Beta Diversity Patterns and Determinants among Vertical Layers of Tropical Seasonal Rainforest in Karst Peak-Cluster Depressions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Plot Survey
2.3. Environmental Factor Measurements
2.4. Data Analysis
3. Results
3.1. Community Similarity
3.2. Beta Diversity Patterns
3.3. Factors Influencing Species and Phylogenetic Beta Diversity
4. Discussion
4.1. Patterns of Species and Phylogenetic Beta Diversity in Karst Seasonal Rainforests
4.2. The Relative Importance of Dispersal Limitation and Environmental Filtering
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Münkemüller, T.; De Bello, F.; Meynard, C.N.; Gravel, D.; Lavergne, S.; Mouillot, D.; Mouquet, N.; Thuiller, W. From diversity indices to community assembly processes: A test with simulated data. Ecography 2012, 35, 468–480. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.T.; Liu, F.Z.; Li, J.S. Biodiversity conservation in China: A review of recent studies and practices. Environ. Sci. Ecotechnology 2020, 2, 100025. [Google Scholar] [CrossRef]
- Whittaker, R.H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 1960, 30, 279–338. [Google Scholar] [CrossRef]
- He, Y.H.; Yan, M.; Zhang, Q.D.; Zhang, Z.F.; Miao, Y.M.; Bi, R.C. Altitudinal pattern of plant species diversity in the Wulu Mountain Nature Reserve, Shanxi, China. Acta Ecol. Sin. 2013, 33, 2452–2462. [Google Scholar] [CrossRef]
- Graham, C.H.; Fine, P.V. Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time. Ecol. Lett. 2008, 11, 1265–1277. [Google Scholar] [CrossRef]
- Liu, X.J.; Tan, N.D.; Zhou, G.Y.; Zhang, D.Q.; Zhang, Q.M.; Liu, S.Z.; Chu, G.W.; Liu, J.X. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil 2021, 464, 257–272. [Google Scholar] [CrossRef]
- Socolar, J.B.; Gilroy, J.J.; Kunin, W.E.; Edwards, D.P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 2016, 31, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Giron, J.; Fernandez-Alaez, C.; Fernandez-Alaez, M.; Alahuhta, J. Untangling the assembly of macrophyte metacommunities by means of taxonomic, functional and phylogenetic beta diversity patterns. Sci. Total Environ. 2019, 693, 133616. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Jiang, L.M.; Hou, Z.F.; Zhang, J.; Wang, H.F.; Lv, G.H. Environmental filtration and dispersal limitation explain different aspects of beta diversity in desert plant communities. Glob. Ecol. Conserv. 2022, 33, e01956. [Google Scholar] [CrossRef]
- Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19, 134–143. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Cardoso, P.; Borges, P.A.V.; Schmera, D.; Podani, J. Measuring fractions of beta diversity and their relationships to nestedness: A theoretical and empirical comparison of novel approaches. Oikos 2013, 122, 825–834. [Google Scholar] [CrossRef]
- Si, X.F.; Zhao, Y.H.; Chen, C.W.; Ren, P.; Zeng, D.; Wu, L.B.; Ding, P. Beta-diversity partitioning: Methods, applications and perspectives. Biodivers. Sci. 2017, 25, 464–480. [Google Scholar] [CrossRef]
- Chen, G.G.; Wang, W.Q.; Zhang, Y.M.; Liu, Y.; Gu, X.; Shi, X.F.; Wang, M. Abundant and rare species may invoke different assembly processes in response to climate extremes: Implications for biodiversity conservation. Ecol. Indic. 2020, 117, 106716. [Google Scholar] [CrossRef]
- Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Glob. Ecol. Biogeogr. 2014, 23, 1324–1334. [Google Scholar] [CrossRef]
- Leprieur, F.; Tedesco, P.A.; Hugueny, B.; Beauchard, O.; Dürr, H.H.; Brosse, S.; Oberdorff, T. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett. 2011, 14, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Bergamin, R.S.; Bastazini, V.A.G.; Vélez-Martin, E.; Debastiani, V.; Zanini, K.J.; Loyola, R.; Müller, S.C. Linking beta diversity patterns to protected areas: Lessons from the Brazilian Atlantic Rainforest. Biodivers. Conserv. 2017, 26, 1557–1568. [Google Scholar] [CrossRef]
- Fu, H.; Yuan, G.X.; Jeppesen, E.; Ge, D.B.; Li, W.; Zou, D.S.; Huang, Z.R.; Liu, Q.L. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. Sci. Total Environ. 2019, 687, 206–217. [Google Scholar] [CrossRef]
