Phenological Response of an Evergreen Broadleaf Tree, Quercus acuta, to Meteorological Variability: Evaluation of the Performance of Time Series Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site and Data Collection
2.2. Statistical Analysis
3. Results
3.1. Time Series Data Decomposition
3.2. SARIMAX
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the seasons in the face of global change: Phenological research in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef]
- Beard, K.H.; Kelsey, K.C.; Leffler, A.J.; Welker, J.M. The Missing Angle: Ecosystem Consequences of Phenological Mismatch. Trends Ecol. Evol. 2019, 34, 885–888. [Google Scholar] [CrossRef]
- Fitter, A.H.; Fitter, R.S.R.; Harris, I.T.B.; Williamson, M.H. Relationships between first flowering date and temperature in the flora of a locality in central England. Funct. Ecol. 1995, 1, 55–60. [Google Scholar] [CrossRef]
- Sparks, T.H.; Jeffree, E.P.; Jeffree, C.E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int. J. Biometeorol. 2000, 44, 82–87. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.G.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 2006, 12, 969–1976. [Google Scholar] [CrossRef]
- Luscier, J.D.; Thompson, W.L.; Wilson, J.M.; Gorham, B.E.; Dragut, L.D. Using digital photographs and object-based image analysis to estimate percent ground cover in vegetation plots. Front. Ecol. Environ. 2006, 4, 408–413. [Google Scholar] [CrossRef]
- Browning, D.; Karl, J.; Morin, D.; Richardson, A.; Tweedie, C. Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sens. 2017, 9, 1071. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery. Biogeosciences 2014, 11, 4305. [Google Scholar] [CrossRef]
- Crimmins, M.A.; Crimmins, T.M. Monitoring Plant Phenology Using Digital Repeat Photography. Environ. Manag. 2008, 41, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Raman, R.K.; Mohanty, S.K.; Bhatta, K.S.; Karna, S.K.; Sahoo, A.K.; Mohanty, B.P.; Das, B.K. Time series forecasting model for fisheries in Chilika lagoon (a Ramsar site, 1981), Odisha, India: A case study. Wetlands Ecol. Manag. 2018, 26, 677–687. [Google Scholar] [CrossRef]
- Bai, L.; Lu, K.; Dong, Y.; Wang, X.; Gong, Y.; Xia, Y.; Wang, X.; Chen, L.; Yan, S.; Tang, Z.; et al. Predicting monthly hospital outpatient visits based on meteorological environmental factors using the ARIMA model. Sci. Rep. 2023, 13, 2691. [Google Scholar] [CrossRef]
- He, J.; Wei, X.; Yin, W.; Wang, Y.; Qian, Q.; Sun, H.; Xu, Y.; Magalhaes, R.J.S.; Guo, Y.; Zhang, W. Forecasting Scrub Typhus Cases in Eight High-Risk Counties in China: Evaluation of Time-Series Model Performance. Front. Environ. Sci. 2022, 9, 783864. [Google Scholar] [CrossRef]
- Mulla, S.; Pande, C.B.; Singh, S.K. Times Series Forecasting of Monthly Rainfall using Seasonal Auto Regressive Integrated Moving Average with EXogenous Variables (SARIMAX) Model. Water Resour. Manag. 2024, 38, 1825–1846. [Google Scholar] [CrossRef]
- Guo, Y.; Lai, X.; Gan, M. Cyanobacterial biomass prediction in a shallow lake using the time series SARIMAX models. Ecol. Inf. 2023, 78, 102292. [Google Scholar] [CrossRef]
- Boero, F.; Kraberg, A.C.; Krause, G.; Wiltshire, K.H. Time is an affliction: Why ecology cannot be as predictive as physics and why it needs time series. J. Sea Res. 2015, 101, 12–18. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
- Alberton, B.; Almeida, J.; Helm, R.; Torres, R.D.S.; Menzel, A.; Morellato, L.P.C. Using phenological cameras to track the green up in a cerrado savanna and its on-the-ground validation. Ecol. Inf. 2014, 19, 62–70. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Toomey, M.; Friedl, M.A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Sonnentag, O.; Baldocchi, D.D.; Bernacchi, C.J.; Biraud, S.C.; Bohrer, G.; et al. Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis. Ecol. Appl. 2015, 25, 99–115. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Forkel, M.; Wingate, L.; Tomelleri, E.; di Cella, U.M.; Richardson, A.D. Phenopix: AR package for image-based vegetation phenology. Agric. For. Meteorol. 2016, 220, 141–150. [Google Scholar] [CrossRef]
- Korea Meteorological Administration (KMA). Available online: https://www.weather.go.kr (accessed on 2 August 2024).
