Learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef]
- Reinecke, R.; Wachholz, A.; Mehl, S.; Foglia, L.; Niemann, C.; Döll, P. Importance of Spatial Resolution in Global Groundwater Modeling. Groundwater 2020, 58, 363–376. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, L.; Meng, Y.; Lin, Q.; Fei, Y. Influential Topographic Factor Identification of Soil Heavy Metals Using GeoDetector: The Effects of DEM Resolution and Pollution Sources. Remote Sens. 2023, 15, 4067. [Google Scholar] [CrossRef]
- Wilson, S.R.; Close, M.E.; Abraham, P.; Sarris, T.S.; Banasiak, L.; Stenger, R.; Hadfield, J. Achieving Unbiased Predictions of National-Scale Groundwater Redox Conditions via Data Oversampling and Statistical Learning. Sci. Total Environ. 2020, 705, 135877. [Google Scholar] [CrossRef] [PubMed]
- Khan, Q.; Liaqat, M.U.; Mohamed, M.M. A Comparative Assessment of Modeling Groundwater Vulnerability Using DRASTIC Method from GIS and a Novel Classification Method Using Machine Learning Classifiers. Geocarto Int. 2022, 37, 5832–5850. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Metorological Yearbook 2020. Instytut Meteorologii i Gospodarki Wodnej—Państwowy Instytut Badawczy. Available online: https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/Roczniki/Rocznik%20meteorologiczny/Rocznik%20Meteorologiczny%202020.pdf (accessed on 20 May 2024).
- Fiedler, M.; Zydroń, A. Changes in Groundwater Levels in the Wielkopolski National Park. Sylwan 2024, 168, 184–197. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, J.J.; Guo, W. How Does Topography Control Topography-Driven Groundwater Flow? Geophys. Res. Lett. 2022, 49, e2022GL101005. [Google Scholar] [CrossRef]
- Goderniaux, P.; Davy, P.; Bresciani, E.; De Dreuzy, J.; Le Borgne, T. Partitioning a Regional Groundwater Flow System into Shallow Local and Deep Regional Flow Compartments. Water Resour. Res. 2013, 49, 2274–2286. [Google Scholar] [CrossRef]
- De Graaf, I.E.M.; Gleeson, T.; Van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P. Environmental Flow Limits to Global Groundwater Pumping. Nature 2019, 574, 90–94. [Google Scholar] [CrossRef]
- Cardenas, M.B.; Jiang, X. Groundwater Flow, Transport, and Residence Times through Topography-driven Basins with Exponentially Decreasing Permeability and Porosity. Water Resour. Res. 2010, 46, 2010WR009370. [Google Scholar] [CrossRef]
- Benjmel, K.; Amraoui, F.; Boutaleb, S.; Ouchchen, M.; Tahiri, A.; Touab, A. Mapping of Groundwater Potential Zones in Crystalline Terrain Using Remote Sensing, GIS Techniques, and Multicriteria Data Analysis (Case of the Ighrem Region, Western Anti-Atlas, Morocco). Water 2020, 12, 471. [Google Scholar] [CrossRef]
- Apogba, J.N.; Anornu, G.K.; Koon, A.B.; Dekongmen, B.W.; Sunkari, E.D.; Fynn, O.F.; Kpiebaya, P. Application of Machine Learning Techniques to Predict Groundwater Quality in the Nabogo Basin, Northern Ghana. Heliyon 2024, 10, e28527. [Google Scholar] [CrossRef] [PubMed]
- Raaflaub, L.D.; Collins, M.J. The Effect of Error in Gridded Digital Elevation Models on the Estimation of Topographic Parameters. Environ. Model. Softw. 2006, 21, 710–732. [Google Scholar] [CrossRef]
