Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Collection and Source
2.3. Classification of Land Use Types
2.4. Markov Model
2.5. Analysis of the Correlation between Environmental Factors and Land Use Types and Selection of Research Scale
2.6. Adaptive Atlas Based on Multi-Criteria Evaluation
2.7. Cellular Automata Model
2.8. CA-Markov Model Computation
2.9. Kappa Coefficient for Model Validation
2.10. Extraction of Key Areas in Land Use Evolution
3. Results
3.1. Environmental Factor Characteristics
3.2. Distribution and Change Characteristics of Subcategories of Forest Land
Divergence and Factor Detection
3.3. Establishing the Research Scale for Correlation Analysis
3.4. Analysis of Environmental Factor Correlations and MCN Atlas Production
3.5. Prediction of Land Use Patterns in the Ganjiang River Basin
3.6. Analysis of Forest Land Transition Characteristics
4. Discussion
4.1. Analysis of Land Use Change Characteristics from 2000 to 2020
4.2. Land Use Transition Characteristics and Key Areas of Forest Land Subcategory Transitions in 2040
4.3. Ganjiang River Basin Forest land Conservation Strategy
4.4. Uncertainty and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Subedi, P.; Subedi, K.; Thapa, B. Application of a Hybrid Cellular Automaton—Markov (CA-Markov) Model in Land-Use Change Prediction: A Case Study of Saddle Creek Drainage Basin, Florida. Appl. Ecol. Environ. Sci. 2013, 1, 126–132. [Google Scholar] [CrossRef]
- Ali, H. Land Use and Land Cover Change, Drivers and Its Impact: A Comparative Study from Kuhar Michael and Lenche Dima of Blue Nile and Awash Basins of Ethiopia. Doctoral Dissertation, Cornell University, Ithaca, NY, USA, 2009. [Google Scholar]
- Guo, J.; Yu, Z.; Ma, Z.; Xu, D.; Cao, S. What Factors Have Driven Urbanization in China? Environ. Dev. Sustain. 2022, 24, 6508–6526. [Google Scholar] [CrossRef]
- Singh, S.K.; Mustak, S.; Srivastava, P.K.; Szabó, S.; Islam, T. Predicting Spatial and Decadal LULC Changes Through Cellular Automata Markov Chain Models Using Earth Observation Datasets and Geo-Information. Environ. Process. 2015, 2, 61–78. [Google Scholar] [CrossRef]
- China | Population: Urbanization Rate | CEIC. Available online: https://www.ceicdata.com/en/china/population-urbanization-rate (accessed on 19 January 2024).
- Mokarram, M.; Pham, T.M. CA-Markov Model Application to Predict Crop Yield Using Remote Sensing Indices. Ecol. Indic. 2022, 139, 108952. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the Effects of Ecological Engineering on Carbon Storage by Linking the CA-Markov and InVEST Models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Chen, R. A Land Use Change Model: Integrating Landscape Pattern Indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Dezhkam, S.; Jabbarian Amiri, B.; Darvishsefat, A.A.; Sakieh, Y. Performance Evaluation of Land Change Simulation Models Using Landscape Metrics. Geocarto Int. 2017, 32, 655–677. [Google Scholar] [CrossRef]