- García-Girón, J.; Heino, J.; Baastrup-Spohr, L.; Bove, C.P.; Clayton, J.; de Winton, M.; Feldmann, T.; Fernández-Aláez, M.; Ecke, F.; Grillas, P.; et al. Global patterns and determinants of lake macrophyte taxonomic, functional and phylogenetic beta diversity. Sci. Total Environ. 2020, 723, 138021. [Google Scholar] [CrossRef] [PubMed]
- Li, F.S.; Yan, Y.Z.; Zhang, J.N.; Zhang, Q.; Niu, J.M. Taxonomic, functional, and phylogenetic beta diversity in the Inner Mongolia grassland. Glob. Ecol. Conserv. 2021, 28, e01634. [Google Scholar] [CrossRef]
- He, Y.; Liang, S.; Liu, R.; Jiang, Y. Beta Diversity patterns unlock the community assembly of woody plant communities in the Riparian Zone. Forests 2022, 13, 673. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C.; Fortelius, M.; Borges, P.A.V.; Podani, J.; Schmera, D. Partitioning taxon, phylogenetic and functional beta diversity into replacement and richness difference components. J. Biogeogr. 2014, 41, 749–761. [Google Scholar] [CrossRef]
- Hubbell, S. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32); Monographs in Population Biology, Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Clark, J.S. The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 2012, 27, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.M.; HilleRisLambers, J. The importance of niches for the maintenance of species diversity. Nature 2009, 461, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Xiang, W.S.; Wang, B.; Li, D.X.; Mallik, A.U.; Chen, H.Y.H.; Huang, F.Z.; Ding, T.; Wen, S.J.; Lu, S.H.; et al. Partitioning beta diversity in a tropical karst seasonal rainforest in Southern China. Sci. Rep. 2018, 8, 17408. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Jin, Y.; Leprieur, F.; Wang, X.L.; Deng, T. Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for large-scale angiosperm assemblages in China. Ecography 2020, 43, 1706–1716. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Geekiyanage, N.; Goodale, U.M.; Cao, K.; Kitajima, K. Plant ecology of tropical and subtropical karst ecosystems. Biotropica 2019, 51, 626–640. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wang, B.; Mallik, A.U.; Huang, F.Z.; Xiang, W.S.; Ding, T.; Wem, S.J.; He, L.Y.; Li, X.K. Topographic species–habitat associations of tree species in a heterogeneous tropical karst seasonal rain forest, China. J. Plant Ecol. 2017, 10, 450–460. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wang, B.; Li, D.X.; Mallik, A.U.; Xiang, W.S.; Ding, T.; Wen, S.J.; Lu, S.H.; Huang, F.Z.; He, Y.L.; et al. Effects of topography and spatial processes on structuring tree species composition in a diverse heterogeneous tropical karst seasonal rainforest. Flora 2017, 231, 21–28. [Google Scholar] [CrossRef]
- Guo, Y.L.; Li, D.X.; Wang, B.; Bai, K.D.; Xiang, W.S.; Li, X.K. C, N and P stoichiometric characteristics of soil and litter fall for six common tree species in a northern tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodivers. Sci. 2017, 25, 1085–1094. [Google Scholar] [CrossRef]
- Rahman, I.U.; Hart, R.E.; Ijaz, F.; Afzal, A.; Iqbal, Z.; Calixto, E.S.; Abd_Allah, F.E.; Alqarawi, A.A.; Hashem, A.; Al-Arjani, A.F.; et al. Environ-mental variables drive plant species composition and distribution in the moist temper-ate forests of Northwestern Himalaya, Pakistan. PLoS ONE 2022, 17, e0260687. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, M.; Qi, L.; Zhao, C.; Zhang, W.; Zhang, Y.; Wen, W.; Yuan, J. Coupled Relationship between soil physicochemical properties and plant diversity in the process of vegetation restoration. Forests 2022, 13, 648. [Google Scholar] [CrossRef]
- Yang, J.; Yan, D.; Yang, Q.J.; Gong, S.H.; Shi, Z.M.; Qiu, Q.J.; Huang, S.J.; Zhou, S.F.; Hu, M.L. Fish species composition, distribution and community structure in the Fuhe River Basin, Jiangxi Province, China. Glob. Ecol. Conserv. 2021, 27, e01559. [Google Scholar] [CrossRef]
- Xu, Y.J.; Lin, D.M.; Shi, M.; Xie, Y.J.; Wang, Y.Z.; Guan, Z.H.; Xiang, J.Y. Spatial heterogeneity and its causes in evergreen broad-leaved forests in the Ailao Mountains, Yunnan Province. Biodivers. Sci. 2017, 25, 23–33. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package ‘Vegan’—Community Ecology Package. 2019. Available online: https://cran.r-project.org/web/packages/vegan/vegan.pdf (accessed on 26 September 2021).