- Walker, J.P.; Willgoose, G.R. On the Effect of Digital Elevation Model Accuracy on Hydrology and Geomorphology. Water Resour. Res. 1999, 35, 2259–2268. [Google Scholar] [CrossRef]
- Zhou, Q.; Liu, X. Analysis of Errors of Derived Slope and Aspect Related to DEM Data Properties. Comput. Geosci. 2004, 30, 369–378. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, D.; Xu, H.; Dai, L.; Xu, Q.; Zhang, Z.; Jing, X. The Role of Topography Feedbacks in Enrichment of Heavy Metal Elements in Terrace Type Region. Front. Environ. Sci. 2024, 12, 1291917. [Google Scholar] [CrossRef]
- Fox, D.M.; Bryan, R.B.; Price, A.G. The Influence of Slope Angle on Final Infiltration Rate for Interrill Conditions. Geoderma 1997, 80, 181–194. [Google Scholar] [CrossRef]
- Bogaart, P.W.; Troch, P.A. Curvature Distribution within Hillslopes and Catchments and Its Effect on the Hydrological Response. Hydrol. Earth Syst. Sci. 2006, 10, 925–936. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative Analysis of Land Surface Topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the Poster Presentation, ESRI Users Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA Spatial Modeling of Plant Species Distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Schmidt, J.; Hewitt, A. Fuzzy Land Element Classification from DTMs Based on Geometry and Terrain Position. Geoderma 2004, 121, 243–256. [Google Scholar] [CrossRef]
- Böhner, J.; Selige, T. Spatial Prediction of Soil Attributes Using Terrain Analysis and Climate Regionalization. Gott. Geograpihsche Abh. 2002, 115, 13–28. [Google Scholar]
- Winzeler, H.E.; Owens, P.R.; Read, Q.D.; Libohova, Z.; Ashworth, A.; Sauer, T. Topographic Wetness Index as a Proxy for Soil Moisture in a Hillslope Catena: Flow Algorithms and Map Generalization. Land 2022, 11, 2018. [Google Scholar] [CrossRef]
- Riihimäki, H.; Kemppinen, J.; Kopecký, M.; Luoto, M. Topographic Wetness Index as a Proxy for Soil Moisture: The Importance of Flow-Routing Algorithm and Grid Resolution. Water Resour. Res. 2021, 57, e2021WR029871. [Google Scholar] [CrossRef]
- Lyu, M.; Pang, Z.; Yin, L.; Zhang, J.; Huang, T.; Yang, S.; Li, Z.; Wang, X.; Gulbostan, T. The Control of Groundwater Flow Systems and Geochemical Processes on Groundwater Chemistry: A Case Study in Wushenzhao Basin, NW China. Water 2019, 11, 790. [Google Scholar] [CrossRef]
- Wielkopolska National Park Water in the Natural Environment of the Wielkopolska National Park. Geoportal. Available online: http://77.65.27.118:8080/project (accessed on 20 January 2024).
- Święcicki, Z. (Ed.) Instrukcja Urządzania Lasu. Cz. 2: Instrukcja Wyróżniania i Kartowania w Lasach Państwowych Typów Siedliskowych Lasu Oraz Zbiorowisk Roślinnych; Centrum Informacyjne Lasów Państwowych, Na zlec. Dyrekcji Generalnej Lasów Państwowych: Warszawa, Poland, 2012; ISBN 978-83-61633-66-2. (In Polish) [Google Scholar]
- Wieruszewski, M.; Mydlarz, K. The Influence of Habitat Conditions on the Properties of Pinewood. Forests 2021, 12, 1311. [Google Scholar] [CrossRef]
- Nosetto, M.D.; Jobbágy, E.G.; Tóth, T.; Jackson, R.B. Regional Patterns and Controls of Ecosystem Salinization with Grassland Afforestation along a Rainfall Gradient. Glob. Biogeochem. Cycles 2008, 22, 2007GB003000. [Google Scholar] [CrossRef]
