Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Research Area
2.2. Sample Collection
2.3. Measurement of Traits
2.4. Data Processing and Analysis
3. Results
3.1. Analysis of Variance of Wood Traits of Cunninghamia lanceolata at Different Altitudes
3.2. Principal Component Analysis and Cluster Analysis of Wood Traits of Cunninghamia lanceolata at Different Altitudes
3.2.1. Principal Component Analysis of Cunninghamia lanceolata Wood Traits at Different Altitudes
3.2.2. Cluster Analysis of Wood Traits of Cunninghamia lanceolata at Different Altitudes
3.3. Correlation between Cunninghamia lanceolata Wood Traits and Altitude Climate Factors at Different Altitudes
3.3.1. Correlation Analysis between Wood Traits of Cunninghamia lanceolata at Different Altitudes
3.3.2. Correlation Analysis of Wood Traits of Cunninghamia lanceolata at Different Altitudes with Altitude Climatic Factors
3.3.3. Mantel Test of Cunninghamia lanceolata Populations at Different Altitudes with Altitudinal Climatic Factors
3.4. Random Forest Analysis of Wood Traits of Cunninghamia lanceolata at Different Altitudes
4. Discussion
4.1. Analysis of Variation in Wood Traits of Cunninghamia lanceolata at Different Altitudes
4.2. Variation Patterns of Wood Traits and Ecological Adaptations of Cunninghamia lanceolata at Different Altitudes
4.3. Analysis of the Contribution Rate of Altitude Climatic Factors to the Variation of Wood Traits of Cunninghamia lanceolata
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, C.W.; Peng, L.H.; Ma, D.X.; Wang, J.Q.; Jiang, X.Q.; Jiang, X.G.; Ma, X.Q.; Lin, K. Effects of Thinning on Soil Microbial Necromass Carbon in Cunninghamia lanceolata Plantation. Sci. Silvae Sin. 2023, 59, 41–52. [Google Scholar] [CrossRef]
- Li, Y.X. Genetic Diversity and Genetic Differentiation of Geographic Seed Sources of Cunninghamia lanceolata. Master’s Thesis, Chinese Academy of Forestry Sciences, Beijing, China, 2015. [Google Scholar]
- Li, Y.; Li, M.; Li, C.; Liu, Z. Optimized Maxent Model Predictions of Climate Change Impacts on the Suitable Distribution of Cunninghamia lanceolata in China. Forests 2020, 11, 302. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, J.Y.; Shi, J.T.; Xu, Q.Q.; Xu, Z.K.; Huang, F. Wood Anatomical Characteristics and Physical—Mechanical Properties of Dark—Brown Heart Cunningham lanceolate from Hunan. J. Southwest For. Univ. (Nat. Sci.) 2021, 41, 155–160. [Google Scholar]
- You, R.; Zhu, N.; Deng, X.; Wang, J.; Liu, F. Variation in Wood Physical Properties and Effects of Climate for Different Geographic Sources of Chinese Fir in Subtropical Area of China. Sci. Rep. 2021, 11, 4664. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yu, C.; Cheng, S.D.; Xu, Q.L.; Ma, X.Q.; Li, M. Comparison of Early Growth and Lateral Branch Development in Characteristics of Cunninghamia lanceolata Clones. J. For. Environ. 2023, 43, 561–568. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, J.Y.; Yao, X.Q.; Lin, Q.; Long, Y.Z. Research and Development Countermeasures on Precious Indigenous Timber Tree Species in Hunan Province. Hunan For. Sci. Technol. 2012, 40, 1–4. [Google Scholar] [CrossRef]
- Wang, J. Genetic and Variations of Black Heartwood of Cunninghamia lanceolata. Master’s Thesis, Central South Forestry University of Science and Technology, Changsha, China, 2018. [Google Scholar] [CrossRef]
- Hunag, R.C.; Zhu, N.H.; Yang, J.; Yang, X.W. Research on Cone and Seed Qualities among Different Families of Black-heart Wood Cunninghamia lanceolata. Hunan For. Sci. Technol. 2021, 48, 40–44. [Google Scholar] [CrossRef]