- Omar, N.Q.; Sanusi, S.A.M.; Hussin, W.M.W.; Samat, N.; Mohammed, K.S. Markov-CA Model Using Analytical Hierarchy Process and Multiregression Technique. IOP Conf. Ser. Earth Environ. Sci. 2014, 20, 012008. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the Spatiotemporal Evolution of Land Use Landscape Pattern in a County Area Based on CA-Markov Model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-Scenario Simulation of Urban Land Change in Shanghai by Random Forest and CA-Markov Model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ho, Y.M.; Pradhan, B.; Salleh, A.H.; Alazaiza, M.Y.D. Spatio-Temporal Simulation of Future Urban Growth Trends Using an Integrated CA-Markov Model. Arab. J. Geosci. 2021, 14, 131. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring Land Use and Land Cover Changes in the Mountainous Cities of Oman Using GIS and CA-Markov Modelling Techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, B.; Wang, M.; Liu, B.; Yang, X. Analysis of the Future Land Cover Change in Beijing Using CA–Markov Chain Model. Environ. Earth Sci. 2020, 79, 60. [Google Scholar] [CrossRef]
- Hu, S.; Chen, L.; Li, L.; Zhang, T.; Yuan, L.; Cheng, L.; Wang, J.; Wen, M. Simulation of Land Use Change and Ecosystem Service Value Dynamics under Ecological Constraints in Anhui Province, China. Int. J. Environ. Res. Public Health 2020, 17, 4228. [Google Scholar] [CrossRef]
- Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Improving the Predictive Performance of CLUE-S by Extending Demand to Land Transitions: The Trans-CLUE-S Model. Ecol. Model. 2023, 478, 110307. [Google Scholar] [CrossRef]
- Wei, Z.; Liu, Y. Construction of Super-Resolution Model of Remote Sensing Image Based on Deep Convolutional Neural Network. Comput. Commun. 2021, 178, 191–200. [Google Scholar] [CrossRef]
- Zeshan, M.T.; Mustafa, M.R.U.; Baig, M.F. Monitoring Land Use Changes and Their Future Prospects Using GIS and ANN-CA for Perak River Basin, Malaysia. Water 2021, 13, 2286. [Google Scholar] [CrossRef]
- Legdou, A.; Amine, A.; Lahssini, S.; Chafik, H.; Berrada, M. Predicting Forest Cover Change in Middle Atlas Morocco: A Logistic–CA–Markov Approach. In Proceedings of the Computer Vision and Robotics; Bansal, J.C., Engelbrecht, A., Shukla, P.K., Eds.; Springer: Singapore, 2022; pp. 229–239. [Google Scholar]
- Guan, D.; Zhao, Z.; Tan, J. Dynamic Simulation of Land Use Change Based on Logistic-CA-Markov and WLC-CA-Markov Models: A Case Study in Three Gorges Reservoir Area of Chongqing, China. Environ. Sci. Pollut. Res. 2019, 26, 20669–20688. [Google Scholar] [CrossRef]
- Al-Hameedi, W.M.M.; Chen, J.; Faichia, C.; Nath, B.; Al-Shaibah, B.; Al-Aizari, A. Geospatial Analysis of Land Use/Cover Change and Land Surface Temperature for Landscape Risk Pattern Change Evaluation of Baghdad City, Iraq, Using CA–Markov and ANN Models. Sustainability 2022, 14, 8568. [Google Scholar] [CrossRef]
- Daba, M.H.; You, S. Quantitatively Assessing the Future Land-Use/Land-Cover Changes and Their Driving Factors in the Upper Stream of the Awash River Based on the CA–Markov Model and Their Implications for Water Resources Management. Sustainability 2022, 14, 1538. [Google Scholar] [CrossRef]
- He, X.; Miao, Z.; Wang, Y.; Yang, L.; Zhang, Z. Response of Soil Erosion to Climate Change and Vegetation Restoration in the Ganjiang River Basin, China. Ecol. Indic. 2024, 158, 111429. [Google Scholar] [CrossRef]
- Meng-Xia, Z.; Bu-Da, S.U.; Yan-Jun, W.; An-Qian, W.; Tong, J. Impacts of Climate Change on River Runoff at the Ganjiang and Guanting River Basins in the Eastern Monsoon Region. Adv. Clim. Chang. Res. 2020, 16, 679. [Google Scholar]