- De Boor, C. A Practical Guide to Splines, revised ed.; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Kvasov, B.I. Methods of Shape-Preserving Spline Approximation; World Scientific: Singapore, 2000. [Google Scholar]
- Chatfield, C.; Xing, H. The Analysis of Time Series: An Introduction with, R; Chapman and hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Bankó, Z.; Abonyi, J. Correlation based dynamic time warping of multivariate time series. Expert Syst. Appl. 2012, 17, 12814–12823. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. (Eds.) Introduction to Time Series and Forecasting; Springer: New York, NY, USA, 2002. [Google Scholar]
- Yin, R. Forecasting short-term timber prices with univariate ARIMA models. South. J. Appl. For. 1999, 23, 53–58. [Google Scholar] [CrossRef]
- Banaś, J.; Utnik-Banaś, K. Evaluating a seasonal autoregressive moving average model with an exogenous variable for short-term timber price forecasting. For. Policy Econ. 2021, 131, 102564. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. SciPy 2010, 7, 92–96. [Google Scholar]
- Mo, H.H.; Cho, K.; Shin, K.I. A Review of Time Series Analysis for Environmental and Ecological Data. Korean J. Environ. Biol. 2016, 34, 365–373. [Google Scholar] [CrossRef]
- Jorge, C.; Silva, J.M.N.; Boavida-Portugal, J.; Soares, C.; Cerasoli, S. Using Digital Photography to Track Understory Phenology in Mediterranean Cork Oak Woodlands. Remote Sens. 2021, 13, 776. [Google Scholar] [CrossRef]
- Kramer, K.; Leinonen, I.; Loustau, D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: An overview. Int. J. Biometeorol. 2000, 44, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive models in environmental forecasting time series: A theoretical and application review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef]
- Vilanova, R.S.; Delgado, R.C.; da Silva Abel, E.L.; Teodoro, P.E.; Silva Junior, C.A.; Wanderley, H.S.; Capristo-Silva, G.F. Past and future assessment of vegetation activity for the state of Amazonas-Brazil. Remote Sens. Appl. Soc. Environ. 2020, 17, 100278. [Google Scholar] [CrossRef]
- Jesus, C.S.L.D.; Delgado, R.C.; Wanderley, H.S.; Teodoro, P.E.; Pereira, M.G.; Lima, M.; Silva Junior, C.A.D. Fire risk associated with landscape changes, climatic events and remote sensing in the Atlantic Forest using ARIMA model. Remote Sens. Appl. Soc. Environ. 2022, 26, 100761. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Bu, K.; Yan, F.; Yang, J.; Chang, L.; Zhang, S. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Sci. Rep. 2017, 7, 14770. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Civco, D.L.; Silander, J.A. Species-specific spring and autumn leaf phenology captured by time-lapse digital cameras. Ecosphere 2018, 9, e02089. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y. The impact of vegetation phenology changes on the relationship between climate and net primary productivity in Yunnan, China, under global warming. Front. Plant Sci. 2023, 14, 1248482. [Google Scholar] [CrossRef] [PubMed]
- Currier, C.M.; Sala, O.E. Precipitation versus temperature as phenology controls in drylands. Ecology 2022, 103, e3793. [Google Scholar] [CrossRef]
- Piayda, A.; Dubbert, M.; Rebmann, C.; Kolle, O.; e Silva, F.C.; Correia, A.; Pereira, J.S.; Werner, C.; Cuntz, M. Drought impact on carbon and water cycling in a Mediterranean Quercus suber L. woodland during the extreme drought event in 2012. Biogeosciences 2014, 11, 7159–7178. [Google Scholar] [CrossRef]
- Medeiros, R.; Andrade, J.; Ramos, D.; Moura, M.; Pérez-Marin, A.M.; dos Santos, C.A.; da Silva, B.B.; Cunha, J. Remote Sensing Phenology of the Brazilian Caatinga and Its Environmental Drivers. Remote Sens. 2022, 14, 2637. [Google Scholar] [CrossRef]
- Korean Soil Information System (KSIS). Available online: https://soil.rda.go.kr/ (accessed on 20 September 2024).