- Jin, Y.; Qian, H.V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 2019, 42, 1353–1359. [Google Scholar] [CrossRef]
- Cardoso, P.; Rigal, F.; Carvalho, J.C. BAT–Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 2015, 6, 232–236. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Karney, C.; Williams, E.; Vennes, C. Package “Geosphere”: Spherical Trigonometry. 2021. Available online: https://cran.r-project.org/web/packages/geosphere/geosphere.pdf (accessed on 15 March 2022).
- Qiu, Y.; Zhang, J.T. The ordination axes clustering based on detrended canonical correspondence analysis ordination and its application to the analysis of the ecological gradients of plant communities. Acta Ecol. Sin. 2000, 2, 199–206. [Google Scholar] [CrossRef]
- Yu, M.; Zhou, Z.Y.; Kang, F.F.; Ouyang, S.; Mi, X.C.; Sun, J.X. Gradient analysis and environmental interpretation of understory herb-layer communities in Xiaoshegou of Lingkong Mountain, Shanxi, China. Chin. J. Plant Ecol. 2013, 37, 373–383. [Google Scholar] [CrossRef]
- Soininen, J.; Heino, J.; Wang, J.J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 2018, 27, 96–109. [Google Scholar] [CrossRef]
- Yates, C.J.; Robinson, T.; Wardell-Johnson, G.W.; Keppel, G.; Hopper, S.D.; Schut, A.G.T.; Byrne, M. High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecol. Evol. 2019, 9, 7660–7675. [Google Scholar] [CrossRef] [PubMed]
- Angeler, D.G. Revealing a conservation challenge through partitioned long-term beta diversity: Increasing turnover and decreasing nestedness of boreal lake meta-communities. Divers. Distrib. 2013, 19, 772–781. [Google Scholar] [CrossRef]
- Batista, C.B.; de Lima, I.P.; Lima, M.R. Beta diversity patterns of bats in the Atlantic Forest: How does the scale of analysis affect the importance of spatial and environmental factors? J. Biogeogr. 2021, 48, 1–10. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, G.; Zhu, J.; Ni, J. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. J. Plant Ecol. 2013, 6, 131–140. [Google Scholar] [CrossRef]
- Li, Y.; Luo, X.; Li, J. Habitat heterogeneity in karst environments influences the proportion and distribution of random framework. Ecol. Indic. 2022, 143, 109387. [Google Scholar] [CrossRef]
- Qian, H.; Swenson, N.G.; Zhang, J. Phylogenetic beta diversity of angiosperms in North America. Glob. Ecol. Biogeogr. 2013, 22, 1152–1161. [Google Scholar] [CrossRef]
- Zhao, Z.; He, L.; Li, G.; Ma, S.; Cui, M.; Liu, Y.; Chai, Y. Partitioning beta diversity of dry and hot valley vegetation in the Nujiang River in Southwest China. Front. Ecol. Evol. 2023, 11, 1199874. [Google Scholar] [CrossRef]
- de Paula, L.F.A.; Colmenares-Trejos, S.L.; Negreiros, D.; Rosado, B.H.P.; Arcoverde de Mattos, E.; de Bello, F.; Porembski, S.; Silveira, F.A. High plant taxonomic beta diversity and functional and phylogenetic convergence between two Neotropical inselbergs. Plant Ecol. Divers. 2020, 13, 61–73. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Wang, J.M.; Xia, Y.G.; Li, J.W.; Jia, X.H.; Bo, W. Effects of environmental filtering and dispersal limitation on the β-diversity of plant communities in the south fringe of Kumtag Desert. J. Desert Res. 2021, 41, 147–154. [Google Scholar]
