The Dynamics and Potential of Carbon Stocks as an Indicator of Sustainable Development for Forest Bioeconomy in Ghana
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data Collection and Analyses
2.3. Additional Methods Used for Carbon Stock Estimations
2.4. Forests and Other Land Use Classifications
2.5. Geospatial and Statistical Analyses
3. Results and Discussion
3.1. Land Use-Cover Change vs. Carbon Stocks and Emissions
3.2. Drivers of Forest Loss and Carbon Fluxes
3.3. Forest Species and Forest-Vegetation Zones
3.4. Carbon Stocks and Other Variables Associated with Forest Bioeconomy
3.5. Soil Organic Carbon Stocks, Soil Characteristics, and SDGs
3.6. Limitations of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Forest-Vegetation Belts | Regions | Latitude | Longitude |
---|---|---|---|
Wet evergreen rainforest | Western region | 5.39599 | −2.53939 |
Wet evergreen rainforest | Western region | 4.820614 | −2.0327 |
Wet evergreen rainforest | Western region | 5.419696 | −1.64301 |
Wet evergreen rainforest | Western region | 5.418745 | −1.63782 |
Wet evergreen rainforest | Western region | 4.96286 | −2.39281 |
Wet evergreen rainforest | Western region | 5.38217 | −2.54018 |
Wet evergreen rainforest | Western north region | 5.986077 | −2.7766 |
Wet evergreen rainforest | Western north region | 6.474528 | −2.96298 |
Wet evergreen rainforest | Western north region | 6.255623 | −2.91215 |
Moist evergreen (dry and thick) forest | Central region | 5.55462 | −1.44816 |
Moist evergreen (dry and thick) forest | Central region | 5.495595 | −1.04152 |
Moist evergreen (dry and thick) forest | Central region | 5.630502 | −1.60065 |
Moist evergreen (dry and thick) forest | Eastern region | 6.546458 | −0.33025 |
Moist evergreen (dry and thick) forest | Eastern region | 6.666549 | −0.60226 |
Moist evergreen (dry and thick) forest | Eastern region | 6.716578 | −0.88435 |
Moist evergreen (dry and thick) forest | Ahafo region | 6.666549 | −2.58694 |
Moist evergreen (dry and thick) forest | Ahafo region | 7.046641 | −2.57687 |
Moist evergreen (dry and thick) forest | Ahafo region | 7.136618 | −2.21418 |
Moist evergreen (dry and thick) forest | Ashanti region | 6.246104 | −1.34778 |
Moist evergreen (dry and thick) forest | Ashanti region | 6.696567 | −2.10336 |
Moist evergreen (dry and thick) forest | Ashanti region | 7.166607 | −0.7836 |
Moist evergreen (dry and thick) forest | Bono region | 7.056041 | −2.88434 |
Moist evergreen (dry and thick) forest | Bono region | 8.089444 | −2.42917 |
Moist evergreen (dry and thick) forest | Bono region | 7.596912 | −2.28934 |
Moist deciduous (NW and SE types) forest | Bono east region | 7.966366 | −0.52589 |
Moist deciduous (NW and SE types) forest | Bono east region | 7.581511 | −0.18408 |
Moist deciduous (NW and SE types) forest | Bono east region | 7.904813 | −1.84654 |
Moist deciduous (NW and SE types) forest | Oti region | 7.612312 | 0.390794 |
Moist deciduous (NW and SE types) forest | Oti region | 8.143279 | 0.429637 |
Moist deciduous (NW and SE types) forest | Oti region | 8.673542 | 0.243193 |
Moist deciduous (NW and SE types) forest | Volta region | 6.061995 | 0.763683 |
Moist deciduous (NW and SE types) forest | Volta region | 7.094401 | 0.461256 |
Moist deciduous (NW and SE types) forest | Volta region | 6.833926 | 0.429637 |
Dry semi-deciduous forest and savanna | Savannah region | 8.888897 | −0.86903 |
Dry semi-deciduous forest and savanna | Savannah region | 9.804188 | −1.56147 |
Dry semi-deciduous forest and savanna | Savannah region | 9.146967 | −1.94689 |
Dry semi-deciduous forest and savanna | Northern region | 9.771445 | 0.173559 |
Dry semi-deciduous forest and savanna | Northern region | 9.886262 | −0.3547 |
Dry semi-deciduous forest and savanna | Northern region | 9.390705 | −1.17107 |
Dry semi-deciduous forest and savanna | Northern east region | 10.1599 | −1.24719 |
Dry semi-deciduous forest and savanna | Northern east region | 10.59689 | −0.38406 |
Dry semi-deciduous forest and savanna | Northern east region | 10.28482 | −1.48202 |
Dry semi-deciduous forest and savanna | Upper west region | 10.89618 | −1.95801 |
Dry semi-deciduous forest and savanna | Upper west region | 10.54698 | −2.16744 |
Dry semi-deciduous forest and savanna | Upper west region | 10.02869 | −2.04686 |
Dry semi-deciduous forest and savanna | Upper east region | 10.62808 | −0.97429 |
Dry semi-deciduous forest and savanna | Upper east region | 10.88995 | −1.35509 |
Dry semi-deciduous forest and savanna | Upper east region | 10.77775 | −0.35233 |
Swamp forest and mangrove | Great Accra region | 5.883369 | 0.441012 |
Swamp forest and mangrove | Great Accra region | 5.984483 | 0.161449 |
Swamp forest and mangrove | Great Accra region | 5.815299 | 0.052582 |
Swamp forest and mangrove | Great Accra region | 5.847517 | 0.771192 |
Swamp forest and mangrove | Great Accra region | 5.964303 | 0.941969 |
Swamp forest and mangrove | Great Accra region | 5.889987 | 0.611088 |
Swamp forest and mangrove | Great Accra region | 5.815662 | 0.739171 |
References
- Grassi, G.; Monni, S.; Federici, S.; Achard, F.; Mollicone, D. Applying the conservativeness principle to REDD to deal with the uncertainties of the estimates. Environ. Res. Lett. 2008, 29, 035005. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Allen, M.; Canadell, J.G.; Peters, G.P.; Seneviratne, S.L. Comment on the global tree restoration potential. Science 2019, 366, eaay8060. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Global Warming of 1.5 C An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. Sustainable Development, and Efforts to Eradicate Poverty. 2009. Available online: https://www.ipcc.ch/sr15/ (accessed on 30 January 2023).