- Yang, X.W. Construction of Parent Population for Breeding Programme in the Black-Heart Wood Cunninghamia lanceolata. Master’s Thesis, Central South Forestry University of Science and Technology, Changsha, China, 2021. [Google Scholar] [CrossRef]
- Yang, X.W.; Zhu, N.H.; Han, Z.Q.; Liu, T.Y.; Li, H.; Yang, J.; Zhu, X.C. Identification of Paternal Parents of Half-sib Progeny Superior Plants of the Black-heart Wood Cunninghamia lanceolata. J. Cent. South Univ. For. Technol. 2021, 41, 26–35. [Google Scholar] [CrossRef]
- Zhu, N.; Yang, X.; Han, Z.; Can, X. Research Progress on Cunninghamia lanceolata. In Conifers—Recent Advances; Cristina Gonçalves, A., Fonseca, T., Eds.; IntechOpen: Chongqing, China, 2022. [Google Scholar] [CrossRef]
- Hu, S.R.; Xia, M.; Guo, C.Y.; Lu, X.C. Overview of Research Methods on Genetic Diversity of Forest Trees. J. Northeast For. Univ. 2001, 29, 72–75. [Google Scholar]
- Wen, Y.F.; Han, W.J.; Wu, S. Plant Genetic Diversity and its Influencing Factors. J. Cent. South Univ. For. Technol. 2010, 30, 80–87. [Google Scholar]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.J.; Underwood, N.; Vellend, M. Ecological Consequences of Genetic Diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef]
- Ma, D.C.; Wang, L.H.; Liang, J. Research Progress on Application of Morphological Markers in Plants. Jiangsu Agric. Sci. 2022, 50, 55–62. [Google Scholar] [CrossRef]
- Alcántara-Ayala, O.; Oyama, K.; Ríos-Muñoz, C.A.; Rivas, G.; Ramirez-Barahona, S.; Luna-Vega, I. Morphological Variation of Leaf Traits in the Ternstroemia lineata Species Complex (Ericales: Penthaphylacaceae) in Response to Geographic and Climatic Variation. PeerJ 2020, 8, e8307. [Google Scholar] [CrossRef]
- Albarrán-Lara, A.L.; Petit, R.J.; Kremer, A.; Caron, H.; Peñaloza-Ramírez, J.M.; Gugger, P.F.; Dávila-Aranda, P.D.; Oyama, K. Low Genetic Differentiation between Two Morphologically and Ecologically Distinct Giant-Leaved Mexican Oaks. Plant Syst. Evol. 2019, 305, 89–101. [Google Scholar] [CrossRef]
- Bai, T.D.; Yu, C.L.; Gan, Z.C.; Lai, H.R.; Yang, Y.C.; Huang, H.C.; Jiang, W.X. Association of Cone and Seed Traits of Pinus yunnanensis var. tenuifolia with Geo-meteorological Factors. Chin. J. Plant Ecol. 2020, 44, 1224–1235. [Google Scholar] [CrossRef]
- Zhang, T.J.; Chen, X.H.; Kang, X.K.; Liu, J. Phenotypic Diversity of Leaf Morphologic Traits of Davidia involucrata Natural Populations in Sichuan Province. Chin. J. Ecol. 2019, 38, 35–43. [Google Scholar] [CrossRef]
- Yan, Y.; Li, B.J.; He, Z.M.; Liu, Y.H.; Li, M.; Yu, X.T.; Ma, X.Q. Comparative Research of Wood Properties of Cunninghamia lanceolate from Different Seed Sources. For. Res. 2021, 34, 49–57. [Google Scholar] [CrossRef]
- Petit, G.; Anfodillo, T.; Carraro, V.; Grani, F.; Carrer, M. Hydraulic Constraints Limit Height Growth in Trees at High Altitude. New Phytol. 2011, 189, 241–252. [Google Scholar] [CrossRef]
- Gebauer, R.; Volařík, D.; Urban, J.; Børja, I.; Nagy, N.E.; Eldhuset, T.D.; Krokene, P. Effects of Different Light Conditions on the Xylem Structure of Norway Spruce Needles. Trees 2012, 26, 1079–1089. [Google Scholar] [CrossRef]
- D’Orangeville, L.; Côté, B.; Houle, D.; Morin, H.; Duchesne, L. A Three-Year Increase in Soil Temperature and Atmospheric N Deposition Has Minor Effects on the Xylogenesis of Mature Balsam Fir. Trees 2013, 27, 1525–1536. [Google Scholar] [CrossRef]
