Relative Humidity Dominances in Negative Air Ion Concentration: Insights from One–Year Measurements of Urban Forests and Natural Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observation Instrument
2.3. Data Analysis
3. Results
3.1. Relationship between NAI Concentration and Environmental Factors
3.1.1. Pearson Correlation Analysis
3.1.2. Multivariate Linear Regression Analysis
3.1.3. The Relationship between NAI Concentration and RH
3.2. Temporal Dynamics of NAI Concentration and RH
3.2.1. Seasonal Diurnal Variations in Hourly Averages
3.2.2. Seasonal Variations in Average Values
3.2.3. Annual Variations in Daily Averages
3.3. Effect of Individual Factors on the NAI Concentration and RH
3.3.1. Correlation Analysis of the NAI Concentration and RH under Different TA Conditions
3.3.2. Correlation Analysis of the NAI Concentration and RH under Different WS Conditions
3.3.3. Correlation Analysis of the NAI Concentration and RH under Different AQI Levels
3.3.4. Correlation Analysis of the NAI Concentration and RH under Different RN Levels
3.3.5. Structural Equation Analysis of Environmental Factors and NAI Concentration
4. Discussion
4.1. Investigating the Most Significant Environmental Factors That Influence NAI Concentration
4.2. Diurnal, Seasonal, and Annual Dynamics of NAI Concentration and RH
4.3. How Do Other Environmental Factors Affect NAI Concentration and the Dominant Factor of NAI—RH?
4.3.1. How Does TA Affect NAI Concentration and RH?
4.3.2. How Does WS Affect NAI Concentration and RH?
4.3.3. How Does AQI Affect NAI Concentration and RH?
4.3.4. How Does RN Affect NAI Concentration and RH?
4.3.5. What Pathways Do Environmental Factors Use to Influence NAI Concentration?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NAIs | Negative air ions |
TA | Air temperature |
RH | Relative humidity |
PA | Air pressure |
WD | Wind direction |
WS | Wind speed |
Pre. | Precipitation |
PAR | Photosynthetically active radiation |
RN | Net radiation |
UV | Ultraviolet radiation |
UVA | Ultraviolet radiation A |
UVC | Ultraviolet radiation C |
SMC | Soil moisture content |
TS | Soil temperature |
AGFI | Adjusted Goodness of Fit Index |
RMSEA | Root Mean Square Error of Approximation |
CFI | Comparative Fit Index |
Appendix A
References
- Li, C.; Xie, Z.; Chen, B.; Kuang, K.; Xu, D.; Liu, J.; He, Z. Different Time Scale Distribution of Negative Air Ions Concentrations in Mount Wuyi National Park. Int. J. Environ. Res. Public Health 2021, 18, 5037. [Google Scholar] [CrossRef]
- Goldstein, N. Reactive oxygen species as essential components of ambient air. Biochemistry 2002, 67, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zeng, C.; Nie, W.; Nan, X.; Shen, S.; Shi, Y.; Yan, H.; Yang, F.; Wu, R.; Bao, Z. Study of the Vertical Structures, Thermal Comfort, Negative Air Ions, and Human Physiological Stress of Forest Walking Spaces in Summer. Forests 2022, 13, 335. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Wu, Y.; Song, Y.; Dong, W.; Chu, M.; Yang, D.; Zhang, X.; Zhang, J.; Chen, C.; et al. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. Environ. Int. 2020, 138, 105663. [Google Scholar] [CrossRef] [PubMed]
- Wallner, P.; Kundi, M.; Panny, M.; Tappler, P.; Hutter, H.-P. Exposure to Air Ions in Indoor Environments: Experimental Study with Healthy Adults. Int. J. Environ. Res. Public Health 2015, 12, 14301–14311. [Google Scholar] [CrossRef]