- Roe, S.; Streck, C.; Obersteiner, M.; Frank, S.; Griscom, B.; Drouet, L. Contribution of the land sector to a 1.5 °C world. Nat. Clim. Change 2019, 9, 817–828. [Google Scholar] [CrossRef]
- Yang, H.; Ciais, P.; Frappart, F.; Li, X.; Brandt, M.; Fensholt, R.; Fan, L.; Saatchi, S.; Besnard, S.; Deng, Z.; et al. Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nat. Geosci. 2023, 16, 886–892. [Google Scholar] [CrossRef]
- Leskinen, P.; Cardellini, G.; González-García, S.; Hurmekoski, E.; Sathre, R.; Seppälä, J.; Verkerk, P.J. Substitution effects of wood-based products in climate change mitigation. In Science to Policy 7; European Forest Institute: Joensuu, Finland, 2018. [Google Scholar] [CrossRef]
- Araujo, E.C.G.; Sanquetta, C.R.; Dalla Corte, A.P.; Pelissari, A.L.; Orso, G.A.; Silva, T.C. Global review and state-of-the-art of biomass and carbon stock in the Amazon. J. Environ. Manag. 2023, 331, 117251. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Prince, S.D.; Li, K.; Tao, B.O.; Small, J.; Shao, X. Response of terrestrial carbon uptake to climate interannual variability in China. Glob. Change Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Duguma, L.A.; Minang, P.A.; Watson, C.; Nath, A.J.; Muthee, K.W.; van Noordwijk, M.; Mutune, J.M.; Sileshi, G.W. Agroforestry as a key intervention to achieve nationally determined contribution (NDC) targets. In Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa; Springer Nature Singapore: Singapore, 2023; pp. 641–664. [Google Scholar] [CrossRef]
- van Beek, C.L.; Meerburg, B.G.; Schils, R.L.; Verhagen, J.; Kuikman, P.J. Feeding the world’s increasing population while limiting climate change impacts: Linking N2O and CH4 emissions from agriculture to population growth. Environ. Sci. Policy 2010, 13, 89–96. [Google Scholar] [CrossRef]
- Cox, E.; Beckley, T.M.; de Graaf, M. Carbon sequestration and storage implications of three forest management regimes in the Wabanaki-Acadian Forest: A review of the evidence. Environ. Rev. 2023. [Google Scholar] [CrossRef]
- Ahmedin, A.M.; Bam, S.; Siraj, K.T.; Solomon, R.A.J. Assessment of biomass and carbon sequestration potentials of standing Pongamia pinnata in Andhra University, Visakhapatnam, India. Biosci. Discov. 2013, 4, 143–148. [Google Scholar]
- Haworth, M.; Marino, G.; Materassi, A.; Raschi, A.; Scutt, C.P.; Centritto, M. The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO2] and role in plant physiological behaviour. Sci. Total Environ. 2023, 863, 160908. [Google Scholar] [CrossRef]
- Cienciala, E.; Seufert, G.; Blujdea, V.; Grassi, G.; Exnerová, Z. Harmonized Methods for Assessing Carbon Sequestration in European Forests; European Commission Joint Research Centre Institute for Environment and Sustainability Luxembourg, Publications Office of the European Union, Luxembourg, Luxembourg; 2010; pp. 3–328. Available online: http://afoludata.jrc.ec.europa.eu/index.php/public_area/Research_projects (accessed on 21 November 2023).