- Gribovszki, Z.; Kalicz, P.; Balog, K.; Szabó, A.; Tóth, T.; Csáfordi, P.; Metwaly, M.; Szalai, S. Groundwater Uptake of Different Surface Cover and Its Consequences in Great Hungarian Plain. Ecol. Process. 2017, 6, 39. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Breiman, L. Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author). Statist. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar]
- Tesoriero, A.J.; Gronberg, J.A.; Juckem, P.F.; Miller, M.P.; Austin, B.P. Predicting Redox-sensitive Contaminant Concentrations in Groundwater Using Random Forest Classification. Water Resour. Res. 2017, 53, 7316–7331. [Google Scholar] [CrossRef]
- Stefano, C.D.; Ferro, V.; Porto, P.; Tusa, G. Slope Curvature Influence on Soil Erosion and Deposition Processes. Water Resour. Res. 2000, 36, 607–617. [Google Scholar] [CrossRef]
- Santos, G.L.D.; Pereira, M.G.; Lima, S.S.D.; Ceddia, M.B.; Mendonça, V.M.M.; Delgado, R.C. Landform Curvature and Its Effect on the Spatial Variability of Soil Attributes, Pinheiral—RJ/BR. Cerne 2016, 22, 431–438. [Google Scholar] [CrossRef]
- Szczucińska, A.M.; Siepak, M.; Zioła-Frankowska, A.; Marciniak, M. Seasonal and Spatial Changes of Metal Concentrations in Groundwater Outflows from Porous Sediments in the Gryżyna-Grabin Tunnel Valley in Western Poland. Environ. Earth Sci. 2010, 61, 921–930. [Google Scholar] [CrossRef]
- Conrad, S.; Löfgren, S.; Bauer, S.; Ingri, J. Seasonal Variations of Redox State in Hemiboreal Soils Indicated by Changes of δ56 Fe, Sulfate, and Nitrate in Headwater Streams. ACS Earth Space Chem. 2019, 3, 2816–2823. [Google Scholar] [CrossRef]
- Ekström, S.M.; Regnell, O.; Reader, H.E.; Nilsson, P.A.; Löfgren, S.; Kritzberg, E.S. Increasing Concentrations of Iron in Surface Waters as a Consequence of Reducing Conditions in the Catchment Area. JGR Biogeosciences 2016, 121, 479–493. [Google Scholar] [CrossRef]
- Hamer, K.; Gudenschwager, I.; Pichler, T. Manganese (Mn) Concentrations and the Mn-Fe Relationship in Shallow Groundwater: Implications for Groundwater Monitoring. Soil Syst. 2020, 4, 49. [Google Scholar] [CrossRef]
- El Ghandour, M.F.M.; Khalil, J.B.; Atta, S.A. Distribution of Sodium and Potassium in the Groundwater of the Nile Delta Region (Egypt). CATENA 1983, 10, 175–187. [Google Scholar] [CrossRef]
- Kendall, C.; McDonnell, J.J.; Gu, W. A Look inside ‘Black Box’ Hydrograph Separation Models: A Study at the Hydrohill Catchment. Hydrol. Process. 2001, 15, 1877–1902. [Google Scholar] [CrossRef]
- Walker, J.F.; Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C. Variability of Isotope and Major Ion Chemistry in the Allequash Basin, Wisconsin. Groundwater 2003, 41, 883–894. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef]
Sampling Point | General Curvature | Profile Curvature | Planar Curvature | TPI | Multiscale TPI | TPI Landform Class | Profile Curv. Class | Tangential Curv. Class |
---|---|---|---|---|---|---|---|---|
1 | 0.0139 | 0.0093 | −0.0155 | −3.92 | −2.24 | 2 | 1 | 2 |
2 | −0.0036 | −0.0021 | 0.0042 | −1.09 | −0.74 | 4 | 0 | 1 |
4 | 0.0031 | 0.0009 | 0.0363 | −0.33 | 0.29 | 5 | 2 | 2 |
6 | −0.003 | 0.0016 | −0.0406 | −0.15 | −0.15 | 4 | 0 | 1 |