- Yamada, R.; Yanoma, S.; Akaike, M.; Tsuburaya, A.; Sugimasa, Y.; Takemiya, S.; Motohashi, H.; Rino, Y.; Takanashi, Y.; Imada, T. Water-generated negative air ions activate NK cell and inhibit carcinogenesis in mice. Cancer Lett. 2006, 239, 190–197. [Google Scholar] [CrossRef]
- Goldstein, N.; Arshavskaya, T.V. Is atmospheric superoxide vitally necessary? Accelerated death of animals in a quasi-neutral electric atmosphere. Z. Naturforsch. C-A J. Biosci. 1997, 52, 396–404. [Google Scholar] [CrossRef]
- Huang, R.; Li, A.; Li, Z.; Chen, Z.; Zhou, B.; Wang, G. Adjunctive Therapeutic Effects of Forest Bathing Trips on Geriatric Hypertension: Results from an On-Site Experiment in the Cinnamomum camphora Forest Environment in Four Seasons. Forests 2023, 14, 75. [Google Scholar] [CrossRef]
- Ortiz-Grisales, P.; Patino-Murillo, J.; Duque-Grisales, E. Comparative Study of Computational Models for Reducing Air Pollution through the Generation of Negative Ions. Sustainability 2021, 13, 7197. [Google Scholar] [CrossRef]
- Bowers, B.; Flory, R.; Ametepe, J.; Staley, L.; Patrick, A.; Carrington, H. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder. Psychiatry Res. 2018, 259, 7–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, S.; Zhou, B.; Zhang, X.; Zhao, Z. Plant stomatal conductance determined transpiration and photosynthesis both contribute to the enhanced negative air ion (NAI). Ecol. Indic. 2021, 130, 108114. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Jiang, X.; Xiao, Y.; Deng, G.; Qian, Y.; Gu, X. Influence of meteorological conditions on the negative oxygen ion characteristics of well-known tourist resorts in China. Sci. Total Environ. 2022, 819, 152021. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, R.; Zhang, X.; Liu, J.; Wang, D. Effects of Different Site Conditions on the Concentration of Negative Air Ions in Mountain Forest Based on an Orthogonal Experimental Study. Sustainability 2021, 13, 12012. [Google Scholar] [CrossRef]
- Tao, S.; Sun, Z.; Lin, X.; Zhang, Z.; Wu, C.; Zhang, Z.; Zhou, B.; Zhao, Z.; Cao, C.; Guan, X.; et al. Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products. Remote Sens. 2023, 15, 738. [Google Scholar] [CrossRef]
- Aubrecht, L.; Koller, J.; Stanek, Z. Onset voltages of atmospheric corona discharges on coniferous trees. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1901–1906. [Google Scholar] [CrossRef]
- Harrison, R.G.; Carslaw, K.S. Ion-aerosol-cloud processes in the lower atmosphere. Rev. Geophys. 2003, 41. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Z. Experimental and simulative analysis of relationship between ultraviolet irradiations and concentration of negative air ions in small chambers. J. Aerosol Sci. 2006, 37, 1347–1355. [Google Scholar] [CrossRef]
- Wu, C.; Chu, T.; Chen, S.; Wu, S. Generating Negative Air Ions in Construction Waterscapes at a Garden Scale. Environments 2019, 6, 100. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.-h. Changes in negative air ions concentration under different light intensities and development of a model to relate light intensity to directional change. J. Environ. Manag. 2009, 90, 2746–2754. [Google Scholar] [CrossRef]
- Tikhonov, V.P.; Tsvetkov, V.D.; Litvinova, E.G.; Sirota, T.V.; Kondrashova, M.N. Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil. Russ. J. Plant Physiol. 2004, 51, 414–419. [Google Scholar] [CrossRef]
- Li, A.; Li, Q.; Zhou, B.; Ge, X.; Cao, Y. Temporal dynamics of negative air ion concentration and its relationship with environmental factors: Results from long-term on-site monitoring. Sci. Total Environ. 2022, 832, 155057. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.; Li, M.; Luo, Y.; Liang, L.; Du, P.; Peng, W. Study on the change of negative air ion concentration and its influencing factors at different spatio-temporal scales. Glob. Ecol. Conserv. 2020, 23, e01008. [Google Scholar] [CrossRef]