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- De Souza, B.C.; Carvalho, E.C.D.; Oliveira, R.S.; de Araujo, F.S.; de Lima, A.L.A.; Rodal, M.J.N. Drought response strategies of deciduous and evergreen woody species in a seasonally dry neotropical forest. Oecologia 2020, 194, 221–236. [Google Scholar] [CrossRef] [PubMed]
Variables (Unit) | Mean | Std | Min | Max | Ljung–Box Test | ADF Test | ||
---|---|---|---|---|---|---|---|---|
Statistics | p-Value | Statistics | p-Value | |||||
GCC | 0.38 | 0.022 | 0.33 | 0.46 | 47,040 | 0.000 | −3.80 | 0.003 |
Tmean (°C) | 13.69 | 8.38 | −8.08 | 28.5 | 48,094 | 0.000 | −2.05 | 0.265 |
Tmax (°C) | 16.75 | 8.08 | −5.47 | 32.6 | 46,227 | 0.000 | −2.51 | 0.113 |
Tmin (°C) | 11.05 | 8.82 | −11.4 | 26.4 | 48,873 | 0.000 | −2.54 | 0.105 |
Trange (°C) | 5.70 | 1.96 | 0.36 | 14.0 | 5492 | 0.000 | −4.86 | 0.000 |
Hmean (%) | 75.4 | 14.3 | 28.9 | 100 | 10,533 | 0.000 | −3.83 | 0.003 |
Hmax (%) | 92.0 | 9.86 | 38 | 100 | 4278 | 0.000 | −4.73 | 0.000 |
Hmin (%) | 57.1 | 18.2 | 13 | 100 | 10,975 | 0.000 | −3.60 | 0.006 |
Precipitation (mm) | 3.59 | 13.3 | 0 | 165.5 | 124 | 0.001 | −38.91 | 0.000 |
Solar radiation (MJ/m2) | 14.67 | 7.28 | 0.91 | 30.6 | 7310 | 0.000 | −4.49 | 0.000 |
Model Parameter | Estimate | SE | Prob > |Z| | Confidence Interval | |
---|---|---|---|---|---|
0.025 | 0.975 | ||||
Tmax | 0.095 | 0.056 | 0.091 | −0.015 | 0.205 |
Hmax | 0.039 | 0.024 | 0.096 | −0.007 | 0.086 |
Solar radiation | 0.041 | 0.027 | 0.135 | −0.013 | 0.094 |
Precipitation | 0.062 | 0.024 | 0.009 | 0.015 | 0.108 |
Moving average, lag 1 | −0.160 | 0.052 | 0.002 | −0.262 | −0.058 |
Seasonal moving average, seasonal lag 1 | −0.580 | 0.093 | 0.000 | −0.763 | −0.397 |
0.037 | 0.004 | 0.000 | 0.030 | 0.044 | |
AIC = −65.8, BIC = −42.2, Ljung–Box (Prob (Q) = 0.95), Jarque–Bera (Prob (JB) = 0.07) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Hong, M.; Lee, H. Phenological Response of an Evergreen Broadleaf Tree, Quercus acuta, to Meteorological Variability: Evaluation of the Performance of Time Series Models. Forests 2024, 15, 2216. https://doi.org/10.3390/f15122216
Park J, Hong M, Lee H. Phenological Response of an Evergreen Broadleaf Tree, Quercus acuta, to Meteorological Variability: Evaluation of the Performance of Time Series Models. Forests. 2024; 15(12):2216. https://doi.org/10.3390/f15122216
Chicago/Turabian StylePark, Jeongsoo, Minki Hong, and Hyohyemi Lee. 2024. "Phenological Response of an Evergreen Broadleaf Tree, Quercus acuta, to Meteorological Variability: Evaluation of the Performance of Time Series Models" Forests 15, no. 12: 2216. https://doi.org/10.3390/f15122216
APA StylePark, J., Hong, M., & Lee, H. (2024). Phenological Response of an Evergreen Broadleaf Tree, Quercus acuta, to Meteorological Variability: Evaluation of the Performance of Time Series Models. Forests, 15(12), 2216. https://doi.org/10.3390/f15122216