- Dufour, B.; Morin, H. Climatic Control of Tracheid Production of Black Spruce in Dense Mesic Stands of Eastern Canada. Tree Physiol. 2013, 33, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Navarro, M.; Oyama, K.; García-Oliva, F.; Torres-Miranda, A.; De La Riva, E.G.; Terrazas, T. The Role of Wood Anatomical Traits in the Coexistence of Oak Species along an Environmental Gradient. AoB Plants 2021, 13, plab066. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Jiang, Z.; Yue, X.; Guo, W.; Liu, Y.; Cao, J.; Li, W.; Wu, F.; Cai, Z.; Zhu, H.; et al. Recent Frontiers of Climate Changes in East Asia at Global Warming of 1.5 °C and 2 °C. npj Clim. Atmos. Sci. 2022, 5, 80. [Google Scholar] [CrossRef]
- Mary Petritan, A.; Beloiu Schwenke, M. Forest Functioning under Climate Warming and Future Perspectives on Forest Disturbances. Forests 2023, 14, 2302. [Google Scholar] [CrossRef]
- Harrington, C.A.; Gould, P.J.; Cronn, R. Site and Provenance Interact to Influence Seasonal Diameter Growth of Pseudotsuga menziesii. Front. For. Glob. Chang. 2023, 6, 1173707. [Google Scholar] [CrossRef]
- Harrington, C.A.; Dang, Q.-L.; Man, R.; Inoue, S.; Tedla, B. Editorial: Changing Seasons: How Is Global Warming Affecting Forest Phenology? Front. For. Glob. Chang. 2023, 6, 1257096. [Google Scholar] [CrossRef]
- Jiang, A.P.; Jiang, J.M.; Liu, J. Responses of Leaf Traits of Sassafras tsumu (Hemsl.) Hemsl along an Altitudinal Gradient. J. Ecol. 2016, 35, 1467–1474. [Google Scholar] [CrossRef]
- Shen, D.; Bo, W.; Xu, F.; Wu, R. Genetic Diversity and Population Structure of the Tibetan Poplar (Populus szechuanica Var. tibetica) along an Altitude Gradient. BMC Genet. 2014, 15, S11. [Google Scholar] [CrossRef]
- Reisch, C.; Rosbakh, S. Patterns of Genetic Variation in European Plant Species Depend on Altitude. Divers. Distrib. 2021, 27, 157–163. [Google Scholar] [CrossRef]
- Dang, H.; Zhang, Y.; Zhang, K.; Jiang, M.; Zhang, Q. Climate-Growth Relationships of Subalpine Fir (Abies fargesii) across the Altitudinal Range in the Shennongjia Mountains, Central China. Clim. Chang. 2013, 117, 903–917. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y.; Zhao, S.; Kang, X.; Zhang, W.; Liu, T. Lingering Response of Radial Growth of Picea Crassifolia to Climate at Different Altitudes in the Qilian Mountains, Northwest China. Trees 2017, 31, 455–465. [Google Scholar] [CrossRef]
- Carrer, M.; Castagneri, D.; Prendin, A.L.; Petit, G.; Von Arx, G. Retrospective Analysis of Wood Anatomical Traits Reveals a Recent Extension in Tree Cambial Activity in Two High-Elevation Conifers. Front. Plant Sci. 2017, 8, 737. [Google Scholar] [CrossRef]
- Keleş, S.Ö. The Effect of Altitude on the Growth and Development of Trojan fir (Abies nordmanniana subsp. equi-trojani [Asch. & Sint. ex Boiss] Coode & Cullen) Saplings. Cerne 2020, 26, 381–392. [Google Scholar] [CrossRef]
- Cocozza, C.; Palombo, C.; Tognetti, R.; La Porta, N.; Anichini, M.; Giovannelli, A.; Emiliani, G. Monitoring Intra-Annual Dynamics of Wood Formation with Microcores and Dendrometers in Picea Abies at Two Different Altitudes. Tree Physiol. 2016, 36, 832–846. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Liu, Y.; Qian, H.; Liu, R. Inverse Effects of Recent Warming on Trees Growing at the Low and High Altitudes of the Dabie Mountains, Subtropical China. Dendrochronologia 2020, 59, 125649. [Google Scholar] [CrossRef]
- Zhuang, L.; Axmacher, J.C.; Sang, W. Different Radial Growth Responses to Climate Warming by Two Dominant Tree Species at Their Upper Altitudinal Limit on Changbai Mountain. J. For. Res. 2017, 28, 795–804. [Google Scholar] [CrossRef]
- Plant Intelligence. Available online: https://www.iplant.cn/info/%E6%9D%89%E6%9C%A8 (accessed on 25 December 2023).