- Luo, L.; Sun, W.; Han, Y.; Zhang, W.; Liu, C.; Yin, S. Importance Evaluation Based on Random Forest Algorithms: Insights into the Relationship between Negative Air Ions Variability and Environmental Factors in Urban Green Spaces. Atmosphere 2020, 11, 706. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, X.; Han, Y.; Sun, W.; Liu, C.; Yin, S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere 2018, 9, 463. [Google Scholar] [CrossRef]
- Shi, G.; Zhou, Y.; Sang, Y.; Huang, H.; Zhang, J.; Meng, P.; Cai, L. Modeling the response of negative air ions to environmental factors using multiple linear regression and random forest. Ecol. Inform. 2021, 66, 101464. [Google Scholar] [CrossRef]
- Yoon, Y.; Lee, S.H.; Kim, J.H. Evaluation of Air Ion According to Vegetation Types in Valleys and Slopes-Focused on Tangeumdae Park in ChungJu. J. Environ. Sci. Int. 2020, 29, 519–529. [Google Scholar] [CrossRef]
- Yan, X.; Wang, H.; Hou, Z.; Wang, S.; Zhang, D.; Xu, Q.; Tokola, T. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China. Urban For. Urban Green. 2015, 14, 636–645. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Q.; Wang, D. Effects of Altitude, Plant Communities, and Canopies on the Thermal Comfort, Negative Air Ions, and Airborne Particles of Mountain Forests in Summer. Sustainability 2022, 14, 3882. [Google Scholar] [CrossRef]
- Wang, W.; Xia, S.; Zhu, Z.; Wang, T.; Cheng, X. Spatiotemporal distribution of negative air ion and PM2.5 in urban residential areas. Indoor Built Environ. 2022, 31, 1127–1141. [Google Scholar] [CrossRef]
- Shi, G.; Huang, H.; Sang, Y.; Cai, L.; Zhang, J.; Cheng, X.; Meng, P.; Sun, S.; Li, J.; Qiao, Y. Solar-induced chlorophyll fluorescence intensity has a significant correlation with negative air ion release in forest canopy. Atmos. Environ. 2022, 269, 118873. [Google Scholar] [CrossRef]
- Cui, H.; Li, Z.; Cao, R. Relationships between the Negative Air Ions and Meteorological Factors in Different Forest Villages of Taiyue Moutain. J. West China For. 2022, 51, 27–34. (In Chinese) [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, F.; Chen, L.; Li, B.; Wang, H. Correlation analysis of negative air ion concentration and meteorological factors in Jiangxi. J. Meteorol. Sci. 2022, 42, 254–260. (In Chinese) [Google Scholar]
- Cai, L.; Wang, C.; Zhang, J.; Meng, P.; Shi, G. The influence mechanism of negative air ion in forest ecosystem based on structural equation. Acta Ecol. Sin. 2024, 44, 1–9. (In Chinese) [Google Scholar] [CrossRef]
- Shi, G.; Zhou, Y.; Sang, Y.; Zhang, J.; Meng, P.; Cai, L.; Pei, S.; Wang, Y. Influence of Environmental Factors on Negative Air Ion Using Random Forest Algorithm. Chin. J. Agrometeorol. 2021, 42, 390–401. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z. Spatio-temporal Change of Negative Air Ion Concentration of Urban Residential Area and Air Quality Assessment—Case Study of Hefei City. Ecol. Environ. Sci. 2014, 23, 1783–1791. (In Chinese) [Google Scholar] [CrossRef]
- Yu, H.; Xin, X.; Pei, S.; Wu, D.; Wu, S.; Fa, L.; Ma, S.; Guo, H. Characteristics of air anion change and its relationship with meteorological factors in forest margin area of Jiulong Mountain. Ecol. Sci. 2018, 37, 191–198. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, S.; He, Q.; Su, Y.; Cui, G.; Li, J. Negative air ion concentration and its influencing factors of urban forest in different geographical spaces. J. Beijing For. Univ. 2023, 45, 66–77. (In Chinese) [Google Scholar]