- Yu, C.T.; Xiao, H.; Fan, C.Y.; Zhang, C.Y.; Zhao, X.H.; Kuang, W.N.; Chen, B.B. Decomposition of β-diversity and its driving factors in shrub communities in Northeast Qinghai Province. Chin. J. Appl. Environ. Biol. 2023, 29, 515–522. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Y.B.; Dong, G.; Zhang, F. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China. Chin. J. Plant Ecol. 2019, 43, 762–773. [Google Scholar] [CrossRef]
- Zeng, X.H.; Zhang, W.J.; Song, Y.G.; Shen, H.T. Slope aspect and slope position have effects on plant diversity and spatial distribution in the hilly region of Mount Taihang, North China. J. Food Agric. Environ. 2014, 12, 391–397. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.S.; Li, X.K.; Xiang, W.S.; Ding, T.; Huang, F.Z.; Lu, S.H.; Han, W.H.; Wen, S.J.; He, L.J. Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. Biodivers. Sci. 2014, 22, 141–156. [Google Scholar] [CrossRef]
- Rahman, I.U.; Afzal, A.; Iqbal, Z.; Bussmann, R.W.; Alsamadany, H.; Calixto, E.S.; Shah, G.M.; Kauser, R.; Shah, M.; Ali, N.; et al. Ecological gradients hosting plant communities in Himalayan subalpine pastures: Application of multivariate approaches to identify indicator species. Ecol. Inform. 2020, 60, 101162. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Fang, J.Y. A review on the elevational patterns of plant species diversity. Biodivers. Sci. 2004, 12, 20–28. [Google Scholar] [CrossRef]
- Trigas, P.; Panitsa, M.; Tsiftsis, S. Elevational gradient of vascular plant species richness and endemism in Crete–the effect of post-isolation mountain uplift on a con-tinental island system. PLoS ONE 2013, 8, e59425. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Li, X.Z.; Cao, H.L.; Li, C.N.; Wang, R.L.; Wang, C.H.; Yao, M.J.; Zhou, S.G.; Wang, J.M. Local community assembly processes shape β-diversity of soil phoD-harbouring communities in the Northern Hemisphere steppes. Glob. Ecol. Biogeogr. 2021, 30, 2273–2285. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Dai, M.X.; Zhou, X.H.; Lin, X.; Mao, S.Q.; Yan, X.J. Effects of environmental factors on β diversity of zooplankton community in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay, Zhejiang, China. Chin. J. Appl. Ecol. 2015, 26, 2543–2552. [Google Scholar] [CrossRef]
Layer | Slope Position | Depression | Lower Slope | Middle Slope | Upper Slope |
---|---|---|---|---|---|
Herb layer | Depression | 56 | 38 | 31 | |
Lower slope | 0.306 | 46 | 33 | ||
Middle slope | 0.217 | 0.277 | 37 | ||
Upper slope | 0.141 | 0.152 | 0.198 | ||
Shrub layer | Depression | 26 | 14 | 16 | |
Lower slope | 0.313 | 23 | 21 | ||
Middle slope | 0.169 | 0.377 | 18 | ||
Upper slope | 0.139 | 0.216 | 0.205 | ||
Tree layer | Depression | 49 | 41 | 28 | |
Lower slope | 0.308 | 50 | 39 | ||
Middle slope | 0.225 | 0.318 | 44 | ||
Upper slope | 0.132 | 0.211 | 0.226 |
Explanatory Variables | Herb Layer | Shrub Layer | Tree Layer | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | NMDS1 | NMDS2 | R2 | p | |
SP | 0.963 | 0.268 | 0.652 | 0.005 | 0.946 | 0.325 | 0.652 | 0.008 | 0.992 | 0.125 | 0.726 | 0.007 |
AP | −0.926 | −0.377 | 0.313 | 0.005 | −0.993 | −0.121 | 0.248 | 0.009 | −0.975 | 0.223 | 0.287 | 0.007 |
AK | −0.981 | −0.195 | 0.283 | 0.005 | −0.729 | 0.684 | 0.271 | 0.009 | −0.811 | 0.585 | 0.303 | 0.007 |
NH4+-N | −0.936 | −0.353 | 0.189 | 0.040 | −0.828 | 0.561 | 0.124 | 0.106 | −0.954 | 0.300 | 0.199 | 0.025 |
EMg | 0.614 | 0.790 | 0.114 | 0.140 | 0.459 | 0.888 | 0.244 | 0.009 | 0.560 | 0.828 | 0.249 | 0.007 |
pH | 1.000 | −0.006 | 0.194 | 0.045 | 0.494 | 0.869 | 0.288 | 0.009 | 0.670 | 0.742 | 0.284 | 0.007 |
