Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Sampling
2.2. Experiment Design
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilhite, D. Managing Drought Risk in a Changing Climate. Clim. Res. 2016, 70, 99–102. [Google Scholar] [CrossRef]
- O’Gorman, P.A.; Schneider, T. The Physical Basis for Increases in Precipitation Extremes in Simulations of 21st-Century Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 14773–14777. [Google Scholar] [CrossRef]
- Dai, A. Drought under Global Warming: A Review. WIREs Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.V.; Naumann, G.; Barbosa, P.; Dosio, A. Will Drought Events Become More Frequent and Severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef]
- Gustafson, E.J.; Sturtevant, B.R. Modeling Forest Mortality Caused by Drought Stress: Implications for Climate Change. Ecosystems 2013, 16, 60–74. [Google Scholar] [CrossRef]
- Grossiord, C.; Forner, A.; Gessler, A.; Granier, A.; Pollastrini, M.; Valladares, F.; Bonal, D. Influence of Species Interactions on Transpiration of Mediterranean Tree Species during a Summer Drought. Eur. J. For. Res. 2015, 134, 365–376. [Google Scholar] [CrossRef]
- Peters, M.P.; Iverson, L.R.; Matthews, S.N. Long-Term Droughtiness and Drought Tolerance of Eastern US Forests over Five Decades. For. Ecol. Manag. 2015, 345, 56–64. [Google Scholar] [CrossRef]
- Steckel, M.; Del Río, M.; Heym, M.; Aldea, J.; Bielak, K.; Brazaitis, G.; Černý, J.; Coll, L.; Collet, C.; Ehbrecht, M.; et al. Species Mixing Reduces Drought Susceptibility of Scots Pine (Pinus sylvestris L.) and Oak (Quercus robur L., Quercus petraea (Matt.) Liebl.)—Site Water Supply and Fertility Modify the Mixing Effect. For. Ecol. Manag. 2020, 461, 117908. [Google Scholar] [CrossRef]
- Gonzalez-Sosa, E.; Braud, I.; Dehotin, J.; Lassabatère, L.; Angulo-Jaramillo, R.; Lagouy, M.; Branger, F.; Jacqueminet, C.; Kermadi, S.; Michel, K. Impact of Land Use on the Hydraulic Properties of the Topsoil in a Small French Catchment. Hydrol. Process. 2010, 24, 2382–2399. [Google Scholar] [CrossRef]
- Kotlarz, J.; Nasiłowska, S.; Rotchimmel, K.; Kubiak, K.; Kacprzak, M. Species Diversity of Oak Stands and Its Significance for Drought Resistance. Forests 2018, 9, 126. [Google Scholar] [CrossRef]
- Croise, L.; Lieutier, F.; Cochard, H.; Dreyer, E. Effects of Drought Stress and High Density Stem Inoculations with Leptographium Wingfieldii on Hydraulic Properties of Young Scots Pine Trees. Tree Physiol. 2001, 21, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Nardini, A.; Luglio, J. Leaf Hydraulic Capacity and Drought Vulnerability: Possible Trade-offs and Correlations with Climate across Three Major Biomes. Funct. Ecol. 2014, 28, 810–818. [Google Scholar] [CrossRef]
- Nardini, A.; Lo Gullo, M.A.; Trifilò, P.; Salleo, S. The Challenge of the Mediterranean Climate to Plant Hydraulics: Responses and Adaptations. Environ. Exp. Bot. 2014, 103, 68–79. [Google Scholar] [CrossRef]
- Doffo, G.N.; Monteoliva, S.E.; Rodríguez, M.E.; Luquez, V.M.C. Physiological Responses to Alternative Flooding and Drought Stress Episodes in Two Willow (Salix Spp.) Clones. Can. J. For. Res. 2017, 47, 174–182. [Google Scholar] [CrossRef]