- Li, J.; Gao, T.; Chen, K.; Lu, J.; Zheng, W.; Fan, Z. Characteristics of Negative Air Ion Concentration and Its Relationships with Meteorological Factors in Abies georgei var.smithii Forest of Southeast Tibet. J. Northeast. For. Univ. 2021, 49, 77–82. (In Chinese) [Google Scholar] [CrossRef]
- Shi, G.; Sang, Y.; Zhang, J.; Meng, P.; Cai, L.; Pei, S. Relationship between Negative Air Ion and Relative Humidity in Quercus variabilis Plantation under Natural Conditions. Chin. J. Agrometeorol. 2021, 42, 24–33. (In Chinese) [Google Scholar]
- Skalny, J.D.; Mikoviny, T.; Matejcik, S.; Mason, N.J. An analysis of mass spectrometric study of negative ions extracted from negative corona discharge in air. Int. J. Mass Spectrom. 2004, 233, 317–324. [Google Scholar] [CrossRef]
- Ling, D. Review on research of the negative air ion concentration distribution and its correlation with meteorological elements in mountain tourist area. Earth Sci. 2019, 8, 60–68. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, L.; Li, H. Research progress on surface ozone pollution in domestic and overseas. Environ. Sci. Technol. 2018, 31, 72–76. (In Chinese) [Google Scholar]
- Wei, J.; Li, Z.; Wang, J.; Li, C.; Gupta, P.; Cribb, M. Ground-level gaseous pollutants (NO2, SO2, and CO) in China: Daily seamless mapping and spatiotemporal variations. Atmos. Chem. Phys. 2023, 23, 1511–1532. [Google Scholar] [CrossRef]
- Shi, H.; Yang, D.; Wang, W.; Fu, D.; Gao, L.; Zhang, J.; Hu, B.; Shan, Y.; Zhang, Y.; Bian, Y.; et al. First estimation of high-resolution solar photovoltaic resource maps over China with Fengyun-4A satellite and machine learning. Renew. Sustain. Energy Rev. 2023, 184, 113549. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
Site | Climate Type | Site Type | Period | Dominant Factors |
---|---|---|---|---|
South Korea, ChungJu, Tangeumdae Park [26] | Warm temperate monsoon climate | Urban forests | August 2018 | Diameter at breast height |
China, Gansu Province, the suburb of Tianshui [27] | Continental semi–humid monsoon climate | Croplands | 2–6 August to 11–15 October 2013 | Air temperature, SO2, NOx, aerosols, altitude |
Artificial forests | ||||
Greenbelts | ||||
Natural forests | ||||
China, Shaanxi Province, the Taibai Mountain National Forest Park [28] | Continental semi–humid monsoon climate | Natural forests | July–August 2021 | Altitude, plant communities, canopy characteristics, canopy density, canopy porosity, leaf area index, sky view factor |
China, Sichuan Province, Zoige Wetland Nature Reserve [12] | Humid monsoon climate of the highland cold | Greenbelts | June 2020 January 2020 | Atmospheric supersaturation, condensation rate, atmospheric aerosol, retention index, cloud parameters |
China, Zhejiang Province, Hangzhou West Lake [12] | Humid subtropical monsoon climate | Water bodies | ||
Hangzhou urban areas [12] | Urban built–up areas | |||
China, Heilongjiang Province, Wudalianchi Scenic Area [22] | Northeast temperate continental monsoon climate | Open spaces | August–September 2018 | Ozone, humidity, types of landscape |
Water bodies | ||||
Forests | ||||
China, Zhejiang Province [14] | Humid subtropical monsoon climate | Forests, water bodies, barrens, grasslands, croplands, urban built–up areas | 2018–2020 | Solar–induced chlorophyll fluorescence |
