Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Above-Ground Vegetation Carbon Density Calculation Based on Survey Data
3.2. Image Pre-Processing and De-Shadow
3.3. Spectral Unmixing Analysis
3.4. Modeling
3.4.1. Linear Stepwise Regression Model
3.4.2. Logistical Model Based Stepwise Regression Model
3.4.3. k Nearest Neightbors
3.4.4. Decision Trees
3.4.5. Random Forests
3.5. Accuracy Assessment
4. Results
4.1. Statistics of Field Data
4.2. Correlation of Vegetation Carbon Density with Spectral Variables
4.3. Spectral Unmixng Analysis
4.4. De-Shadow Results of Landsat 8 Image
4.5. Vegetation Carbon Density Mapping
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tree Species | Volume Calculation Equation |
---|---|
Eucalypts | V = 8.71419 × 10−5D1.94801H0.74929 |
Pinus elliottii | V = 7.81515 × 10−5D1.79967H0.98178 |
Acacia rachii | V = 7.32715 × 10−5D1.65483H1.08069 |
Chinese red pine | V = 7.98524 × 10−5D1.74220H1.01198 |
Castanopsis fissa | V = 6.29692 × 10−5D1.81296H1.01545 |
Broad-leaved | V = 6.74286 × 10−5D1.87657H0.92888 |
Cunninghamin lanceolata | V = 6.97483 × 10−5D1.81583H0.99610 |
Hard latissimus | V = 6.01228 × 10−5D1.87550H0.98496 |
Appendix B
Forest Types | a (Mg/m3) | b (Mg) | N | R2 |
---|---|---|---|---|
Picea asperata Mast/Abies alba | 0.5519 | 48.861 | 24 | 0.78 |
Bethula | 1.0687 | 10.237 | 9 | 0.70 |
Casuarinaequisetifolia | 0.7441 | 3.2377 | 10 | 0.95 |
Cunninghamialanceaolata | 0.4652 | 19.141 | 90 | 0.94 |
Cedarwood | 0.8893 | 7.3965 | 19 | 0.87 |
Cupressusfunebris | 1.1453 | 8.5473 | 12 | 0.98 |
Quercus subg Quercus sect | 0.8873 | 4.5539 | 20 | 0.8 |
Eucalyptus robusta smith | 0.6096 | 33.806 | 34 | 0.82 |
Larixprinchipis-rupprechtii | 0.9292 | 6.494 | 24 | 0.83 |
Subtropical evergreen broad-leaved forest | 0.8136 | 18.466 | 10 | 0.99 |
Theropencedrymion | 0.9788 | 5.3764 | 35 | 0.93 |
Broadleaf mixed plantations | 0.5856 | 18.744 | 9 | 0.91 |
Pinus armandi | 0.5723 | 16.489 | 22 | 0.93 |
Pinusmassoniana | 0.5034 | 20.547 | 52 | 0.87 |
Sylvestris/Pinus | 1.112 | 2.6951 | 15 | 0.85 |
Pinustabuliformis | 0.869 | 9.1212 | 112 | 0.91 |
Others Conifer | 0.5292 | 25.087 | 19 | 0.86 |
Aspen | 0.4969 | 26.973 | 13 | 0.92 |
Tsugachinensis/Criptomeriafortunei | 0.3491 | 39.816 | 30 | 0.79 |
Tropical forests | 0.7975 | 0.4204 | 18 | 0.87 |
Appendix C
Trees Species | Ratio | Tree Species | Ratio |
---|---|---|---|
Picea asperata Mas | 0.4994 | Schima | 0.5115 |
Tsuga chinensis | 0.5022 | Others broad-leaved hard wood | 0.4901 |
Larix gmelinii | 0.5137 | Aspen | 0.4502 |
Pinus koraiensis Sieb | 0.5113 | Eucalyptus | 0.4748 |
Pinus thunbergii Parl | 0.5146 | Acacia rachii | 0.4666 |
Pinus tabulaeformis | 0.5184 | Others broad-leaved soft wood | 0.4502 |
Pinus armandii Franch | 0.5177 | Broadleaf mixed trees | 0.4796 |
Pinus massoniana Lamb | 0.5271 | Economic trees | 0.4700 |
Pinus elliotii | 0.5311 | Cupressus funebris Endl | 0.5088 |
Others Pinus | 0.4963 | Coniferous mixed forest | 0.5168 |
Cunninghamia lanceolate | 0.5127 | * Bush | 0.4672 |
Conifer-broadleaf forest | 0.4893 | * Herbal | 0.3270 |
References
- Kan, K.; Chen, J. Rural urbanization in China: Administrative restructuring and the livelihoods of urbanized rural residents. J. Contemp. China 2022, 31, 626–643. [Google Scholar] [CrossRef]
- Wang, G.; Shi, X.; Cui, H.; Jiao, J. Impacts of migration on urban environmental pollutant emissions in China: A comparative perspective. Chin. Geogr. Sci. 2020, 30, 45–58. [Google Scholar] [CrossRef]
- Chen, W.Y. The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: A nationwide estimate. Cities 2015, 44, 112–120. [Google Scholar] [CrossRef]