- Phillips, R.P.; Ibáñez, I.; D’Orangeville, L.; Hanson, P.J.; Ryan, M.G.; McDowell, N.G. A Belowground Perspective on the Drought Sensitivity of Forests: Towards Improved Understanding and Simulation. For. Ecol. Manag. 2016, 380, 309–320. [Google Scholar] [CrossRef]
- Meier, I.C.; Leuschner, C. Belowground Drought Response of European Beech: Fine Root Biomass and Carbon Partitioning in 14 Mature Stands across a Precipitation Gradient. Glob. Change Biol. 2008, 14, 2081–2095. [Google Scholar] [CrossRef]
- Chitra-Tarak, R.; Ruiz, L.; Dattaraja, H.S.; Mohan Kumar, M.S.; Riotte, J.; Suresh, H.S.; McMahon, S.M.; Sukumar, R. The Roots of the Drought: Hydrology and Water Uptake Strategies Mediate Forest-Wide Demographic Response to Precipitation. J. Ecol. 2018, 106, 1495–1507. [Google Scholar] [CrossRef]
- Osman, K.T. Forest Soils: Properties and Management; Springer International Publishing: Cham, Switzerland, 2013; ISBN 978-3-319-02540-7. [Google Scholar]
- Schaap, M.G.; Bouten, W.; Verstraten, J.M. Forest Floor Water Content Dynamics in a Douglas Fir Stand. J. Hydrol. 1997, 201, 367–383. [Google Scholar] [CrossRef]
- Bonan, G.B.; Shugart, H.H. Environmental Factors and Ecological Processes in Boreal Forests. Annu. Rev. Ecol. Syst. 1989, 20, 1–28. [Google Scholar] [CrossRef]
- Mader, D.L.; Lull, H.W. Depth, Weight, and Water Storage of the Forest Floor in White Pine Stands in Massachusetts; USDA Forest Service Research Paper NE-109; Northeastern Forest Experiment Station: Upper Darby, PA, USA, 1968. [Google Scholar]
- Walsh, R.P.D.; Voigt, P.J. Vegetation Litter: An Underestimated Variable in Hydrology and Geomorphology. J. Biogeogr. 1977, 4, 253. [Google Scholar] [CrossRef]
- Putuhena, W.M.; Cordery, I. Estimation of Interception Capacity of the Forest Floor. J. Hydrol. 1996, 180, 283–299. [Google Scholar] [CrossRef]
- Greiffenhagen, A.; Wessolek, G.; Facklam, M.; Renger, M.; Stoffregen, H. Hydraulic Functions and Water Repellency of Forest Floor Horizons on Sandy Soils. Geoderma 2006, 132, 182–195. [Google Scholar] [CrossRef]
- Gerrits, A.M.J. The Role of Interception in the Hydrological Cycle; VSSD: Delft, the Netherlands, 2010. [Google Scholar]
- Ilek, A.; Kucza, J.; Szostek, M. The Effect of Stand Species Composition on Water Storage Capacity of the Organic Layers of Forest Soils. Eur. J. For. Res. 2015, 134, 187–197. [Google Scholar] [CrossRef]
- IUSS Working Group WRB World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resour Rep. No 106 FAO: Rome, Italy, 2014. [Google Scholar]
- Ilek, A.; Szostek, M.; Kucza, J.; Stanek-Tarkowska, J.; Witek, W. The Water Absorbability of Beech (Fagus sylvatica L.) and Fir (Abies Alba Mill.) Organic Matter in the Forest Floor. Ann. For. Res. 2019, 62, 21–32. [Google Scholar] [CrossRef]
- Browning, B.L. Methods of Wood Chemistry; Wiley & Sons, Interscience Publishers: New York, NY, USA, 1967; Volume I. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Acid Insoluble Lignin in Wood and Pulp, T 222 Cm-06; Technical Association of the Pulp and Paper Industry: New York, NY, USA, 2006. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Solvent Extractives of Wood and Pulp, T 204 Cm-97; Technical Association of the Pulp and Paper Industry: New York, NY, USA, 2007. [Google Scholar]