- Bacar, F.F.; Lisboa, S.N.; Sitoe, A. The Mangrove Forest of Quirimbas National Park Reveals High Carbon Stock Than Previously Estimated in Southern Africa. Wetland 2023, 43, 60. [Google Scholar] [CrossRef]
- Erkan, N.; Güner, Ş.T.; Aydın, A.C. Thinning effects on stand growth, carbon stocks, and soil properties in Brutia pine plantations. Carbon Balance Manag. 2023, 18, 6. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Geochemistry 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Wachiye, S.; Merbold, L.; Vesala, T.; Rinne, J.; Räsänen, M.; Leitner, S.; Pellikka, P. Soil greenhouse gas emissions under different land-use types in savanna ecosystems of Kenya. Biogeosciences 2019, 17, 2149–2167. [Google Scholar] [CrossRef]
- Albrich, K.; Seidl, R.; Rammer, W.; Thom, D. From sink to source: Changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape. For. Int. J. For. Res. 2023, 96, 399–409. [Google Scholar] [CrossRef]
- Ruehr, S.; Keenan, T.F.; Williams, C.; Zhou, Y.; Lu, X.; Bastos, A.; Canadell, J.G.; Prentice, I.C.; Sitch, S.; Terrer, C. Evidence and attribution of the enhanced land carbon sink. Nat. Rev. Earth Environ. 2023, 4, 518–534. [Google Scholar] [CrossRef]
- Grelle, A.; Hedwall, P.O.; Strömgren, M.; Håkansson, C.; Bergh, J. From source to sink–recovery of the carbon balance in young forests. Agric. For. Met. 2023, 330, 109290. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. Land Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Blum, W.E.H. Role of soils for satisfying global demands for food, water, and bioenergy. In Environmental Resource Management and the Nexus Approach; Hettiarachchi, H., Ardakanian, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 143–177. [Google Scholar] [CrossRef]
- Smithwick, E.A. Carbon stocks and biodiversity of coastal lowland forests in South Africa: Implications for aligning sustainable development and carbon mitigation initiatives. Carbon Manag. 2019, 10, 349–360. [Google Scholar] [CrossRef]
- Ahirwal, J.; Sahoo, U.K.; Thangjam, U.; Thong, P. Oil palm agroforestry enhances crop yield and ecosystem carbon stock in northeast India: Implications for the United Nations sustainable development goals. Sustain. Prod. Consum. 2022, 30, 478–487. [Google Scholar] [CrossRef]
- Xu, J.; Renaud, F.G.; Barrett, B. Modelling land system evolution and dynamics of terrestrial carbon stocks in the Luanhe River Basin, China: A scenario analysis of trade-offs and synergies between sustainable development goals. Sustain. Sci. 2021, 17, 1323–1345. [Google Scholar] [CrossRef] [PubMed]
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.N.; Pachepsky, Y.; Van der Putten, W.H.; et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil 2016, 2, 111–128. [Google Scholar] [CrossRef]
- Janzen, H.H. Carbon cycling in earth systems-A soil science perspective. Agric. Ecosyst. Environ. 2004, 104, 399–417. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon management and climate change. Carbon Manag. 2013, 4, 439–462. [Google Scholar] [CrossRef]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Söderström, B. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems? Environ. Evid. 2015, 4, 23. [Google Scholar] [CrossRef]
- Sharma, S.; Ray, R.; Martius, C.; Murdiyarso, D. Carbon stocks and fluxes in Asia-Pacific mangroves: Current knowledge and gaps. Environ. Res. Lett. 2023, 18, 044002. [Google Scholar] [CrossRef]
- Eze, S.; Magilton, M.; Magnone, D.; Varga, S.; Gould, I.; Mercer, T.G.; Goddard, M.R. Meta-analysis of global soil data identifies robust indicators for short-term changes in soil organic carbon stock following land use change. Sci. Total Environ. 2023, 860, 160484. [Google Scholar] [CrossRef]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 10302–10307. [Google Scholar] [CrossRef] [PubMed]
- Babu, K.N.; Mandyam, S.; Jetty, S.; Dar, A.A.; Ayushi, K.; Narayanan, A.; Narayanaswamy, P. Carbon stocks of tree plantations in a Western Ghats landscape, India: Influencing factors and management implications. Environ. Monit. Assess. 2023, 195, 404. [Google Scholar] [CrossRef] [PubMed]
- Fleiss, S.; Parr, C.L.; Platts, P.J.; McClean, C.J.; Beyer, R.M.; King, H.; Lucey, J.M.; Hill, J.K. Implications of zero-deforestation palm oil for tropical grassy and dry forest biodiversity. Nat. Ecol. Evol. 2023, 7, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Busch, J.; Engelmann, J.; Cook-Patton, S.C.; Griscom, B.W.; Kroeger, T.; Possingham, H.; Shyamsundar, P. Potential for low-cost carbon dioxide removal through tropical reforestation. Nat. Clim. Change 2019, 9, 463–466. [Google Scholar] [CrossRef]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Austin, K.G.; Baker, J.S.; Sohngen, B.L.; Wade, C.M.; Daigneault, A.; Ohrel, S.B.; Bean, A. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 2020, 11, 5946. [Google Scholar] [CrossRef] [PubMed]
- Forsell, N.; Turkovska, O.; Gusti, M.; Obersteiner, M.; Elzen, M.; Havlik, P. Assessing the INDCs’ land use, land use change, and forest emission projections. Carbon Balance Manag. 2016, 11, 26. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; van Vuuren, D.P. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Karvonen, J.; Halder, P.; Kangas, J.; Leskinen, P. Indicators and tools for assessing sustainability impacts of the forest bioeconomy. For. Ecosyst. 2017, 4, 2. [Google Scholar] [CrossRef]
- Tuomasjukka, D.; Berg, S.; Lindner, M. Managing sustainability of Fennoscandian forests and their use by Law and/or agreement: For whom and which purpose? Sustainability 2013, 6, 18–49. [Google Scholar] [CrossRef]
- MCPEF. Resolution H1. General Guidelines for the Sustainable Management of Forests in Europe. In Proceedings of the Second Ministerial Conference on the Protection of Forests in Europe, Helsinki, Finland, 16–17 June 1993; pp. 1–5. [Google Scholar]
- Forest Europe. The State of Europe’s Forests 2020 Report. 2020. Available online: https://forest.eea.europa.eu/news/the-state-of-europes-forests-2020-report-published (accessed on 17 June 2023).
