Detection and Analysis of Forest Clear-Cutting Activities Using Sentinel-2 and Random Forest Classification: A Case Study on Chungcheongnam-do, Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow Overview
2.3. Data Collection
2.3.1. Vegetation Indices (VIs)
2.3.2. Training and Validation Dataset
2.4. Detection of Clear-Cut Areas Using Random Forest Classifier
2.5. Accuracy Assessment
2.6. Characteristics Analysis of the Clear-Cut Areas
3. Results
3.1. Detection of Clear-Cut Areas
3.2. Accuracy Assessment, Variable Value, and Importance
3.3. Characteristics of Clear-Cut Areas
4. Discussion
4.1. Discussion of Result
4.2. Limitation
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Potapov, P.; Yaroshenko, A.; Turubanova, S.; Dubinin, M.; Laestadius, L.; Thies, C.; Aksenov, D.; Egorov, A.; Yesipova, Y.; Glushkov, I.; et al. Mapping the World’s intact forest landscapes by remote sensing. Ecol. Soc. 2008, 13, 51. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2010; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Agrawal, A.; Hajjar, R.; Liao, C.; Rasmussen, L.V.; Watkins, C. Editorial overview: Forest governance interventions for sustainability through information, incentives, and institutions. Curr. Opin. Environ. Sustain. 2018, 32, A1–A7. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2020; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2020. [Google Scholar]
- Olsson, H. Changes in satellite-measured reflectances caused by thinning cuttings in boreal forest. Remote Sens. Environ. 1994, 50, 221–230. [Google Scholar] [CrossRef]
- Nilson, T.; Olsson, H.; Anniste, J.; Lükk, T.; Praks, J.; Change, T.-C. Thinning-caused change in Reflectance of ground vegetation in boreal forest. Int. J. Remote Sens. 2001, 22, 2763–2776. [Google Scholar] [CrossRef]
- Bucha, T.; Stibig, H.J. Analysis of MODIS imagery for detection of clear cuts in the boreal forest in North-West Russia. Remote Sens. Environ. 2008, 112, 2416–2429. [Google Scholar] [CrossRef]
- Santoro, M.; Pantze, A.; Fransson, J.E.S.; Dahlgren, J.; Persson, A. Nation-wide clear-cut mapping in Sweden using ALOS PALSAR strip images. Remote Sens. 2012, 4, 1693–1715. [Google Scholar] [CrossRef]
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.; Hughes, M.J.; Kennedy, R.E.; et al. How similar are forest disturbance maps derived from different landsat time series algorithms? Forests 2017, 8, 98. [Google Scholar] [CrossRef]
- Palaiologou, P.; Essen, M.; Hogland, J.; Kalabokidis, K. Locating forest management units using remote sensing and geostatistical tools in north-central Washington, USA. Sensors 2020, 20, 2454. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhao, W.; Chen, J.; Qu, Y.; Wu, D.; Chen, X. Mapping large-scale forest disturbance types with multi-temporal CNN framework. Remote Sens. 2021, 13, 5177. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Wang, S.; Yang, D.; Li, Z.; Liu, L.; Huang, C.; Zhang, L. A global sensitivity analysis of commonly used satellite-derived vegetation indices for homogeneous canopies based on model simulation and random forest learning. Remote Sens. 2019, 11, 2547. [Google Scholar] [CrossRef]
- Ferchichi, A.; Ben Abbes, A.B.; Barra, V.; Farah, I.R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: A systematic literature review. Ecol. Inform. 2022, 68, 101552. [Google Scholar] [CrossRef]
- Junaid, M.; Sun, J.; Iqbal, A.; Sohail, M.; Zafar, S.; Khan, A. Mapping, LULC Dynamics and its potential implication on forest cover in malam Jabba region with landsat time series imagery and random forest classification. Sustainability 2023, 15, 1858. [Google Scholar] [CrossRef]