- Zhang, Y.; Tang, C.; Ye, A.; Zheng, T.; Nie, X.; Tu, A.; Zhu, H.; Zhang, S. Impacts of Climate and Land-Use Change on Blue and Green Water: A Case Study of the Upper Ganjiang River Basin, China. Water 2020, 12, 2661. [Google Scholar] [CrossRef]
- Huang, F.; Tao, S.; Li, D.; Lian, Z.; Catani, F.; Huang, J.; Li, K.; Zhang, C. Landslide Susceptibility Prediction Considering Neighborhood Characteristics of Landslide Spatial Datasets and Hydrological Slope Units Using Remote Sensing and GIS Technologies. Remote Sens. 2022, 14, 4436. [Google Scholar] [CrossRef]
- Aalto, J.; Pirinen, P.; Heikkinen, J.; Venäläinen, A. Spatial Interpolation of Monthly Climate Data for Finland: Comparing the Performance of Kriging and Generalized Additive Models. Theor. Appl. Climatol. 2013, 112, 99–111. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Harun, S.B. Spatial Interpolation of Climatic Variables in a Predominantly Arid Region with Complex Topography. Environ. Syst. Decis. 2014, 34, 555–563. [Google Scholar] [CrossRef]
- Amir Siddique, M.; Wang, Y.; Xu, N.; Ullah, N.; Zeng, P. The Spatiotemporal Implications of Urbanization for Urban Heat Islands in Beijing: A Predictive Approach Based on CA–Markov Modeling (2004–2050). Remote Sens. 2021, 13, 4697. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, K.; Cao, L.; Guan, X.; Zhang, H. Driving Forces and Prediction of Urban Land Use Change Based on the Geodetector and CA-Markov Model: A Case Study of Zhengzhou, China. Int. J. Digit. Earth 2022, 15, 2246–2267. [Google Scholar] [CrossRef]
- Zimmermann, P.; Tasser, E.; Leitinger, G.; Tappeiner, U. Effects of Land-Use and Land-Cover Pattern on Landscape-Scale Biodiversity in the European Alps. Agric. Ecosyst. Environ. 2010, 139, 13–22. [Google Scholar] [CrossRef]
- Gove, N.E.; Edwards, R.T.; Conquest, L.L. Effects of Scale on Land Use and Water Quality Relationships: A Longitudinal Basin-Wide Perspective1. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1721–1734. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, H.; Guo, S.; Fu, K.; Liao, L.; Xu, Y.; Cheng, S. Groundwater Pollution Source Apportionment Using Principal Component Analysis in a Multiple Land-Use Area in Southwestern China. Environ. Sci. Pollut. Res. 2020, 27, 9000–9011. [Google Scholar] [CrossRef]
- Jardim, A.M.d.R.F.; Júnior, G.D.N.A.; da Silva, M.V.; dos Santos, A.; da Silva, J.L.B.; Pandorfi, H.; de Oliveira-Júnior, J.F.; Teixeira, A.H.d.C.; Teodoro, P.E.; de Lima, J.L.M.P.; et al. Using Remote Sensing to Quantify the Joint Effects of Climate and Land Use/Land Cover Changes on the Caatinga Biome of Northeast Brazilian. Remote Sens. 2022, 14, 1911. [Google Scholar] [CrossRef]
- Peng, X.; Wu, W.; Zheng, Y.; Sun, J.; Hu, T.; Wang, P. Correlation Analysis of Land Surface Temperature and Topographic Elements in Hangzhou, China. Sci. Rep. 2020, 10, 10451. [Google Scholar] [CrossRef]
- Hu, S.; Fan, Y.; Zhang, T. Assessing the Effect of Land Use Change on Surface Runoff in a Rapidly Urbanized City: A Case Study of the Central Area of Beijing. Land 2020, 9, 17. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H. An Integrated Approach of Logistic-MCE-CA-Markov to Predict the Land Use Structure and Their Micro-Spatial Characteristics Analysis in Wuhan Metropolitan Area, Central China. Environ. Sci. Pollut. Res. 2022, 29, 30030–30053. [Google Scholar] [CrossRef]