SOM | 0.988 | −0.155 | 0.149 | 0.072 | 0.984 | 0.176 | 0.238 | 0.010 | 0.972 | 0.236 | 0.240 | 0.007 |
SWC | −0.808 | −0.589 | 0.519 | 0.005 | −0.990 | 0.141 | 0.484 | 0.008 | −0.965 | −0.263 | 0.563 | 0.007 |
SA | 0.621 | −0.784 | 0.025 | 0.632 | 0.372 | −0.928 | 0.087 | 0.189 | 0.893 | −0.450 | 0.016 | 0.741 |
SD | 0.732 | 0.681 | 0.658 | 0.005 | 0.769 | 0.639 | 0.604 | 0.008 | 0.858 | 0.513 | 0.704 | 0.007 |
ROR | 0.570 | 0.822 | 0.288 | 0.017 | 0.507 | 0.862 | 0.490 | 0.008 | 0.570 | 0.822 | 0.597 | 0.007 |
Slope Position | Environmental Factors | Environmental Factors (Geographic Distance) | Geographic Distance | Geographic Distance (Environmental Factors) | |
---|---|---|---|---|---|
Hβtotal | 0.431 ** | 0.361 ** | 0.341 ** | 0.192 ** | 0.148 ** |
Sβtotal | 0.412 ** | 0.325 ** | 0.310 ** | 0.142 ** | 0.099 * |
Tβtotal | 0.444 ** | 0.406 ** | 0.393 ** | 0.144 * | 0.090 * |
HPβtotal | 0.424 ** | 0.383 ** | 0.361 ** | 0.249 ** | 0.209 ** |
SPβtotal | 0.356 ** | 0.231 ** | 0.216 ** | 0.122 * | 0.090 |
TPβtotal | 0.486 ** | 0.491 ** | 0.476 ** | 0.190 ** | 0.133 ** |
Explanatory Variables | Herb Layer | Shrub Layer | Tree Layer | |||
---|---|---|---|---|---|---|
R2 | p (>F) | R2 | p (>F) | R2 | p (>F) | |
AP | 0.044 | *** | 0.046 | *** | 0.050 | *** |
AK | 0.034 | ** | 0.034 | ** | 0.033 | * |
EMg | 0.029 | ns | 0.034 | * | 0.034 | * |
NH4+-N | 0.032 | * | 0.027 | ns | 0.029 | ns |
pH | 0.036 | ** | 0.035 | ** | 0.039 | ** |
SOM | 0.030 | * | 0.039 | ** | 0.036 | ** |
SWC | 0.029 | ns | 0.032 | * | 0.033 | * |
SA | 0.025 | ns | 0.024 | ns | 0.027 | ns |
SD | 0.031 | * | 0.028 | ns | 0.032 | * |
ROR | 0.027 | ns | 0.029 | ns | 0.033 | * |
Residual | 0.682 | 0.672 | 0.654 |
Explanatory Variables | Herb Layer | Shrub Layer | Tree Layer | |||
---|---|---|---|---|---|---|
R2 | p (>F) | R2 | p (>F) | R2 | p (>F) | |
AP | 0.048 | *** | 0.041 | ** | 0.066 | *** |
AK | 0.031 | * | 0.036 | * | 0.034 | * |
EMg | 0.033 | * | 0.030 | ns | 0.036 | * |
NH4+-N | 0.036 | ** | 0.028 | ns | 0.035 | * |
pH | 0.041 | *** | 0.044 | *** | 0.049 | ** |
SOM | 0.033 | * | 0.039 | * | 0.055 | *** |
SWC | 0.030 | ns | 0.039 | * | 0.040 | ** |
SA | 0.026 | ns | 0.025 | ns | 0.032 | * |
SD | 0.036 | ** | 0.027 | ns | 0.032 | * |
ROR | 0.031 | * | 0.025 | ns | 0.034 | * |
Residual | 0.656 | 0.665 | 0.587 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Pang, Q.; Hu, C.; Xu, C.; Zhang, Z.; Zhong, C. Beta Diversity Patterns and Determinants among Vertical Layers of Tropical Seasonal Rainforest in Karst Peak-Cluster Depressions. Forests 2024, 15, 365. https://doi.org/10.3390/f15020365
Hu G, Pang Q, Hu C, Xu C, Zhang Z, Zhong C. Beta Diversity Patterns and Determinants among Vertical Layers of Tropical Seasonal Rainforest in Karst Peak-Cluster Depressions. Forests. 2024; 15(2):365. https://doi.org/10.3390/f15020365
Chicago/Turabian StyleHu, Gang, Qingling Pang, Cong Hu, Chaohao Xu, Zhonghua Zhang, and Chaofang Zhong. 2024. "Beta Diversity Patterns and Determinants among Vertical Layers of Tropical Seasonal Rainforest in Karst Peak-Cluster Depressions" Forests 15, no. 2: 365. https://doi.org/10.3390/f15020365
APA StyleHu, G., Pang, Q., Hu, C., Xu, C., Zhang, Z., & Zhong, C. (2024). Beta Diversity Patterns and Determinants among Vertical Layers of Tropical Seasonal Rainforest in Karst Peak-Cluster Depressions. Forests, 15(2), 365. https://doi.org/10.3390/f15020365