China, Henan Province, Yellow River Xiaolangdi Site [25] | Warm temperate monsoon climate | Mixed forests | 1 May–1 October 2019 and 2020 | PM2.5, soil moisture, relative humidity |
China, Shanghai City, Zhongshan Park [24] | Subtropical monsoon climate | Urban forests | March 2017–February 2018 | Relative humidity |
China, Zhejiang Province, Hangzhou Fuyang District [21] | Humid subtropical monsoon climate prevails | Urban forests | July 2019–March 2021 | Air quality index |
China, Shaanxi Province, Taibai Mountain National Forest Park [13] | The transition zone between subtropical and warm temperate climates. | Natural forests | 1–5 May 2021 | Altitude, canopy density |
China, Anhui Province, city centre of Hefei [29] | Subtropical humid monsoon climate | Urban built–up areas | 2019 | Temperature, relative humidity |
China, Henan Province, Xiaolangdi Site [30] | Warm temperate continental monsoon climate | Natural forests | 1 June–1 October 2019 | Solar–induced chlorophyll fluorescence intensity |
China, Henan Province, Minquan County [30] | Barren | 1 August–1 October 2020 | ||
China, Fujian Province, the Mount Wuyi National Park [1] | Central subtropical humid monsoon climate | Natural forests | October 2018–20 February 2020 | Relative humidity, precipitation |
China, Shanxi Province, Taiyue Mountain Site [31] | Warm temperate continental monsoon climate | Water bodies and forests | July 2021 | Air temperature, relative humidity |
Low mountain forests | Air temperature and precipitation | |||
Low mountain meadow | Light and effective radiation, soil moisture | |||
China, Jiangxi Province, Jing’an observation base [32] | Humid north subtropical climate | Artificial forests | 1 January–31 December 2019 | PM2.5, saturated vapor pressure difference, wind speed |
China, Henan Province, Xiaolangdi critical zone [33,34] | Warm temperate continental monsoon climate | Artificial forests | June–September 2020 | Wind speed, air temperature, relative humidity |
June–September 2018 and 2019 | Air humidity | |||
China, Anhui Province, Hefei City [35] | Subtropical humid monsoon climate | Urban built–up areas | August 2013–January 2014 | Relative humidity, air temperature |
China, Beijing, Jiulong Mountain [36] | Warm temperate east coast continental monsoon climate | Artificial forests | September 2017 and October 2017 | Suburban: oxygen, wind speed, air temperature |
China, Guangdong Province, Shimen National Forest Par [37] | South subtropical monsoon climate | Suburban urban artificial forests | September 2019–January 2020 May–August 2020 | Air temperature |
China, Guangdong Province, Longyandong Forest Farm Maofeng Work Area [37] | Near suburban artificial forests | Air temperature | ||
China, Guangdong Province, Changgangshan Nature Reserve [37] | Downtown urban artificial forests | Air temperature, ultraviolet radiation | ||
China, Guangdong Province, Wushan Street [37] | Urban built–up areas | Air temperature, relative humidity | ||
China, Tibet Province, Sejila Mountain National Forest Park [38] | Humid north subtropical climate | Natural forests | 1 September 2017–30 November 2019 | Air temperature, precipitation |
Classification | Factors | Data Sensors | Unit | Measuring Accuracy |
---|---|---|---|---|
NAIs | FYLZ–200 monitor | ions/cm3 | ≤±15% | |
Meteorological factors | TA | HMP155A model | °C | ≤±0.17 °C |
RH | % | ≤±1.7% | ||
PA (air pressure) | ATMOS model | kpa | ±0.05 kPa | |
WD (wind direction) | 034B | ° | ±4° | |
WS | m/s | ±0.11 m/s (<10.1 m/s) ±1.1% (>10.1 m/s) | ||