- Hao, L.; He, S.; Zhou, J.; Zhao, Q.; Lu, X. Prediction of the Landscape Pattern of the Yancheng Coastal Wetland, China, Based on XGBoost and the MCE-CA-Markov Model. Ecol. Indic. 2022, 145, 109735. [Google Scholar] [CrossRef]
- Wang, C.; Huang, S.; Wang, J. Spatio-Temporal Dynamic Evolution and Simulation of Dike-Pond Landscape and Ecosystem Service Value Based on MCE-CA-Markov: A Case Study of Shunde, Foshan. Forests 2022, 13, 1241. [Google Scholar] [CrossRef]
- Yi, S.; Zhou, Y.; Li, Q. A New Perspective for Urban Development Boundary Delineation Based on the MCR Model and CA-Markov Model. Land 2022, 11, 401. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Jiang, W.; Qiu, H. Identification and Scenario Prediction of Degree of Wetland Damage in Guangxi Based on the CA-Markov Model. Ecol. Indic. 2021, 127, 107764. [Google Scholar] [CrossRef]
- Koko, A.F.; Yue, W.; Abubakar, G.A.; Hamed, R.; Alabsi, A.A.N. Monitoring and Predicting Spatio-Temporal Land Use/Land Cover Changes in Zaria City, Nigeria, through an Integrated Cellular Automata and Markov Chain Model (CA-Markov). Sustainability 2020, 12, 10452. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, Y.; Li, Z.; Li, P.; Xu, G. Influence of Land Use and Land Cover Patterns on Seasonal Water Quality at Multi-Spatial Scales. CATENA 2017, 151, 182–190. [Google Scholar] [CrossRef]
- Faichia, C.; Tong, Z.; Zhang, J.; Liu, X.; Kazuva, E.; Ullah, K.; Al-Shaibah, B. Using RS Data-Based CA–Markov Model for Dynamic Simulation of Historical and Future LUCC in Vientiane, Laos. Sustainability 2020, 12, 8410. [Google Scholar] [CrossRef]
- Abijith, D.; Saravanan, S. Assessment of Land Use and Land Cover Change Detection and Prediction Using Remote Sensing and CA Markov in the Northern Coastal Districts of Tamil Nadu, India. Environ. Sci. Pollut. Res. 2022, 29, 86055–86067. [Google Scholar] [CrossRef]
- Tadese, S.; Soromessa, T.; Bekele, T. Analysis of the Current and Future Prediction of Land Use/Land Cover Change Using Remote Sensing and the CA-Markov Model in Majang Forest Biosphere Reserves of Gambella, Southwestern Ethiopia. Sci. World J. 2021, 2021, e6685045. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xie, F.; Song, Z.; Zhu, S. Evolution and Multi-Scenario Prediction of Land Use and Carbon Storage in Jiangxi Province. Forests 2023, 14, 1933. [Google Scholar] [CrossRef]
- Hua, F.; Bruijnzeel, L.A.; Meli, P.; Martin, P.A.; Zhang, J.; Nakagawa, S.; Miao, X.; Wang, W.; McEvoy, C.; Peña-Arancibia, J.L.; et al. The Biodiversity and Ecosystem Service Contributions and Trade-Offs of Forest Restoration Approaches. Science 2022, 376, 839–844. [Google Scholar] [CrossRef]
- Ahammad, R.; Stacey, N.; Sunderland, T.C.H. Use and Perceived Importance of Forest Ecosystem Services in Rural Livelihoods of Chittagong Hill Tracts, Bangladesh. Ecosyst. Serv. 2019, 35, 87–98. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, M.; Liu, T. Changes in and Prospects for Cultivated Land Use since the Reform and Opening up in China. Land Use Policy 2020, 97, 104781. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, H.; Ding, Y.; Cao, Q.; Zhang, Y.; Huang, K. Carbon Storage Dynamics of Subtropical Forests Estimated with Multi-Period Forest Inventories at a Regional Scale: The Case of Jiangxi Forests. J. For. Res. 2020, 31, 1247–1254. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated Assessment of Land-Use/Land-Cover Dynamics on Carbon Storage Services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Sha, Z.; Bai, Y.; Li, R.; Lan, H.; Zhang, X.; Li, J.; Liu, X.; Chang, S.; Xie, Y. The Global Carbon Sink Potential of Terrestrial Vegetation Can Be Increased Substantially by Optimal Land Management. Commun. Earth Environ. 2022, 3, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, H.; Shi, J.; Lv, T.; Zhou, C.; Liu, W. Assessing Changes in Ecosystem Service Values in Response to Land Cover Dynamics in Jiangxi Province, China. Int. J. Environ. Res. Public Health 2020, 17, 3018. [Google Scholar] [CrossRef] [PubMed]
- Chazdon, R.L.; Falk, D.A.; Banin, L.F.; Wagner, M.; Wilson, S.J.; Grabowski, R.C.; Suding, K.N. The Intervention Continuum in Restoration Ecology: Rethinking the Active–Passive Dichotomy. Restor. Ecol. 2021, e13535. [Google Scholar] [CrossRef]
- Kanowski, J.; Catterall, C.P. Carbon Stocks in Above-Ground Biomass of Monoculture Plantations, Mixed Species Plantations and Environmental Restoration Plantings in North-East Australia. Ecol. Manag. Restor. 2010, 11, 119–126. [Google Scholar] [CrossRef]
- Chazdon, R.L.; Uriarte, M. Natural Regeneration in the Context of Large-Scale Forest and Landscape Restoration in the Tropics. Biotropica 2016, 48, 709–715. [Google Scholar] [CrossRef]
- Naime, J.; Mora, F.; Sánchez-Martínez, M.; Arreola, F.; Balvanera, P. Economic Valuation of Ecosystem Services from Secondary Tropical Forests: Trade-Offs and Implications for Policy Making. For. Ecol. Manag. 2020, 473, 118294. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Amazonas, N.T.; Chazdon, R.L.; van Melis, J.; Rodrigues, R.R.; Silva, C.C.; Sorrini, T.B.; Holl, K.D. Exotic Eucalypts: From Demonized Trees to Allies of Tropical Forest Restoration? J. Appl. Ecol. 2020, 57, 55–66. [Google Scholar] [CrossRef]
- Betts, M.G.; Phalan, B.T.; Wolf, C.; Baker, S.C.; Messier, C.; Puettmann, K.J.; Green, R.; Harris, S.H.; Edwards, D.P.; Lindenmayer, D.B.; et al. Producing Wood at Least Cost to Biodiversity: Integrating Triad and Sharing–Sparing Approaches to Inform Forest Landscape Management. Biol. Rev. 2021, 96, 1301–1317. [Google Scholar] [CrossRef] [PubMed]
- Strassburg, B.B.N.; Iribarrem, A.; Beyer, H.L.; Cordeiro, C.L.; Crouzeilles, R.; Jakovac, C.C.; Braga Junqueira, A.; Lacerda, E.; Latawiec, A.E.; Balmford, A.; et al. Global Priority Areas for Ecosystem Restoration. Nature 2020, 586, 724–729. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Niamir, A.; Broadbent, E.; Crouzeilles, R.; Barros, F.S.M.; Almeyda Zambrano, A.M.; Baccini, A.; Aronson, J.; Goetz, S.; Reid, J.L.; et al. Global Restoration Opportunities in Tropical Rainforest Landscapes. Sci. Adv. 2019, 5, eaav3223. [Google Scholar] [CrossRef]
- Tatum, M. China’s Three-Child Policy. Lancet 2021, 397, 2238. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Wang, D.; Yang, Y.; Yang, H. Shrinking Cities in Growing China: Did High Speed Rail Further Aggravate Urban Shrinkage? Cities 2019, 86, 210–219. [Google Scholar] [CrossRef]
Data Name | Time | Data Source |
---|---|---|
Land use data | 2000–2020 | https://www.casdc.cn/ |
Digital elevation model | / | https://earthexplorer.usgs.gov/ |
Meteorological station data | 2000–2020 | https://data.cma.cn/Market/index.html |
Road distribution data | 2020 | https://www.resdc.cn/ |
Years | Cultivated Land | All Types of Forest Land | Forest Land a | Forest Land b | Forest Land c | Water Bodies | Constructed Land | Unused Land |