- Kauppi, P.E.; Stål, G.; Arnesson-Ceder, L.; Sramek, I.H.; Hoen, H.F.; Svensson, A.; Nordin, A. Managing existing forests can mitigate climate change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Rawal, K.; Subedi, P.B. Vegetation structure and carbon stock potential in the community-managed forest of the mid-western hilly region, Nepal. Asian J. For. 2022, 6, 15–21. [Google Scholar] [CrossRef]
- Diao, J.; Liu, J.; Zhu, Z.; Wei, X.; Li, M. Active Forest management accelerates carbon storage in plantation forests in Lishui, southern China. For. Ecosyst. 2022, 9, 100004. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2005, Report on Ghana; FAO: Rome, Italy, 2005; Available online: www.fao.org/docrep/008/a0050e/a0050e11.htm (accessed on 13 December 2023).
- FAOSTAT Online Database, 2007. Available online: https://www.fao.org/faostat/en/#home (accessed on 27 October 2023).
- Armah, F.A.; Odoi, J.O.; Yengoh, G.T.; Obiri, S.; Yawson, D.O.; Afrifa, E.K.A. Food security and climate change in drought-sensitive savanna zones of Ghana. Mitig. Adapt. Strateg. Glob. Change 2011, 16, 291–306. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Ghana—Population and Housing Census 2021. Summary of Final Report; Ghana Statistical Service: Accra, Ghana, 2021. [Google Scholar]
- Acheampong, J.O.; Attua, E.M.; Mensah, M.; Fosu-Mensah, B.Y.; Apambilla, R.A.; Doe, E.K. Livelihood, carbon and spatiotemporal land-use land-cover change in the Yenku forest reserve of Ghana, 2000–2020. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102938. [Google Scholar] [CrossRef]
- Mongabay. Deforestation Statistics for Ghana, 2022. Available online: https://rainforests.mongabay.com/deforestation/archive/Ghana.htm (accessed on 7 January 2023).
- Environmental Protection Agency (EPA). National Action Programme to Combat Drought and Desertification; Ghanian Environmental Protection Agency: Accra, Ghana, 2000; Available online: https://knowledge.unccd.int/sites/default/files/naps/ghana-eng2002.pdf (accessed on 7 January 2023).
- Winkler, K.; Yang, H.; Ganzenmüller, R.; Fuchs, R.; Ceccherini, G.; Duveiller, G.; Grassi, G.; Pongratz, J.; Bastos, A.; Shvidenko, A.; et al. Changes in land use and management led to a decline in Eastern Europe’s terrestrial carbon sink. Commun. Earth Environ. 2023, 4, 237. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.B.; Zhang, W.S.; Zheng, L.Y.; Zhang, Y.Z.; Lu, C.; Liu, L.Y. Drivers of mountain soil organic carbon stock dynamics: A review. J. Soils Sediments 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Nyarko, I.; Nwaogu, C.; Miroslav, H. Forest Bioeconomy in Ghana: Understanding the Potential Indicators for Its Sustainable Development. Forests 2023, 14, 804. [Google Scholar] [CrossRef]
- Frimpong, Y.; Oluwoye, J.; Crawford, L. Causes of delay and cost overruns in construction of groundwater projects in a developing country; Ghana as a case study. Int. J. Proj. Manag. 2003, 21, 321–326. [Google Scholar] [CrossRef]
- Donkor, A.K.; Bonzongo, J.C.; Nartey, V.K.; Adotey, D.K. Mercury in different environmental compartments of the Pra River Basin, Ghana. Sci. Total Environ. 2006, 368, 164–176. [Google Scholar] [CrossRef]
- Awuah, I.B. Report from the Ministry of Employment and Labour Relations of Ghana. In Parliamentarian Review and Address on 10 March 2022; the Ministry of Employment and Labour Relations of Ghana: Accra, Ghana, 2022; Available online: https://www.pulse.com.gh/news/local/ghanas-unemployment-rate-standsat-13-labourminister/x3qykqy# (accessed on 18 May 2023).