- Technical Association of the Pulp and Paper Industry. Ash In Wood, Pulp, Paper, And Paperboard: Combustion At 525°C, T 211 Om-02; Technical Association of the Pulp and Paper Industry: New York, NY, USA, 2002. [Google Scholar]
- Zhang, Z.; Chen, Y.; Zhang, Z.; Cui, H.; Lei, Y.; Wang, D.; Sui, J. Water-Holding Characteristics of Litter in Different Forests at the Lianxiahe Watershed. Front. For. China 2006, 1, 413–418. [Google Scholar] [CrossRef]
- Sato, Y.; Kumagai, T.; Kume, A.; Otsuki, K.; Ogawa, S. Experimental Analysis of Moisture Dynamics of Litter Layers—The Effects of Rainfall Conditions and Leaf Shapes. Hydrol. Process. 2004, 18, 3007–3018. [Google Scholar] [CrossRef]
- Xing, Z.; Yan, D.; Wang, D.; Liu, S.; Dong, G. Experimental Analysis of the Effect of Forest Litter Cover on Surface Soil Water Dynamics under Continuous Rainless Condition in North China. Kuwait J. Sci. 2018, 45, 75–83. [Google Scholar]
- Fernald, A.; Gallegos, J.; VanLeeuwen, D.; Baker, T. Evaluation of Litter Hydrology in Ponderosa Pine and Mixed Conifer Stands in Northen New Mexico, USA. N. M. Acad. Sci. 2012, 4, 121–136. [Google Scholar]
- Ilek, A.; Szostek, M.; Mikołajczyk, A.; Rajtar, M. Does Mixing Tree Species Affect Water Storage Capacity of the Forest Floor? Laboratory Test of Pine-Oak and Fir-Beech Litter Layers. Forests 2021, 12, 1674. [Google Scholar] [CrossRef]
- Hashimi, R.; Huang, Q.; Dewi, R.K.; Nishiwaki, J.; Komatsuzaki, M. No-Tillage and Rye Cover Crop Systems Improve Soil Water Retention by Increasing Soil Organic Carbon in Andosols under Humid Subtropical Climate. Soil Tillage Res. 2023, 234, 105861. [Google Scholar] [CrossRef]
- Raaflaub, L.D.; Valeo, C. Assessing Factors That Influence Spatial Variations in Duff Moisture. Hydrol. Process. 2008, 22, 2874–2883. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Canessa, R.; Van Den Brink, L.; Saldaña, A.; Rios, R.S.; Hättenschwiler, S.; Mueller, C.W.; Prater, I.; Tielbörger, K.; Bader, M.Y. Relative Effects of Climate and Litter Traits on Decomposition Change with Time, Climate and Trait Variability. J. Ecol. 2021, 109, 447–458. [Google Scholar] [CrossRef]
- Jílková, V.; Straková, P.; Frouz, J. Foliage C:N Ratio, Stage of Organic Matter Decomposition and Interaction with Soil Affect Microbial Respiration and Its Response to C and N Addition More than C:N Changes during Decomposition. Appl. Soil Ecol. 2020, 152, 103568. [Google Scholar] [CrossRef]
- Lin, L.; Webster, J.R. Detritus Decomposition and Nutrient Dynamics in a Forested Headwater Stream. Ecol. Model. 2014, 293, 58–68. [Google Scholar] [CrossRef]
- Błońska, E.; Piaszczyk, W.; Staszel, K.; Lasota, J. Enzymatic Activity of Soils and Soil Organic Matter Stabilization as an Effect of Components Released from the Decomposition of Litter. Appl. Soil Ecol. 2021, 157, 103723. [Google Scholar] [CrossRef]
- Gulis, V.; Suberkropp, K. Leaf Litter Decomposition and Microbial Activity in Nutrient-enriched and Unaltered Reaches of a Headwater Stream. Freshw. Biol. 2003, 48, 123–134. [Google Scholar] [CrossRef]
- He, J.; Chen, B.; Xu, W.; Xiang, C.; Kuang, W.; Zhao, X. Driving Factors for Soil C:N Ratio in Woody Plant Communities across Northeastern Qinghai-Tibetan Plateau. CATENA 2023, 233, 107504. [Google Scholar] [CrossRef]