- Ma, T.; Hu, Y.; Wang, J.; Beckline, M.; Pang, D.; Chen, L.; Ni, X.; Li, X. A novel vegetation index approach using Sentinel-2 data and random forest algorithm for estimating forest stock volume in the Helan Mountains, Ningxia, China. Remote Sens. 2023, 15, 1853. [Google Scholar] [CrossRef]
- Potić, I.; Srdić, Z.; Vakanjac, B.; Bakrač, S.; Đorđević, D.; Banković, R.; Jovanović, J.M. Improving forest detection using machine learning and remote sensing: A Case study in Southeastern Serbia. Appl. Sci. 2023, 13, 8289. [Google Scholar] [CrossRef]
- Saini, R. Integrating vegetation indices and spectral features for vegetation mapping from multispectral satellite imagery using AdaBoost and random forest machine learning classifiers. Geomat. Environ. Eng. 2023, 17, 57–74. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Q.; Gong, J.; Zhou, J.; Liang, J.; Li, Y. Winter wheat mapping using a random forest classifier combined with multi-temporal and multi-sensor data. Int. J. Digit. Earth 2018, 11, 783–802. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine learning feature selection methods for landslide susceptibility mapping. Math. Geosci. 2014, 46, 33–57. [Google Scholar] [CrossRef]
- Saini, R.; Ghosh, S.K. Crop classification in a heterogeneous agricultural environment using ensemble classifiers and single-date Sentinel-2A imagery. Geocarto Int. 2021, 36, 2141–2159. [Google Scholar] [CrossRef]
- Stahl, A.T.; Andrus, R.; Hicke, J.A.; Hudak, A.T.; Bright, B.C.; Meddens, A.J.H. Automated attribution of forest disturbance types from remote sensing data: A synthesis. Remote Sens. Environ. 2023, 285, 113416. [Google Scholar] [CrossRef]
- Grabska, E.; Hostert, P.; Pflugmacher, D.; Ostapowicz, K. Forest stand species mapping using the Sentinel-2 time series. Remote Sens. 2019, 11, 1197. [Google Scholar] [CrossRef]
- Nasiri, V.; Hawryło, P.; Janiec, P.; Socha, J. Comparing Object-Based and Pixel-Based Machine Learning Models for Tree-Cutting Detection with Planetscope Satellite Images: Exploring Model Generalization. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103555. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Bílek, L. An Integrated GIS and Remote Sensing Approach for Monitoring Harvested Areas from Very High-Resolution, Low-Cost Satellite Images. Remote Sens. 2019, 11, 2539. [Google Scholar] [CrossRef]
- Korea Forest Service (KFS). Basic Statistics of Forest; Korea Forest Service (KFS): Deajeon, Republic of Korea, 2023. [Google Scholar]
- Ministry of Land Infrastructure and Transport (MLIT). Cadastral Statistical Annual Report; Ministry of Land Infrastructure and Transport (MLIT): Sejong, Republic of Korea, 2021. [Google Scholar]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H.; Sauer, T.J.; Dold, C.; O’Brien, P.; Wacha, K. Applications of vegetative indices from remote sensing to agriculture: Past and future. Inventions 2019, 4, 71. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; van Leeuwen, W.J.D.; Vermote, E.F. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation. Remote Sens. Earth Sci. Ocean. Sea Ice Appl. 1999, 3863, 141–151. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Hu, Y.; Dong, Y.; Batunacun, B. An automatic approach for land-change detection and land updates based on integrated NDVI timing analysis and the CVAPS method with GEE support. ISPRS J. Photogramm. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Lymburner, L.; Beggs, P.J.; Jacobson, C.R. Estimation of canopy-average surface-specific leaf area using landsat TM data. Photogramm. Eng. Remote Sens. 2000, 66, 183–192. [Google Scholar]