- Sasu, D.D. Research Expert Covering Primarily Society and Agricultural Topics for Africa, Particularly Ghana and Nigeria. 2022. Available online: https://www.statista.com/statistics/1245342/number-of-people-living-in-extreme-poverty-in-ghana-by-area (accessed on 15 June 2023).
- Food and Agriculture Organization of the United Nations. Global Forest Resource Assessment 2020—Key Findings; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Inputs/Fertilizers by Nutrient, and FAOSTAT Inputs Land Use. 2020. Available online: http://www.fao.org/faostat/en/?#data (accessed on 2 April 2021).
- Food and Agriculture Organization of the United Nations. Introduction and Status of the Forestry Sector in Ghana. 2022. Available online: http://www.fao.org/3/ab567e/AB567E02.htm (accessed on 2 December 2023).
- Food and Agriculture Organization of the United Nations. Global Forest Resources Assessment. 2021. Available online: https://fra-data.fao.org (accessed on 3 December 2022).
- World Bank. Database on Literacy Rate. 2020. Available online: https://data.worldbank.org/indicator/SE.ADT.LITR.ZS (accessed on 4 January 2023).
- World Bank. World Development Indicators. 2020. Available online: http://data.worldbank.org/datacatalog (accessed on 2 January 2021).
- World Income Inequalities Databases (WID). Available online: https://wid.world/ (accessed on 20 February 2021).
- Forest Resources Assessment (FRA). Report and Database on World Forest Resources. 2020. Available online: https://www.fao.org/3/CA8753EN/CA8753EN.pdf (accessed on 10 February 2023).
- United Nations Office for the Coordination of Humanitarian Affairs (OCHA). Database and Annual Report 2020. Available online: https://www.unocha.org/ (accessed on 7 January 2021).
- National Aeronautics and Space Administration (NASA). Available online: https://www.neo.sci.gsfc.nasa.gov (accessed on 7 January 2021).
- Owusu, S.; Yigini, Y.; Olmedo, G.F.; Omuto, C.T. Spatial prediction of soil organic carbon stocks in Ghana using legacy data. Geoderma 2020, 360, 114008. [Google Scholar] [CrossRef]
- Tan, K.H. Soil Sampling, Preparation, and Analysis; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Food and Agriculture Organization. FAOSTAT Database 2018. Available online: http://www.fao.org/faostat/en/#data (accessed on 15 February 2022).
- Hengl, T.; Kempen, B.; Heuvelink, G. GSIF: Global Soil Information Facilities. R Package Version 0.5-3. 2016. Available online: https://CRAN.R-project.org/package=GSIF (accessed on 25 December 2023).
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Scientific Research Publishing (SCIRP): Irvine, CA, USA, 1982; pp. 539–579. [Google Scholar]
- Li, Y.; Wang, X.; Chen, Y.; Gong, X.; Yao, C.; Cao, W.; Lian, J. Application of predictor variables to support regression kriging for the spatial distribution of soil organic carbon stocks in native temperate grasslands. J. Soils Sediment 2023, 23, 700–717. [Google Scholar] [CrossRef]
- Shoumik, B.A.A.; Khan, M.Z. Spatio-temporal dynamics of soil organic carbon and total nitrogen: Evidenced from 2000 to 2020 in a mixed ecosystem. Environ. Earth Sci. 2023, 82, 84. [Google Scholar] [CrossRef]
- Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Sharp, R.; Nelson, E.; Chaplin-Kramer, R. InVEST 2.6.0 User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2013. [Google Scholar]
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2009. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Ter Braak, C.J.F.; Smilauer, P. Canoco 5, Windows Release (5.12). Software for Multivariate Data Exploration, Testing, and Summarization; Biometris, Plant Research International: Wageningen, The Netherlands, 2012. [Google Scholar]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical 20 deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Zoungrana, B.J.B.; Conrad, C.; Amekudzi, L.K.; Thiel, M.; Da, E.D.; Forkuor, G.; Löw, F. Multi-temporal landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa. Remote Sens. 2015, 7, 12076–12102. [Google Scholar] [CrossRef]
- Kleemann, J.; Baysal, G.; Bulley, H.N.; Fürst, C. Assessing driving forces of land use and land cover change by a mixed-method approach in north-eastern Ghana, West Africa. J. Environ. Manag. 2017, 196, 411–442. [Google Scholar] [CrossRef]
- Koranteng, A.; Zawila-Niedzwiecki, T.; Adu-Poku, I. Remote sensing study of land use/cover change in West Africa. J. Environ. Prot. Sustain. Dev. 2016, 2, 17–31. [Google Scholar]
- Geremew, B.; Tadesse, T.; Bedadi, B.; Gollany, H.T.; Tesfaye, K.; Aschalew, A. Impact of land use/cover change and slope gradient on soil organic carbon stock in Anjeni watershed, Northwest Ethiopia. Environ. Monit. Assess. 2023, 195, 971. [Google Scholar] [CrossRef]