- Gong, H.; Yang, M.; Wang, C.; Tian, C. Leaf Phenotypic Variation and Its Response to Environmental Factors in Natural Populations of Eucommia Ulmoides. BMC Plant Biol. 2023, 23, 562. [Google Scholar] [CrossRef]
- Xu, M.; Ren, H.Q.; Guo, W. Research Progress of Variation for Wood Properties Cunninghamia lanceolata. J. Northwest Coll. For. 2008, 185–189. [Google Scholar]
- Wimmer, R. Wood Anatomical Features in Tree-Rings as Indicators of Environmental Change. Dendrochronologia 2002, 20, 21–36. [Google Scholar] [CrossRef]
- Nagavciuc, V.; Mursa, A.; Ionita, M.; Sfeclă, V.; Popa, I.; Roibu, C.-C. An Overview of Extreme Years in Quercus Sp. Tree Ring Records from the Northern Moldavian Plateau. Forests 2023, 14, 894. [Google Scholar] [CrossRef]
- Iglesias, C.; Santos, A.; Martínez, J.; Pereira, H.; Anjos, O. Influence of Heartwood on Wood Density and Pulp Properties Explained by Machine Learning Techniques. Forests 2017, 8, 20. [Google Scholar] [CrossRef]
- Thybring, E.E.; Fredriksson, M. Wood Modification as a Tool to Understand Moisture in Wood. Forests 2021, 12, 372. [Google Scholar] [CrossRef]
- Arsić, J.; Stojanović, M.; Petrovičová, L.; Noyer, E.; Milanović, S.; Světlík, J.; Horáček, P.; Krejza, J. Increased Wood Biomass Growth Is Associated with Lower Wood Density in Quercus petraea (Matt.) Liebl. Saplings Growing under Elevated CO2. PLoS ONE 2021, 16, e0259054. [Google Scholar] [CrossRef]
- McDowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.; Aukema, B.H.; Bond-Lamberty, B.; Chini, L.; Clark, J.S.; Dietze, M.; Grossiord, C.; Hanbury-Brown, A.; et al. Pervasive Shifts in Forest Dynamics in a Changing World. Science 2020, 368, eaaz9463. [Google Scholar] [CrossRef] [PubMed]
- Ziemińska, K.; Butler, D.W.; Gleason, S.M.; Wright, I.J.; Westoby, M. Fibre Wall and Lumen Fractions Drive Wood Density Variation across 24 Australian Angiosperms. AoB Plants 2013, 5, plt046. [Google Scholar] [CrossRef]
- Yeboah, D.; Burton, A.J.; Storer, A.J.; Opuni-Frimpong, E. Variation in Wood Density and Carbon Content of Tropical Plantation Tree Species from Ghana. New For. 2014, 45, 35–52. [Google Scholar] [CrossRef]
- Bouriaud, O.; Leban, J.-M.; Bert, D.; Deleuze, C. Intra-Annual Variations in Climate Influence Growth and Wood Density of Norway Spruce. Tree Physiol. 2005, 25, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, J.; Nabavi, M.; Auty, D.; Schimleck, L.; Eberhardt, T.L. Models for Predicting the Within-Tree and Regional Variation of Tracheid Length and Width for Plantation Loblolly Pine. For. Int. J. For. Res. 2021, 94, 127–140. [Google Scholar] [CrossRef]
- Palla, B.; Ladányi, M.; Cseke, K.; Buczkó, K.; Höhn, M. Wood Anatomical Traits Reveal Different Structure of Peat Bog and Lowland Populations of Pinus sylvestris L. in the Carpathian Region. Forests 2021, 12, 494. [Google Scholar] [CrossRef]
- Xu, L.; Chen, G.X.; Zhang, D.G.; Li, X.T.; Zhang, Y. Flora of Seed Plants in Xiaoxi National Nature Reserve, Hunan, China. Acta Bot. Boreali-Occident. Sin. 2010, 30, 2307–2316. [Google Scholar]
- GB/T 1927314-2022; State Administration of Market Supervision, National Standardization Administration. Test Method for Physical and Mechanical Properties of Wood in Small Specimens without Defects Part 3: Determination of Growth Wheel Width and Latewood Rate. China Standard Press: Beijing, China, 2022.