Prec. (precipitation) | TE525 | mm | ±1% (≤10 mm/h) +0, −3% (10~20 mm/h) +0, −5% (20~30 mm/h) | |
Radiation factors | PAR (photosynthetically active radiation) | LI–190R | µmol/m2/s | 5 μA~10 Μa/1000 μmol s*m2 |
RN (net radiation) | CNR4 | W/m2 | <4% (−10 °C~+40 °C) | |
UVA (ultraviolet radiation A) | SU–200 | W/m2 | <10% | |
Soil factors | SMC (soil moisture content) | TEROS11 | m3/m3 | ±0.01~0.02 m3/m3 |
TS (soil temperature) | °C | ±1 °C (−40~0 °C) ±0.5 °C (0~60 °C) | ||
Air quality factors | O3 | O342e | μg/m3 | ±1% |
CO | CO12e | mg/m3 | ±1% | |
SO2 | AF22e | μg/m3 | ±1% | |
NO | AC32e | μg/m3 | ±1% | |
NO2 | μg/m3 | ±1% | ||
NOX | μg/m3 | ±1% | ||
PM2.5 | MP101M | μg/m3 | 0.5 µg/m3 | |
PM10 | μg/m3 | 0.5 µg/m3 |
Classification | Factors | BHS’s Correlation Coefficient | QLH’s Correlation Coefficient |
---|---|---|---|
Meteorological factors | RH | 0.967 ** | 0.978 ** |
TA | 0.392 ** | 0.429 ** | |
PA | −0.294 ** | −0.432 ** | |
Prec. | 0.408 ** | 0.317 ** | |
WD | 0.057 | −0.250 ** | |
WS | −0.525 ** | −0.689 ** | |
Radiation factors | PAR | −0.104 | −0.142 ** |
RN | 0.158 ** | 0.144 ** | |
UVA | −0.117 * | −0.156 ** | |
Soil factors | SWC | 0.413 ** | 0.211 ** |
TS | 0.444 ** | 0.422 ** | |
Air quality factors | SO2 | 0.064 | −0.194 ** |
NOX | 0.075 | −0.012 ** | |
CO | 0.143 * | −0.067 | |
O3 | 0.101 | 0.355 ** | |
PM10 | 0.058 | 0.093 | |
PM2.5 | 0.130 * | 0.384 ** | |
NO | −0.228 ** | 0.020 | |
NO2 | −0.139 ** | 0.025 |
Unstandardized Factor | Standardized Factor | ||||||
---|---|---|---|---|---|---|---|
Model | B | SE | Βeta | t | Sig | R2 | |
BHS | Constant | −146.692 | 68.658 | −2.137 | 0.034 | ||
RH | 68.485 | 1.057 | 0.897 | 64.798 | 0.000 | ||
Prec. | 51,842.471 | 6994.430 | 0.095 | 7.412 | 0.000 | ||
TS | 18.275 | 3.084 | 0.093 | 5.925 | 0.000 | 0.968 | |
NO | −50.996 | 16.439 | −0.039 | −3.102 | 0.002 | ||
RN | −1.625 | 0.434 | −0.055 | −3.747 | 0.000 | ||
NO2 | −8.757 | 4.331 | −0.025 | −2.022 | 0.044 | ||
QLH | Constant | −257.427 | 48.125 | −5.349 | 0.000 | ||
RH | 54.358 | 0.676 | 0.930 | 80.455 | 0.000 | ||
TA | 34.747 | 5.672 | 0.316 | 6.126 | 0.000 | ||
RN | −2.082 | 0.334 | −0.113 | −6.237 | 0.000 | ||
NOX | −4.376 | 0.877 | −0.063 | −4.990 | 0.000 | 0.973 | |
Prec. | 322,590.439 | 101,107.565 | 0.033 | 3.191 | 0.002 | ||
TS | −17.343 | 5.564 | −0.159 | −3.117 | 0.002 | ||
SO2 | −10.640 | 3.673 | −0.029 | −2.897 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Hu, Y.; Liu, Y.; Guo, H.; Xue, F.; Wang, Y.; Hou, S.; Liu, J. Relative Humidity Dominances in Negative Air Ion Concentration: Insights from One–Year Measurements of Urban Forests and Natural Forests. Forests 2024, 15, 295. https://doi.org/10.3390/f15020295
Zhang Y, Hu Y, Liu Y, Guo H, Xue F, Wang Y, Hou S, Liu J. Relative Humidity Dominances in Negative Air Ion Concentration: Insights from One–Year Measurements of Urban Forests and Natural Forests. Forests. 2024; 15(2):295. https://doi.org/10.3390/f15020295
Chicago/Turabian StyleZhang, Yingjie, Yishen Hu, Yuqi Liu, Hongxiao Guo, Fan Xue, Yanan Wang, Saiyin Hou, and Jinglan Liu. 2024. "Relative Humidity Dominances in Negative Air Ion Concentration: Insights from One–Year Measurements of Urban Forests and Natural Forests" Forests 15, no. 2: 295. https://doi.org/10.3390/f15020295
APA StyleZhang, Y., Hu, Y., Liu, Y., Guo, H., Xue, F., Wang, Y., Hou, S., & Liu, J. (2024). Relative Humidity Dominances in Negative Air Ion Concentration: Insights from One–Year Measurements of Urban Forests and Natural Forests. Forests, 15(2), 295. https://doi.org/10.3390/f15020295