- Nwaogu, C. Landscape Transitions in Space and Time in Diverse Land Use: The Geoinformatics and Statistical Approach. Publikace Neprosla Redkcni Jazykovou Upravou; University of Palacky Press: Olomouc, Czech Republic, 2020. [Google Scholar]
- Geist, H.; McConnell, W.; Lambin, E.F.; Moran, E.; Alves, D.; Rudel, T. Causes and trajectories of land-use/cover change. In Land-Use and Land-Cover Change; Springer: Berlin/Heidelberg, Germany, 2006; pp. 41–70. [Google Scholar]
- Zekeng, J.C.; van Der Sande, M.T.; Fobane, J.L.; Mphinyane, W.N.; Sebego, R.; Ebanga, P.A.; Mbolo, M.M. Environmental, structural, and taxonomic diversity factors drive aboveground carbon stocks in semi-deciduous tropical rainforest strata in Cameroon. Afr. J. Ecol. 2023, 61, 163–175. [Google Scholar] [CrossRef]
- Adu-Poku, A.; Obeng, G.Y.; Mensah, E.; Kwaku, M.; Acheampong, E.N.; Duah-Gyamfi, A.; Adu-Bredu, S. Assessment of aboveground, belowground, and total biomass carbon storage potential of Bambusa vulgaris in a tropical moist forest in Ghana, West Africa. Renew. Energy Environ. Sustain. 2023, 8, 3. [Google Scholar] [CrossRef]
- Mokake, S.E.; Weyi, B.K.; Anyinkeng, N.; Ngoh, L.M.; Berkeley, O.E.; Andrew, E.E. Stand Diversity and Carbon Stock of a Tropical Forest in the Deng Deng National Park, Cameroon. Open J. Ecol. 2023, 13, 461–496. [Google Scholar] [CrossRef]
- Bruinsma, J. World Agriculture: Towards 2015/2030, an FAO Perspective; Earthscan Publications: London, UK, 2003. [Google Scholar]
- Anderson-Teixeira, K.J.; Masters, M.D.; Black, C.K.; Zeri, M.; Hussain, M.Z.; Bernacchi, C.J.; DeLucia, E.H. Altered belowground carbon cycling following land-use change to perennial bioenergy crops. Ecosystems 2013, 16, 508–520. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Wang, M.M.; McGarvey, J.C.; Herrmann, V.; Tepley, A.J.; Bond-Lamberty, B.; LeBauer, D.S. For C: A global database of forest carbon stocks and fluxes. Ecology 2018, 99, 1507. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Morgan, R.B.; Bond-Lamberty, B.; Cook-Patton, S.C.; Ferson, A.E.; Muller-Landau, H.C.; Wang, M.M. Carbon cycling in mature and regrowth forests globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar] [CrossRef]
- Bessah, E. Assessment of Soil Organic Carbon Stocks under Various Land Use/Land Cover Types in the Kintampo North Municipal, Ghana. Master’s Thesis, Department of Geography, Federal University of Technology, Gaga, Nigeria, 2014. [Google Scholar]
- Chheng, K.; Sasaki, N.; Mizoue, N.; Khorn, S.; Kao, D.; Lowe, A. Assessment of carbon stocks of semi-evergreen forests in Cambodia. Glob. Ecol. Conserv. 2016, 5, 34–47. [Google Scholar] [CrossRef]
- Pelletier, J.; Paquette, A.; Mbindo, K.; Zimba, N.; Siampale, A.; Chendauka, B.; Roberts, J.W. Carbon sink despite large deforestation in African tropical dry forests (miombo woodlands). Environ. Res. Lett. 2018, 13, 094017. [Google Scholar] [CrossRef]
- Cui, X.; Wei, X.; Liu, W.; Zhang, F.; Li, Z. Spatial and temporal analysis of carbon sources and sinks through land use/cover changes in the Beijing-Tianjin-Hebei urban agglomeration region. Phys. Chem. Earth Parts A/B/C 2019, 110, 61–70. [Google Scholar] [CrossRef]
- Khan, I.A.; Khan, M.R.; Baig, M.H.A.; Hussain, Z.; Hameed, N.; Khan, J.A. Assessment of forest cover and carbon stock changes in sub-tropical pine forest of Azad Jammu & Kashmir (AJK), Pakistan using multi-temporal Landsat satellite data and field inventory. PLoS ONE 2020, 15, e0226341. [Google Scholar] [CrossRef]
- Rahaman, Z.A.; Kafy, A.A.; Saha, M.; Rahim, A.A.; Almulhim, A.I.; Rahaman, S.N.; Rakib, A. Assessing the impacts of vegetation cover loss on surface temperature, urban heat island and carbon emission in Penang city, Malaysia. Build. Environ. 2022, 222, 109335. [Google Scholar] [CrossRef]
- Teimoory, N.; Sasaki, N.; Abe, I. Estimation of baseline emissions, forest reference emission level, and carbon removals due to forest area changes in Afghanistan between 1993 and 2030. Clean. Prod. Lett. 2022, 2, 100003. [Google Scholar] [CrossRef]
- Zhang, X.; Brandt, M.; Tong, X.; Ciais, P.; Yue, Y.; Xiao, X.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Tong, X.; Lei, Z.; Gao, C.; Wang, J. Modeling changes in 2000–2030 carbon stock caused by land use change. J. Clean. Prod. 2020, 252, 119659. [Google Scholar] [CrossRef]
- Bauhus, J.; Kouki, J.; Paillet, Y.; Asbeck, T.; Marchetti, M. How Does the Forest-Based Bioeconomy Impact Forest Biodiversity. Towards a Sustainable European Forest-Based Bioeconomy; European Forest Institute: Joensuu, Finland, 2017; p. 67. Available online: http://www.efi.int/portal/virtual_library/publications/what_science_can_tell_us/wsctu8/ (accessed on 1 December 2023).