- Duan, H.J.; Cao, S.; Zheng, H.; Hu, D.; Lin, J.; Lin, H.; Hu, R.; Sun, Y.; Li, Y. Variation in the Growth Traits and Wood Properties of Cunninghamia lanceolata from Six Provinces of Southern China. Forests 2016, 7, 192. [Google Scholar] [CrossRef]
- Xu, Y.L. Genetic Variation of Natural Population in Pinus yunnanensis Franch. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2015. [Google Scholar]
- Jiao, S.; Chen, W.; Wang, J.; Du, N.; Li, Q.; Wei, G. Soil Microbiomes with Distinct Assemblies through Vertical Soil Profiles Drive the Cycling of Multiple Nutrients in Reforested Ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Topaloğlu, E.; Ay, N.; Altun, L.; Serdar, B. Effect of Altitude and Aspect on Various Wood Properties of Oriental Beech (Fagus orientalis Lipsky) Wood. Turk. J. Agric. For. 2016, 40, 397–406. [Google Scholar] [CrossRef]
- Rocha, S.M.G.; Vidaurre, G.B.; Pezzopane, J.E.M.; Almeida, M.N.F.; Carneiro, R.L.; Campoe, O.C.; Scolforo, H.F.; Alvares, C.A.; Neves, J.C.L.; Xavier, A.C.; et al. Influence of Climatic Variations on Production, Biomass and Density of Wood in Eucalyptus Clones of Different Species. For. Ecol. Manag. 2020, 473, 118290. [Google Scholar] [CrossRef]
- Audigeos, D.; Buonamici, A.; Belkadi, L.; Rymer, P.; Boshier, D.; Scotti-Saintagne, C.; Vendramin, G.G.; Scotti, I. Aesqeaurchaaprtioclerins in the Wild: Natural Genetic Diversity and Selective Pressure in the PIP Gene Family in Five Neotropical Tree Species. BMC Evol. Biol. 2010, 10, 202. [Google Scholar] [CrossRef]
- Huang, R.; Zeng, W.; Deng, H.; Hu, D.; Wang, R.; Zheng, H. Inbreeding in Cunninghamia lanceolata: Insight into the Rare Self-Fertilizing Event from a Genetic View. Genes 2022, 13, 2105. [Google Scholar] [CrossRef]
- Silva-Montellano, A.; Eguiarte, L.E. Geographic Patterns in the Reproductive Ecology of Agave Lechuguilla (Agavaceae) in the Chihuahuan Desert. II. Genetic Variation, Differentiation, and Inbreeding Estimates. Am. J. Bot. 2003, 90, 700–706. [Google Scholar] [CrossRef]
- Jin, Z.X.; Li, J.M. Analysis of the Genetic Diversity of Hepatacodium miconioides at Different Altitude and in Tiantai Mountain in Zhejiang Province and its Relationship with Environmental Factors. J. Zhejiang Univ. (Sci. Ed.) 2005, 452–458. [Google Scholar] [CrossRef]
- Schellenberger Costa, D.; Gerschlauer, F.; Kiese, R.; Fischer, M.; Kleyer, M.; Hemp, A. Plant Niche Breadths along Environmental Gradients and Their Relationship to Plant Functional Traits. Divers. Distrib. 2018, 24, 1869–1882. [Google Scholar] [CrossRef]
- Zheng, G.B.; Ma, L.; Zhang, Z.M.; Li, M.L.; Liu, S.Y.; Zang, Y.N.; Sun, Y.; Ma, X.Y. Principal Component Analysis and Comprehensive Evaluation of Ningxia Wolfberry Fruits under Water Stress Conditions at Different Fertility Periods. Water Sav. Irrig. 2022, 47–57. [Google Scholar]