---|---|---|---|---|---|---|---|---|
2000 | 26.44% | 67.31% | 48.25% | 13.68% | 5.38% | 2.45% | 1.81% | 0.31% |
2005 | 26.29% | 67.10% | 47.73% | 13.69% | 5.68% | 2.41% | 2.20% | 0.31% |
2010 | 26.27% | 66.83% | 48.49% | 13.00% | 5.34% | 2.40% | 2.49% | 0.33% |
2015 | 26.09% | 66.68% | 48.42% | 12.94% | 5.32% | 2.40% | 2.83% | 0.32% |
2020 | 25.72% | 66.43% | 47.93% | 12.81% | 5.68% | 2.41% | 3.43% | 0.31% |
Environmental Factors | 1 km Grid Scale | 10 km Grid Scale | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | |
Annual average temperature | −0.239 | 0.528 | −0.464 | 0.664 | 0.09 | 0.004 | 0.178 | −0.613 | 0.477 | 0.594 | 0.109 | 0.004 |
Average annual rainfall | 0.069 | 0.588 | 0.753 | 0.046 | 0.284 | 0 | 0.422 | −0.32 | 0.348 | −0.762 | 0.137 | 0.002 |
Annual average radiation | 0.252 | −0.56 | 0.218 | 0.632 | 0.419 | 0.002 | −0.13 | 0.621 | 0.746 | 0.044 | 0.198 | 0.004 |
Elevation | 0.521 | 0.089 | 0.153 | 0.327 | −0.768 | 0 | 0.501 | 0.203 | 0.132 | 0.105 | −0.824 | −0.013 |
Slope | 0.549 | 0.165 | −0.272 | −0.156 | 0.271 | −0.707 | 0.511 | 0.218 | −0.195 | 0.166 | 0.365 | −0.702 |
Relief amplitude | 0.549 | 0.164 | −0.269 | −0.162 | 0.269 | 0.707 | 0.511 | 0.219 | −0.198 | 0.164 | 0.343 | 0.712 |
Environmental Factors | Small Watershed Scale | District and County Administrative Division Scale | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | RC1 | RC2 | RC3 | RC4 | RC5 | RC6 | |
Annual average temperature | 0.21 | −0.603 | 0.534 | 0.542 | 0.114 | 0.002 | 0.15 | −0.66 | 0.569 | 0.44 | 0.157 | 0.006 |
Average annual rainfall | 0.439 | −0.296 | 0.266 | −0.792 | 0.146 | −0.003 | 0.463 | −0.199 | 0.282 | −0.816 | −0.015 | 0 |
Annual average radiation | −0.125 | 0.631 | 0.729 | −0.017 | 0.235 | 0.002 | −0.062 | 0.673 | 0.724 | 0.048 | 0.128 | 0.004 |
Elevation | 0.484 | 0.225 | 0.156 | 0.084 | −0.827 | 0.01 | 0.501 | 0.14 | 0.037 | 0.279 | −0.807 | −0.013 |
Slope | 0.507 | 0.224 | −0.207 | 0.191 | 0.329 | −0.711 | 0.504 | 0.162 | −0.186 | 0.175 | 0.404 | −0.701 |
Relief amplitude | 0.507 | 0.222 | −0.214 | 0.187 | 0.344 | 0.704 | 0.504 | 0.163 | −0.191 | 0.173 | 0.38 | 0.713 |
Data Name | Cultivated Land/km2 | Forest Land a/km2 | Forest Land b/km2 | Forest Land c /km2 | Water Bodies/km2 | Constructed Land/km2 | Unused Land/km2 |
---|---|---|---|---|---|---|---|
Area in 2040 | 23,675.9369 | 44,306.1900 | 10,997.3300 | 6485.5560 | 2294.9690 | 5419.8550 | 242.6102 |
Change in area compared to 2020 | −602.8985 | −1421.8400 | −1219.4700 | 1060.5940 | 39.5166 | 2188.8190 | −45.1178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Hu, J.; Liu, M.; Xie, G. Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study. Forests 2024, 15, 274. https://doi.org/10.3390/f15020274
Zhou Y, Hu J, Liu M, Xie G. Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study. Forests. 2024; 15(2):274. https://doi.org/10.3390/f15020274
Chicago/Turabian StyleZhou, Yuchen, Juhua Hu, Mu Liu, and Guanhong Xie. 2024. "Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study" Forests 15, no. 2: 274. https://doi.org/10.3390/f15020274
APA StyleZhou, Y., Hu, J., Liu, M., & Xie, G. (2024). Predicting Sub-Forest Type Transition Characteristics Using Canopy Density: An Analysis of the Ganjiang River Basin Case Study. Forests, 15(2), 274. https://doi.org/10.3390/f15020274