- Chandrasekaran, A.; Subbiah, S.; Bartocci, P.; Yang, H.; Fantozzi, F. Carbonization using an Improved Natural Draft Retort Reactor in India: Comparison between the performance of two woody biomasses, Prosopis juliflora and Casuarina equisetifolia. Fuel 2012, 285, 119095. [Google Scholar] [CrossRef]
- Maximo, Y.I.; Hassegawa, M.; Verkerk, M.; Missio, A.L. Forest bioeconomy in Brazil: Potential innovative products from the forest sector. Land 2022, 11, 1297. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N.; Wang, Q.; Gao, Y.; Wen, D.; Li, S.; Niu, S.; Ge, J. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef]
- Raihan, A.; Begum, R.A.; Mohd Said, M.N.; Pereira, J.J. Assessment of Carbon Stock in Forest Biomass and Emission Reduction Potential in Malaysia. Forests 2021, 12, 1294. [Google Scholar] [CrossRef]
- Omar, H.; Chuah, N.M.J.; Parlan, I.; Samah, A.K.A.; Musa, S. Assessing carbon pools in dipterocarp forests of Peninsular Malaysia. J. Trop. Resour. Sustain. Sci. 2015, 3, 214–221. [Google Scholar] [CrossRef]
- Matthew, N.K.; Shuib, A.; Ismail, M.; Mem, E.; Ramachandran., S.; Afandi, S.H.M.; Samdin, Z. Carbon stock and sequestration valuation in a mixed dipterocarp forest of Malaysia. Sains Malays. 2018, 47, 447–455. [Google Scholar]
Indicator/Measure | Sources |
---|---|
Administrative regions |
|
Forest-vegetation zones |
|
Sampling points |
|
Land use-cover and changes |
|
Forest areas and loss |
|
Forest tree cover and loss |
|
Forest growing stocks |
|
Contributions of forest to GDP |
|
Country’s GDP and poverty rate |
|
Uses of forests: Farming, mining, bioenergy, timber, NWFPs, etc. |
|
Biophysical: climate, soil and biomass carbon, and carbon emissions |
|
Population and settlement |
|
Forest-based employment, migration, civil/communal conflicts |
|
Drivers of deforestation, socio-cultural and political views, and stands on deforestation |
|
Common forest tree species |
|
Pop Ulation | AGB Cstocks | BG C-Stocks | For CoGDP | C-Emision | For GroStok | For Area | For Loss | Tre CovLoss | Pov Rate | Rainfall | Temp | For Biofuel | ForNon Biofuel | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | 1 | |||||||||||||
AGB C-stocks | −0.96 * | 1 | ||||||||||||
BG C-stocks | −0.81 * | 0.87 * | 1 | |||||||||||
ForCoGDP | −0.76 * | 0.69 * | 0.17 | 1 | ||||||||||
C-emission | 0.63 * | −0.86 ** | −0.61 | −0.73 * | 1 | |||||||||
ForGroStok | −0.81 * | 0.95 * | 0.95 * | 0.75 * | −0.41 | 1 | ||||||||
ForArea | −0.94 ** | 0.89 | 0.87 | 0.61 * | −0.84 ** | 0.91 * | 1 | |||||||
ForLoss | 0.78 ** | −0.80 * | −0.76 * | −0.53 * | 0.96 * | −0.77 * | −0.60 * | 1 | ||||||
TreCovLos | 0.89 ** | −0.91 | −0.84 | −0.66 * | 0.75 | −0.94 | −0.84 | 0.83 * | 1 | |||||
PovRate | 0.63 * | −0.54 | −0.47 | −0.33 | 0.83 * | −0.62 | −0.70 * | 0.67 * | −0.55 | 1 | ||||
Rainfall | 0 | 0.52 | 0.28 | 0.14 | 0 | 0.78 | 0.67 | −0.02 | 0 | 0 | 1 | |||
Temp | 0 | 0.45 | 0.32 | 0.02 | 0.01 | 0.4 | 0.51 | 0.16 | −0.03 | 0 | 0.43 | 1 | ||