- Liang, K.L.; Jiang, W.Q.; Zhou, Z.Y.; Guo, X.; Li, X.Z.; Dai, W.A.; Wang, R.; Liu, X.Y. Variation in Main Morphological Characteristics of Amorpha fruticosa Plants in the Qinghai-Tibet Plateau. Acta Ecol. Sin. 2012, 32, 311–318. [Google Scholar] [CrossRef]
- Jia, Q.B.; Zhang, H.G.; Zhang, L. Variation in Carbon Conten of Hybrid larch Families and Superior Families Selection. J. Northeast For. Univ. 2016, 44, 1–6. [Google Scholar]
- Luo, J.X.; Li, X.Q.; Sun, P.; Wang, L.H.; Hu, G.R.; Wang, F.L.; Zheng, W. Variation Pattern of Tracheid and Wood Density in Natural Population of Picea asperata. J. Beijing For. Univ. 2004, 80–85. [Google Scholar]
- Ma, S.X.; Wang, J.H.; Zhang, S.T.; Sun, X.M.; Liang, B.S.; Zhou, D.Y.; Liu, S.M. Genetic Variation of Wood Properties in Japanese larch Clones. For. Res. 2008, 69–73. [Google Scholar]
- Yu, H.Y.; Pang, Z.Y.; Yin, C.H.; Ding, C.J.; Wang, F.S.; Zhang, J.W.; Wang, F.L.; Jin, P.L.; Fu, Z.X.; Qu, G.Z.; et al. Variation Analysis on the Growth and Wood Properties Variation of 100 Poplar Clones. J. Northeast For. Univ. 2023. [Google Scholar]
- Ramananantoandro, T.; Ramanakoto, M.F.; Rajoelison, G.L.; Randriamboavonjy, J.C.; Rafidimanantsoa, H.P. Influence of Tree Species, Tree Diameter and Soil Types on Wood Density and Its Radial Variation in a Mid-Altitude Rainforest in Madagascar. Ann. For. Sci. 2016, 73, 1113–1124. [Google Scholar] [CrossRef]
- Camarero, J.J.; Fernández-Pérez, L.; Kirdyanov, A.V.; Shestakova, T.A.; Knorre, A.A.; Kukarskih, V.V.; Voltas, J. Minimum Wood Density of Conifers Portrays Changes in Early Season Precipitation at Dry and Cold Eurasian Regions. Trees 2017, 31, 1423–1437. [Google Scholar] [CrossRef]
- Fang, S.; Sun, D.; Shang, X.; Fu, X.; Yang, W. Variation in Radial Growth and Wood Density of Cyclocarya Paliurus across Its Natural Distribution. New For. 2020, 51, 453–467. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, S.; Chen, S.; Xia, D.; Yang, C.; Zhao, X. Genetic Variation and Superior Provenances Selection for Wood Properties of Larix Olgensis at Four Trials. J. For. Res. 2022, 33, 1867–1879. [Google Scholar] [CrossRef]
- Jiang, A.P.; Jiang, J.M.; Liu, J. Genetic Diversity and Genetic Structure of Sassafras tsumu Populations along Altutudinal Gradients in Tianmushan Mountain, China. Chin. J. Appl. Ecol. 2016, 27, 1829–1836. [Google Scholar] [CrossRef]
- Zu, K.; Wang, Z. Research progress on the elevational distribution of mountain species in response to climate change. Biodivers. Sci. 2022, 30, 123–137. [Google Scholar] [CrossRef]
- Pan, H.L.; Li, M.H.; Cai, S.H.; Wu, J.; Du, Z.; Liu, X.L. Responses of Growth and Ecological of Plant to Altitude. Ecol. Environ. Sci. 2009, 18, 722–730. [Google Scholar] [CrossRef]
- Fajardo, A.; Piper, F.I.; García-Cervigón, A.I. The Intraspecific Relationship between Wood Density, Vessel Diameter and Other Traits across Environmental Gradients. Funct. Ecol. 2022, 36, 1585–1598. [Google Scholar] [CrossRef]