- Korea Forest Service (KFS). Statistical Yearbook of Forestry; Korea Forest Service (KFS): Deajeon, Republic of Korea, 2020. [Google Scholar]
- Ham, B.; Song, C.; Park, E.; Choi, S.-E.; Lee, W.-K. Development of forest activity data and forest management rate for national greenhouse gas inventory in the forest sector. J. Clim. Chang. Res. 2020, 11, 53–63. [Google Scholar] [CrossRef]
- Kim, D.; Lim, C.H.; Lee, W.-K.; Song, C. A study on the improvement of evaluation system for implementation of national forest management. J. Korean For. Soc. 2015, 104, 640–648. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef]
- Wibowo, A.; Salleh, K.O.; Frans, F.T.R.S.; Semedi, J.M. Spatial temporal land use change detection using google earth data. IOP Conf. Ser. Earth Environ. Sci. 2016, 47, 012031. [Google Scholar] [CrossRef]
- Rwanga, S.S.; Ndambuki, J.M. Accuracy assessment of land use/land cover classification using remote sensing and GIS. Int. J. Geosci. 2017, 08, 611–622. [Google Scholar] [CrossRef]
- Ayala-Izurieta, J.E.; Márquez, C.O.; García, V.J.; Recalde-Moreno, C.G.; Rodríguez-Llerena, M.V.; Damián-Carrión, D.A. Land cover classification in an Ecuadorian mountain geosystem using a random forest classifier, spectral vegetation indices, and ancillary geographic data. Geosciences 2017, 7, 34. [Google Scholar] [CrossRef]
- Ehsan, S.; Kazem, D. Analysis of land use-land covers changes using Normalized Difference Vegetation Index (NDVI) differencing and classification methods. Afr. J. Agric. Res. 2013, 8, 4614–4622. [Google Scholar] [CrossRef]
- Da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Shishir, S.; Tsuyuzaki, S. Hierarchical classification of land use types using multiple vegetation indices to measure the effects of urbanization. Environ. Monit. Assess. 2018, 190, 342. [Google Scholar] [CrossRef] [PubMed]
- Maschler, J.; Atzberger, C.; Immitzer, M. Individual tree crown segmentation and classification of 13 tree species using airborne hyperspectral data. Remote Sens. 2018, 10, 1218. [Google Scholar] [CrossRef]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal input features for tree species classification in Central Europe based on multi-temporal Sentinel-2 data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef]
- Morcillo-Pallarés, P.; Rivera-Caicedo, J.P.; Belda, S.; De Grave, C.; Burriel, H.; Moreno, J.; Verrelst, J. Quantifying the robustness of vegetation indices through global sensitivity analysis of homogeneous and forest leaf-canopy radiative transfer models. Remote Sens. 2019, 11, 2418. [Google Scholar] [CrossRef]
- Trier, Ø.D.; Salberg, A.B.; Kermit, M.; Rudjord, Ø.; Gobakken, T.; Næsset, E.; Aarsten, D. Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data. Eur. J. Remote Sens. 2018, 51, 336–351. [Google Scholar] [CrossRef]
- Bolyn, C.; Michez, A.; Gaucher, P.; Lejeune, P.; Bonnet, S. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnol. Agron. Soc. Environ. 2018, 22, 172–187. [Google Scholar] [CrossRef]