ForBiofuel | 0.89 ** | −0.82 * | −0.87 * | −0.71 * | 0.92 ** | −0.86 * | −0.78 * | 0.95 ** | 0.79 * | 0.65 * | −0.07 * | −0.15 * | 1 | |
ForNonBiofuel | 0.68 * | −0.19 | −0.89 | −0.65 | −0.08 | −0.75 * | 0.59 | 0.06 | −0.49 | 0.58 | −0.31 | −0.24 | 0.57 | 1 |
Indicators | Very Significant | Significant | No Idea | Insignificant | Very Insignificant |
---|---|---|---|---|---|
Soil characteristic | |||||
Soil health | 11 (55%) | 8 (40%) | 1 (5%) | 0 | 0 |
Soil biota | 9 (45%) | 9 (45%) | 2 (10%) | 0 | 0 |
Erosion risk | 0 | 1 (5%) | 4 (20%) | 7 (35%) | 8 (40%) |
Storage, filtering and transformation | 10 (50%) | 7 (35%) | 3 (15%) | 0 | 0 |
CO2 sequestration | 6 (30%) | 5 (25%) | 6 (30%) | 2 (10%) | 1 (5%) |
Water holding capacity | 8 (40%) | 6 (30%) | 4 (20%) | 1 (5%) | 1 (5%) |
SDGs | |||||
SDG 1 (No Poverty) | 9 (45%) | 5 (25%) | 4 (20%) | 1 (5%) | 1 (5%) |
SDG 2 (Zero Hunger) | 12 (60%) | 8 (40%) | 0 | 0 | 0 |
SDG 3 (Good Health and Well Being) | 11 (55%) | 8 (40%) | 1 (5%) | 0 | 0 |
SDG 4 (Quality Education) | 0 | 0 | 0 | 0 | 20 (100%) |
SDG 5 (Gender Equality) | 0 | 0 | 5 (25%) | 7 (35%) | 8 (40%) |
SDG 6 (Clean Water and Sanitation) | 6 (30%) | 7 (35%) | 5 (25%) | 2 (10%) | 0 |
SDG 7 (Affordable and Clean Energy) | 5 (25%) | 9 (45%) | 3 (15%) | 2 (10%) | 1 (5%) |
SDG 8 (Decent Work and Economic Growth) | 4 (20%) | 5 (25%) | 7 (35%) | 3 (15%) | 1 (5%) |
SDG 9 (Industry Innovation and Infrastructure) | 5 (25%) | 5 (25%) | 6 (30%) | 2 (10%) | 2 (10%) |
SDG 10 (Reduced inequality) | 0 | 0 | 0 | 0 | 20 (100%) |
SDG 11 (Sustainable Cities and Communities) | 5 (25%) | 7 (35%) | 5 (25%) | 2 (10%) | 1 (5%) |
SDG 12 (Responsible consumption and production) | 6 (30%) | 11 (55%) | 2 (10%) | 1 (5%) | 0 |
SDG 13 (Climate Action) | 12 (60%) | 8 (40%) | 0 | 0 | 0 |
SDG 14 (Life Below Water) | 0 | 0 | 5 (25%) | 6 | 9 |
SDG 15 (Life on Land) | 17 (85%) | 3 (15%) | 0 | 0 | 0 |
SDG 16 (Peace, justice and strong institutions) | 0 | 0 | 0 | 0 | 20 (100%) |
SDG 17 (Partnerships for the goals) | 0 | 0 | 0 | 0 | 20 (100%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyarko, I.; Nwaogu, C.; Diagi, B.E.; Hájek, M. The Dynamics and Potential of Carbon Stocks as an Indicator of Sustainable Development for Forest Bioeconomy in Ghana. Forests 2024, 15, 256. https://doi.org/10.3390/f15020256
Nyarko I, Nwaogu C, Diagi BE, Hájek M. The Dynamics and Potential of Carbon Stocks as an Indicator of Sustainable Development for Forest Bioeconomy in Ghana. Forests. 2024; 15(2):256. https://doi.org/10.3390/f15020256
Chicago/Turabian StyleNyarko, Isaac, Chukwudi Nwaogu, Bridget E. Diagi, and Miroslav Hájek. 2024. "The Dynamics and Potential of Carbon Stocks as an Indicator of Sustainable Development for Forest Bioeconomy in Ghana" Forests 15, no. 2: 256. https://doi.org/10.3390/f15020256
APA StyleNyarko, I., Nwaogu, C., Diagi, B. E., & Hájek, M. (2024). The Dynamics and Potential of Carbon Stocks as an Indicator of Sustainable Development for Forest Bioeconomy in Ghana. Forests, 15(2), 256. https://doi.org/10.3390/f15020256