- Du, Q.; Gong, C.; Wang, Q.; Zhou, D.; Yang, H.; Pan, W.; Li, B.; Zhang, D. Genetic Architecture of Growth Traits in Populus Revealed by Integrated Quantitative Trait Locus (QTL) Analysis and Association Studies. New Phytol. 2016, 209, 1067–1082. [Google Scholar] [CrossRef] [PubMed]
- Bouslimi, B.; Koubaa, A.; Bergeron, Y. Intra-Ring Variations and Interrelationships for Selected Wood Anatomical and Physical Properties of Thuja occidentalis L. Forests 2019, 10, 339. [Google Scholar] [CrossRef]
- Almeida, M.N.F.D.; Vidaurre, G.B.; Pezzopane, J.E.M.; Lousada, J.L.P.C.; Silva, M.E.C.M.; Câmara, A.P.; Rocha, S.M.G.; Oliveira, J.C.L.D.; Campoe, O.C.; Carneiro, R.L.; et al. Heartwood Variation of Eucalyptus Urophylla Is Influenced by Climatic Conditions. For. Ecol. Manag. 2020, 458, 117743. [Google Scholar] [CrossRef]
- Olano, J.M.; Almería, I.; Eugenio, M.; Von Arx, G. Under Pressure: How a M Editerranean High-mountain Forb Coordinates Growth and Hydraulic Xylem Anatomy in Response to Temperature and Water Constraints. Funct. Ecol. 2013, 27, 1295–1303. [Google Scholar] [CrossRef]
- Fonti, P.; Bryukhanova, M.V.; Myglan, V.S.; Kirdyanov, A.V.; Naumova, O.V.; Vaganov, E.A. Temperature-induced Responses of Xylem Structure of Larix sibirica (Pinaceae) from the Russian Altay. Am. J. Bot. 2013, 100, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.P.; Guo, M.H. Response of Wood Tracheid Morphological Features of Pinus koraiensis Plantation to Climate Change. J. Northeast For. Univ. 2009, 37, 1–4. [Google Scholar]
- Zhu, L.J.; Li, Z.S.; Wang, X.C. Anatomical Characteristics of Xylem in Tree Rings and its Relationship with Environmental. Chin. J. Plant Ecol. 2017, 41, 238–251. [Google Scholar] [CrossRef]
- Xu, J.M.; Zhang, R.; Lv, J.X.; Robert, E. Climatic Response in of Picea crassifolia along Elevation Gradient in Qilian Mountains, Northwestern China. J. Beijing For. Univ. 2015, 37, 102–108. [Google Scholar] [CrossRef]
- Xu, J.M.; Lu, J.X.; Bao, F.C.; Huang, R.F.; Zhao, Y.K. Influence of Climatic Factors on Wood Cell Structure. For. Sci. 2011, 47, 151–158. [Google Scholar]
- Castagneri, D.; Petit, G.; Carrer, M. Divergent Climate Response on Hydraulic-Related Xylem Anatomical Traits of Picea abies along a 900-m Altitudinal Gradient. Tree Physiol. 2015, 35, 1378–1387. [Google Scholar] [CrossRef]
- Nagelmüller, S.; Hiltbrunner, E.; Körner, C. Low Temperature Limits for Root Growth in Alpine Species Are Set by Cell Differentiation. AoB Plants 2017, 9, plx054. [Google Scholar] [CrossRef] [PubMed]
- Heilman, K.A.; Trouet, V.M.; Belmecheri, S.; Pederson, N.; Berke, M.A.; McLachlan, J.S. Increased Water Use Efficiency Leads to Decreased Precipitation Sensitivity of Tree Growth, but Is Offset by High Temperatures. Oecologia 2021, 197, 1095–1110. [Google Scholar] [CrossRef] [PubMed]