- Boonprong, S.; Cao, C.; Chen, W.; Bao, S. Random forest variable importance spectral indices scheme for burnt forest recovery monitoring—Multilevel RF-VIMP. Remote Sens. 2018, 10, 807. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Franklin, S.E.; Moskal, L.M.; Lavigne, M.B.; Pugh, K. Interpretation and classification of partially harvested forest stands in the fundy model forest using multitemporal landsat TM digital data. Can. J. Remote Sens. 2000, 26, 318–333. [Google Scholar] [CrossRef]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A.; Blinn, C.E.; Coulston, J.W. On-the-fly massively multitemporal change detection using statistical quality control charts and landsat data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar] [CrossRef]
- Alonso, L.; Picos, J.; Armesto, J. Forest land cover mapping at a regional scale using multi-temporal Sentinel-2 imagery and RF models. Remote Sens. 2021, 13, 2237. [Google Scholar] [CrossRef]
- Nink, S.; Hill, J.; Stoffels, J.; Buddenbaum, H.; Frantz, D.; Langshausen, J. Using landsat and Sentinel-2 data for the generation of continuously updated forest type information layers in a cross-border region. Remote Sens. 2019, 11, 2337. [Google Scholar] [CrossRef]
- Salgueiro Romero, L.S.; Marcello, J.; Vilaplana, V. Super-resolution of Sentinel-2 imagery using generative adversarial networks. Remote Sens. 2020, 12, 2424. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef]
Data | Description | Source | Data Type | Year |
---|---|---|---|---|
Digital Forest-type Maps (scale: 1:5000) | Republic of Korea’s forest information constructed from digitizing orthoimages | Forest Geospatial Information System (http://fgis.forest.go.kr, accessed on 3 December 2023) | Vector | 2018 |
Forest land category in Cadastral Maps | Map dividing the national land into 28 categories, according to land use and status | National Spatial Infrastructure Portal (https://www.vworld.kr/dtna/dtna_guide_s001.do, accessed on 3 December 2023) | Vector | 2018 |
(Unit: ha) | |||||
---|---|---|---|---|---|
Division | Conifer | Deciduous | Mixed | Total | |
National Forests | Planted | 5487 | 1903 | 87 | 7476 |
Natural | 8789 | 18,356 | 5622 | 32,767 | |
Subtotal | 14,276 | 20,259 | 5708 | 40,243 | |
Private Forests | Planted | 51,333 | 33,572 | 1610 | 86,515 |
Natural | 70,341 | 98,128 | 33,813 | 202,284 | |
Subtotal | 121,674 | 131,700 | 35,423 | 288,798 | |
Total | 135,950 | 151,960 | 41,132 | 329,042 |
Vegetation Indices | Remarks | Formula | References |
---|---|---|---|
Atmospherically Resistant Vegetation Index (ARVI) | Minimizes the impact of atmospheric scattering from aerosols | [36] | |
Advanced Vegetation Index (AVI) | Provides vegetation cover by using the infrared spectral band to sensitively assess vegetation density | [36] | |
Enhanced Vegetation Index (EVI) | Corrects for atmospheric effects and soil background | [37] | |
Green Normalized Difference Vegetation Index (GNDVI) | More sensitive to changes in chlorophyll content than NDVI | [38] | |
Normalized Difference Vegetation Index (NDVI) | Presents vegetation cover ratio and vegetation characteristics such as biomass and chlorophyll content | [39] | |
Soil and Atmospherically Resistant Vegetation Index (SARVI) | Minimizes the effect of atmospheric aerosols and reduces the influence of soil | [34] | |
Soil-Adjusted Vegetation Index (SAVI) | Minimizes spectral reflection variations based on soil types | [35] | |
Specific Leaf Area Vegetation Index (SLAVI) | Estimates the leaf area ratio within a forest | [40] |
(Unit: ha) | ||||||
---|---|---|---|---|---|---|
Region | <1ha | 1~4 ha | 5~9 ha | 10~29 ha | 30~60 ha | Total |
Asan-si | 64 | 188 | 103 | 11 | - | 366 |
Boryeong-si | 102 | 400 | 173 | 67 | - | 742 |
Buyeo-gun | 224 | 580 | 173 | 314 | - | 1291 |
Cheongyang-gun | 130 | 412 | 234 | 89 | 119 | 984 |