- Ottmar, R.; Andreu, A. Litter and Duff Bulk Densities in the Southern United States. In Joint Fire Science Program Project #04-2-1-49 Final Report; Fire and Environmental Applications Team: Seattle, WA, USA, 2007. [Google Scholar]
- Ilek, A.; Kucza, J.; Szostek, M. The Effect of the Bulk Density and the Decomposition Index of Organic Matter on the Water Storage Capacity of the Surface Layers of Forest Soils. Geoderma 2017, 285, 27–34. [Google Scholar] [CrossRef]
- Percy, K.E.; Jagels, R.; Marden, S.; McLaughlin, C.K.; Carlisle, J. Quantity, Chemistry, and Wettability of Epicuticular Waxes on Needles of Red Spruce along a Fog-Acidity Gradient. Can. J. For. Res. 1993, 23, 1472–1479. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Wang, Y. The Wetting of Leaf Surfaces and Its Ecological Significances. In Wetting and Wettability; Aliofkhazraei, M., Ed.; InTech: Atyrau, Republic of Kazakhstan, 2015; ISBN 978-953-51-2215-9. [Google Scholar]
- Beluns, S.; Platnieks, O.; Sevcenko, J.; Jure, M.; Gaidukova, G.; Grase, L.; Gaidukovs, S. Sustainable Wax Coatings Made from Pine Needle Extraction Waste for Nanopaper Hydrophobization. Membranes 2022, 12, 537. [Google Scholar] [CrossRef]
- Shi, H.; Wang, H.; Li, Y. Wettability on Plant Leaf Surfaces and Its Ecological Significance. Shengtai XuebaoActa Ecol. Sin. 2011, 31, 4287–4298. [Google Scholar]
- Hanover, J.W.; Reicosky, D.A. Surface Wax Deposits on Foliage of Picea Pungens and Other Conifers. Am. J. Bot. 1971, 58, 681–687. [Google Scholar] [CrossRef]
- Jeffree, C.E. The Fine Structure of the Plant Cuticle. Annu. Plant Rev. 2006, 23, 11–125. [Google Scholar]
- Muhammad, S.; Wuyts, K.; Nuyts, G.; De Wael, K.; Samson, R. Characterization of Epicuticular Wax Structures on Leaves of Urban Plant Species and Its Association with Leaf Wettability. Urban For. Urban Green. 2020, 47, 126557. [Google Scholar] [CrossRef]
- Grünhofer, P.; Herzig, L.; Schreiber, L. Leaf Morphology, Wax Composition, and Residual (Cuticular) Transpiration of Four Poplar Clones. Trees 2022, 36, 645–658. [Google Scholar] [CrossRef]
- Samuels, L.; Kunst, L.; Jetter, R. Sealing Plant Surfaces: Cuticular Wax Formation by Epidermal Cells. Annu. Rev. Plant Biol. 2008, 59, 683–707. [Google Scholar] [CrossRef] [PubMed]
- Steinbauer, M.J.; Davies, N.W.; Gaertner, C.; Derridj, S. Epicuticular Waxes and Plant Primary Metabolites on the Surfaces of Juvenile Eucalyptus Globulus and E. Nitens (Myrtaceae) Leaves. Aust. J. Bot. 2009, 57, 474. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Seasonal Changes of Leaf Surface Contamination in Beech, Oak, and Ginkgo in Relation to Leaf Micromorphology and Wettability. New Phytol. 1998, 138, 91–98. [Google Scholar] [CrossRef]
- Gou, X.; Guo, Z. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period. Langmuir 2019, 35, 1047–1053. [Google Scholar] [CrossRef]
- Brewer, C.A.; Nuñez, C.I. Patterns of Leaf Wettability along an Extreme Moisture Gradient in Western Patagonia, Argentina. Int. J. Plant Sci. 2007, 168, 555–562. [Google Scholar] [CrossRef]