7 | 0.0014 | 0.0008 | −0.0155 | −0.32 | 0.1 | 3 | 1 | 2 |
8 | 0.0043 | 0.0004 | 0.0567 | 0.41 | 0.49 | 5 | 2 | 2 |
9 | −0.0076 | −0.0058 | 0.0324 | −1.37 | −0.95 | 1 | 0 | 1 |
10 | 0.0074 | 0.0024 | 0.0197 | −2.76 | 0.77 | 1 | 2 | 2 |
11 | −0.0014 | −0.0006 | −0.0002 | 1.64 | 1.79 | 8 | 1 | 2 |
12 | 0.0076 | 0.0007 | 0.0284 | −3.81 | 0.6 | 0 | 2 | 2 |
13 | −0.0089 | 0.0038 | −0.073 | −0.53 | −2.38 | 3 | 2 | 0 |
14 | −0.0035 | −0.0028 | 0.0126 | 0.22 | −0.18 | 4 | 0 | 2 |
15 | 0.0015 | −0.0006 | 0.0422 | −1.24 | −0.05 | 1 | 2 | 2 |
16 | −0.0039 | −0.0015 | −0.0209 | −1.83 | −0.84 | 1 | 0 | 2 |
17 | −0.0096 | −0.0048 | −0.0062 | −2.07 | −3.19 | 1 | 0 | 1 |
Sampling Point | Area (m2) | Max Slope (%) | Mean Slope (%) | Slope SD (%) | Average Aspect (°) | Mean SAGA WI | Forest Habitat Type | Soil Type |
---|---|---|---|---|---|---|---|---|
1 | 5350 | 37.5 | 16.4 | 7.7 | 121 | 5.25 | 2 | 1 |
2 | 14,125 | 39.5 | 15.3 | 7.8 | 196 | 5.85 | 2 | 3 |
4 | 8850 | 18.7 | 4.9 | 3.7 | 178 | 8.5 | 1 | 1 |
6 | 8850 | 11.3 | 4.1 | 2.3 | 172 | 8.43 | 5 | 5 |
7 | 8850 | 19.6 | 3.7 | 4.2 | 223 | 9.39 | 5 | 2 |
8 | 57,275 | 5 | 1.6 | 0.7 | 73 | 11.19 | 3 | 2 |
9 | 6550 | 18.5 | 6.8 | 4.6 | 188 | 7.37 | 4 | 3 |
10 | 6850 | 41.5 | 13.1 | 10.8 | 143 | 7.24 | 2 | 2 |
11 | 5400 | 18.6 | 6.4 | 4.6 | 179 | 7.65 | 1 | 1 |
12 | 47,400 | 51 | 10.2 | 10.3 | 130 | 8.17 | 3 | 2 |
13 | 2875 | 19.9 | 8.5 | 4.6 | 208 | 6.39 | 3 | 6 |
14 | 12,650 | 14.4 | 4.2 | 2.8 | 265 | 8.29 | 1 | 1 |
15 | 47,025 | 23.8 | 7.2 | 5.2 | 243 | 8.13 | 2 | 2 |
16 | 8375 | 48.5 | 25.9 | 11.6 | 136 | 5.32 | 1 | 1 |
17 | 30,950 | 90 | 20.7 | 19.8 | 149 | 5.99 | 3 | 2 |
Mean | Median | Min | Max | SD | Skewness | CV | |
---|---|---|---|---|---|---|---|
Al | 0.034 | 0.021 | 0.005 | 0.208 | 0.043 | 2.77 | 126 |
Ca | 133 | 129 | 52.6 | 260 | 47.7 | 0.69 | 36 |
Fe | 0.543 | 0.023 | 0.001 | 7.2 | 1.14 | 3.34 | 210 |
K | 3.8 | 2.52 | 0.664 | 23.2 | 3.09 | 1.84 | 81 |
Mg | 17.5 | 17.3 | 7.95 | 38.1 | 6.41 | 0.69 | 37 |
Mn | 0.31 | 0.19 | 0.002 | 1.61 | 0.36 | 1.85 | 116 |
Na | 29 | 23.2 | 6.9 | 97.4 | 19.7 | 1.3 | 68 |
Zn | 0.0063 | 0.0033 | 0.001 | 0.093 | 0.012 | 5.4 | 190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiedler, M. Using Random Forest Regression to Model the Spatial Distribution of Concentrations of Selected Metals in Groundwater in Forested Areas of the Wielkopolska National Park, Poland. Forests 2024, 15, 2191. https://doi.org/10.3390/f15122191
Fiedler M. Using Random Forest Regression to Model the Spatial Distribution of Concentrations of Selected Metals in Groundwater in Forested Areas of the Wielkopolska National Park, Poland. Forests. 2024; 15(12):2191. https://doi.org/10.3390/f15122191
Chicago/Turabian StyleFiedler, Michał. 2024. "Using Random Forest Regression to Model the Spatial Distribution of Concentrations of Selected Metals in Groundwater in Forested Areas of the Wielkopolska National Park, Poland" Forests 15, no. 12: 2191. https://doi.org/10.3390/f15122191
APA StyleFiedler, M. (2024). Using Random Forest Regression to Model the Spatial Distribution of Concentrations of Selected Metals in Groundwater in Forested Areas of the Wielkopolska National Park, Poland. Forests, 15(12), 2191. https://doi.org/10.3390/f15122191