Dangjin-si | 94 | 239 | 47 | 50 | - | 431 |
Cheonan-si | 97 | 341 | 123 | 132 | - | 692 |
Geumsan-gun | 56 | 185 | 120 | 84 | - | 444 |
Gongju-si | 208 | 578 | 315 | 283 | 85 | 1470 |
Gyeryong-si | 18 | 14 | 14 | - | - | 46 |
Hongseong-gun | 76 | 206 | 39 | 22 | - | 344 |
Nonsan-si | 62 | 154 | 77 | 45 | - | 339 |
Seocheon-gun | 55 | 155 | 7 | 25 | - | 241 |
Seosan-si | 53 | 148 | 72 | 19 | 32 | 325 |
Taean-gun | 50 | 64 | 30 | - | - | 145 |
Yesan-gun | 63 | 142 | 50 | 48 | - | 304 |
Total | 1354 | 3806 | 1577 | 1190 | 237 | 8164 |
Variables | Importance |
---|---|
SLAVI | 0.261940 |
SARVI | 0.193277 |
NDVI | 0.171838 |
ARVI | 0.136113 |
SAVI | 0.079224 |
GNDVI | 0.064720 |
EVI | 0.049265 |
AVI | 0.043622 |
(Unit: %) | ||||||||
---|---|---|---|---|---|---|---|---|
Division | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ratio to Total Area | |
Planted | National forest | 0.1 | 0.1 | 0.2 | 0.1 | 0.2 | 0.0 | 0.1 |
Private forest | 4.2 | 3.3 | 2.8 | 2.8 | 3.3 | 4.4 | 3.4 | |
Total | 4.3 | 3.5 | 3.0 | 2.9 | 3.5 | 4.4 | 3.5 | |
Natural | National forest | 0.1 | 0.0 | 0.1 | 0.1 | 0.2 | 0.0 | 0.1 |
Private forest | 2.0 | 1.7 | 1.9 | 1.8 | 2.3 | 0.7 | 1.9 | |
Total | 2.1 | 1.7 | 2.0 | 1.9 | 2.5 | 0.8 | 2.1 |
(Unit: %) | ||||||||
---|---|---|---|---|---|---|---|---|
Division | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ | Ratio to Total Area | |
Planted | Coniferous | 1.4 | 0.3 | 1.1 | 2.7 | 3.5 | 4.0 | 1.8 |
Deciduous | 2.7 | 3.1 | 1.9 | 0.2 | 0.0 | 0.3 | 1.6 | |
Mixed | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | |
Total | 4.3 | 3.5 | 3.0 | 2.9 | 3.5 | 4.4 | 3.5 | |
Natural | Coniferous | 0.1 | 0.2 | 0.4 | 0.7 | 1.4 | 0.6 | 0.9 |
Deciduous | 1.9 | 1.2 | 1.2 | 0.9 | 0.7 | 0.1 | 0.9 | |
Mixed | 0.0 | 0.2 | 0.4 | 0.3 | 0.5 | 0.0 | 0.4 | |
Total | 2.1 | 1.7 | 2.0 | 1.9 | 2.5 | 0.8 | 2.1 |
(Unit: %) | ||||||
---|---|---|---|---|---|---|
Division | <6 cm | 6~17 cm | 18~29 cm | >29 cm | Ratio to Total Area | |
Planted | Coniferous | 1.3 | 0.9 | 2.5 | 0.7 | 1.7 |
Deciduous | 2.6 | 1.6 | 0.6 | 2.4 | 1.5 | |
Mixed | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | |
Total | 4.1 | 2.5 | 3.1 | 3.2 | 3.3 | |
Natural | Coniferous | 0.1 | 0.4 | 0.9 | 0.9 | 0.8 |
Deciduous | 2.3 | 1.0 | 0.8 | 0.1 | 0.8 | |
Mixed | 0.0 | 0.3 | 0.3 | 0.1 | 0.3 | |
Total | 2.4 | 1.8 | 2.0 | 1.1 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.-E.; Lee, S.; Park, J.; Lee, S.; Yim, J.; Kang, J. Detection and Analysis of Forest Clear-Cutting Activities Using Sentinel-2 and Random Forest Classification: A Case Study on Chungcheongnam-do, Republic of Korea. Forests 2024, 15, 450. https://doi.org/10.3390/f15030450
Choi S-E, Lee S, Park J, Lee S, Yim J, Kang J. Detection and Analysis of Forest Clear-Cutting Activities Using Sentinel-2 and Random Forest Classification: A Case Study on Chungcheongnam-do, Republic of Korea. Forests. 2024; 15(3):450. https://doi.org/10.3390/f15030450
Chicago/Turabian StyleChoi, Sol-E, Sunjeoung Lee, Jeongmook Park, Suyeon Lee, Jongsu Yim, and Jintaek Kang. 2024. "Detection and Analysis of Forest Clear-Cutting Activities Using Sentinel-2 and Random Forest Classification: A Case Study on Chungcheongnam-do, Republic of Korea" Forests 15, no. 3: 450. https://doi.org/10.3390/f15030450
APA StyleChoi, S. -E., Lee, S., Park, J., Lee, S., Yim, J., & Kang, J. (2024). Detection and Analysis of Forest Clear-Cutting Activities Using Sentinel-2 and Random Forest Classification: A Case Study on Chungcheongnam-do, Republic of Korea. Forests, 15(3), 450. https://doi.org/10.3390/f15030450