- Skaar, C. Wood-Water Relationships; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Sumi, Y.; Hale, R.; Meyer, J.A.; Leopold, A.; Ranby, G. Accessibility of Wood and Wood Carbohydrates Measured with Tritiated Water. Tappi J. 1964, 47, 621–624. [Google Scholar]
Variable | C (%) | N (%) | C:N | Cellulose (%) | Lignin (%) | Extractives (%) | Ash (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Decomposition Time (Months) | Pine | Oak | Pine | Oak | Pine | Oak | Pine | Oak | Pine | Oak | Pine | Oak | Pine | Oak |
0 | 47.1 a | 43.9 ab | 1.2 a | 0.8 a | 39.9 a | 57.7 a | 44.4 a | 26.1 a | 24.2 a | 35.8 a | 30.3 a | 13.0 a | 2.2 a | 5.8 a |
3 | 50.0 a | 43.7 ab | 1.5 ab | 0.9 ab | 33.1 ab | 47.0 ab | 44.1 a | 24.8 a | 28.4 ab | 38.8 ab | 17.1 ab | 10.8 a | 2.5 ab | 8.1 ab |
6 | 50.8 a | 44.8 b | 1.8 ab | 1.2 ab | 28.2 ab | 38.9 ab | 39.9 a | 27.0 a | 36.6 ab | 42.3 ab | 19.7 ab | 9.7 a | 3.5 ab | 8.4 ab |
9 | 49.7 a | 43.5 ab | 2.6 b | 1.3 ab | 19.0 b | 32.7 ab | 29.7 a | 27.0 a | 47.9 ab | 45.4 ab | 13.6 b | 9.0 a | 4.4 b | 10.5 ab |
12 | 49.0 a | 42.0 ab | 2.5 ab | 1.4 b | 19.3 ab | 30.0 b | 27.4 a | 27.4 a | 50.7 ab | 47.4 ab | 14.8 ab | 8.6 a | 4.2 ab | 11.8 b |
15 | 47.8 a | 38.0 a | 2.5 ab | 1.3 a | 19.0 b | 28.4 b | 27.6 a | 26.4 a | 51.9 b | 51.1 b | 15.1 ab | 8.8 a | 4.2 ab | 10.4 ab |
Variable | C:N | ΔBD | ΔWSC | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Share of pine needles | 122.40 | 0.0000 | 41.58 | 0.0000 | 9.67 | 0.0000 |
Decomposition time | 438.32 | 0.0000 | 10.34 | 0.0000 | 38.08 | 0.0000 |
Share x Decomposition time | 3.02 | 0.0005 | 3.39 | 0.0001 | 1.79 | 0.0428 |
Share of Pine Needles (%) | Decomposition Time (Months) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 6 | 9 | 12 | 15 | Mean | |||||||
0 | 8.3 | 4.4 | 33.3 | 26.9 | 50.8 | 55.6 | 56.7 | 72.7 | 55.7 | 70.3 | 40.2 a | 46.0 a |
20 | 2.5 | 7.3 | 36.7 | 23.9 | 58.3 | 64.7 | 57.5 | 66.7 | 56.7 | 79.8 | 42.3 a | 45.6 a |
40 | 7.5 | 4.8 | 39.2 | 25.7 | 62.5 | 67.1 | 60.0 | 68.8 | 71.7 | 74.0 | 48.2 a | 48.1 a |
60 | 11.7 | 4.5 | 38.3 | 22.2 | 56.7 | 51.3 | 67.5 | 69.1 | 68.3 | 65.0 | 48.5 a | 40.6 a |
80 | 20.0 | 8.1 | 37.5 | 16.2 | 57.5 | 35.7 | 68.3 | 59.3 | 65.0 | 56.3 | 49.7 a | 35.1 a |
100 | 24. 2 | 4.0 | 41.7 | 14.5 | 59.2 | 26.7 | 61.7 | 38.7 | 65.8 | 44.5 | 50.5 a | 25.7 a |
Mean | 12.4 a | 2.9 a | 37.7 a | 20.2 a | 57.5 b | 50.2 b | 61.9 b | 64.7 b | 63.2 b | 62.8 b | 46.6 | 40.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilek, A.; Błońska, E.; Miszewski, K.; Kasztelan, A.; Zborowska, M. Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves. Forests 2024, 15, 350. https://doi.org/10.3390/f15020350
Ilek A, Błońska E, Miszewski K, Kasztelan A, Zborowska M. Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves. Forests. 2024; 15(2):350. https://doi.org/10.3390/f15020350
Chicago/Turabian StyleIlek, Anna, Ewa Błońska, Kamil Miszewski, Adrian Kasztelan, and Magdalena Zborowska. 2024. "Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves" Forests 15, no. 2: 350. https://doi.org/10.3390/f15020350
APA StyleIlek, A., Błońska, E., Miszewski, K., Kasztelan, A., & Zborowska, M. (2024). Investigating Water Storage Dynamics in the Litter Layer: The Impact of Mixing and Decay of Pine Needles and Oak Leaves. Forests, 15(2), 350. https://doi.org/10.3390/f15020350