- Maxime, C.; Hendrik, D. Effects of Climate on Diameter Growth of Co-Occurring Fagus sylvatica and Abies alba along an Altitudinal Gradient. Trees 2011, 25, 265–276. [Google Scholar] [CrossRef]
Wood Property Traits | Mean Square | F | |||
---|---|---|---|---|---|
Among Populations | Within Populations | Random Error | Among Populations | Within Populations | |
Rb, mm | 207.6424 | 53.2672 | 67.8218 | 3.0616 * | 0.7854 |
P | 1031.1240 | 102.7945 | 63.9987 | 16.1116 *** | 1.0662 |
WBD, gm3 | 0.0023 | 0.0014 | 0.0024 | 0.9622 | 0.5977 |
Hy, % | 763.9594 | 492.2978 | 820.6657 | 0.9309 | 0.5999 |
L, um | 1,076,974.1572 | 68,727.2615 | 64,557.9490 | 16.6823 *** | 1.0646 |
D, um | 59.0698 | 21.0064 | 20.0651 | 2.9439 * | 1.0469 |
L/D | 385.5733 | 44.5341 | 78.5751 | 4.9071 *** | 0.5668 |
Wood Property Traits | Population I | Population Pop2 | Population Pop3 | Population Pop4 | Among Populations | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | CV (%) | Mean ± SD | CV (%) | Mean ± SD | CV (%) | Mean ± SD | CV (%) | Mean ± SD | CV (%) | |
Rb, mm | 24.35 ± 6.66b | 27.35 | 28.01 ± 5.88ab | 20.99 | 30.51 ± 11.1a | 36.38 | 29.21 ± 3.61ab | 12.36 | 28.02 ± 6.81 | 24.31 |
P | 53.95 ± 7.58c | 14.04 | 57.963 ± 8.99c | 15.51 | 63.58 ± 9.64b | 15.15 | 77.51 ± 7.95a | 10.25 | 63.05 ± 8.54 | 13.50 |
WBD, g/cm3 | 0.42 ± 0.05a | 11.90 | 0.42 ± 0.05a | 11.90 | 0.41 ± 0.04a | 9.76 | 0.39 ± 0.04a | 10.26 | 0.41 ± 0.05 | 10.98 |
Hy, % | 174.97 ± 27.86a | 15.92 | 177.64 ± 28.43a | 16.00 | 180.61 ± 24.25a | 13.43 | 191.90 ± 25.67a | 13.38 | 181.28 ± 26.55 | 14.65 |
L, um | 2888.06 ± 266.18a | 9.22 | 2589.22 ± 215.29b | 8.31 | 2503.64 ± 296.24b | 11.83 | 2283.09 ± 187.22c | 8.20 | 2629.51 ± 241.23 | 9.40 |
D, um | 45.22 ± 4.54a | 10.04 | 44.65 ± 4.92a | 11.02 | 43.21 ± 4.32ab | 10.00 | 40.99 ± 3.2b | 7.81 | 43.52 ± 4.25 | 9.75 |
L/D | 67.45 ± 10.06a | 14.91 | 61.08 ± 9b | 14.73 | 59.14 ± 5.56b | 9.40 | 58.20 ± 5.60b | 9.62 | 61.47 ± 7.56 | 12.29 |
average value | - | 14.77 | - | 14.07 | - | 15.14 | - | 10.27 | - | 13.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, G.; Liu, S.; Chang, T.; Zhu, N. Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change. Forests 2024, 15, 411. https://doi.org/10.3390/f15030411
Xie G, Liu S, Chang T, Zhu N. Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change. Forests. 2024; 15(3):411. https://doi.org/10.3390/f15030411
Chicago/Turabian StyleXie, Gongliang, Sen Liu, Ting Chang, and Ninghua Zhu. 2024. "Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change" Forests 15, no. 3: 411. https://doi.org/10.3390/f15030411
APA StyleXie, G., Liu, S., Chang, T., & Zhu, N. (2024). Forest Adaptation to Climate Change: Altitudinal Response and Wood Variation in Natural-Growth Cunninghamia lanceolata in the Context of Climate Change. Forests, 15(3), 411. https://doi.org/10.3390/f15030411