- Sun, H.; Qie, G.; Wang, G.; Tan, Y.; Li, J.; Peng, Y.; Luo, C. Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Remote Sens. 2015, 7, 15114–15139. [Google Scholar] [CrossRef]
- Ren, Z.; Zheng, H.; He, X.; Zhang, D.; Shen, G.; Zhai, C. Changes in spatio-temporal patterns of urban forest and its above-ground carbon storage: Implication for urban CO2 emissions mitigation under China’s rapid urban expansion and greening. Environ. Int. 2019, 129, 438–450. [Google Scholar] [CrossRef]
- Contosta, A.R.; Lerman, S.B.; Xiao, J.; Varner, R.K. Biogeochemical and socioeconomic drivers of above-and below-ground carbon stocks in urban residential yards of a small city. Landsc. Urban Plan. 2020, 196, 103724. [Google Scholar] [CrossRef]
- Abbas, S.; Wong, M.S.; Wu, J.; Shahzad, N.; Muhammad Irteza, S. Approaches of satellite remote sensing for the assessment of above-ground biomass across tropical forests: Pan-tropical to national scales. Remote Sens. 2020, 12, 3351. [Google Scholar] [CrossRef]
- Pasetto, D.; Arenas-Castro, S.; Bustamante, J.; Casagrandi, R.; Chrysoulakis, N.; Cord, A.F.; Ziv, G. Integration of satellite remote sensing data in ecosystem modelling at local scales: Practices and trends. Methods Ecol. Evol. 2018, 9, 1810–1821. [Google Scholar] [CrossRef]
- Campbell, M.J.; Dennison, P.E.; Kerr, K.L.; Brewer, S.C.; Anderegg, W.R. Scaled biomass estimation in woodland ecosystems: Testing the individual and combined capacities of satellite multispectral and lidar data. Remote Sens. Environ. 2021, 262, 112511. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef] [PubMed]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Clough, B.J.; Curzon, M.T.; Domke, G.M.; Russell, M.B.; Woodall, C.W. Climate-driven trends in stem wood density of tree species in the eastern United States: Ecological impact and implications for national forest carbon assessments. Glob. Ecol. Biogeogr. 2017, 26, 1153–1164. [Google Scholar] [CrossRef]
- Keith, H.E.A.T.H.E.R.; Mackey, B.; Berry, S.; Lindenmayer, D.; Gibbons, P. Estimating carbon carrying capacity in natural forest ecosystems across heterogeneous landscapes: Addressing sources of error. Glob. Chang. Biol. 2010, 16, 2971–2989. [Google Scholar] [CrossRef]
- Brown, S. Measuring carbon in forests: Current status and future challenges. Environ. Pollut. 2002, 116, 363–372. [Google Scholar] [CrossRef]
- Zianis, D.; Mencuccini, M. On simplifying allometric analyses of forest biomass. For. Ecol. Manag. 2004, 187, 311–332. [Google Scholar] [CrossRef]
- Fortier, J.; Truax, B.; Gagnon, D.; Lambert, F. Allometric equations for estimating compartment biomass and stem volume in mature hybrid poplars: General or site-specific? Forests 2017, 8, 309. [Google Scholar] [CrossRef]
- Cole, T.G.; Ewel, J.J. Allometric equations for four valuable tropical tree species. For. Ecol. Manag. 2006, 229, 351–360. [Google Scholar] [CrossRef]
- Vargas-Larreta, B.; López-Sánchez, C.A.; Corral-Rivas, J.J.; López-Martínez, J.O.; Aguirre-Calderón, C.G.; Álvarez-González, J.G. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 2017, 8, 269. [Google Scholar] [CrossRef]
- Yuen, J.Q.; Fung, T.; Ziegler, A.D. Review of allometric equations for major land covers in SE Asia: Uncertainty and implications for above-and below-ground carbon estimates. For. Ecol. Manag. 2016, 360, 323–340. [Google Scholar] [CrossRef]
- Xing, D.; Bergeron, J.C.; Solarik, K.A.; Tomm, B.; Macdonald, S.E.; Spence, J.R.; He, F. Challenges in estimating forest biomass: Use of allometric equations for three boreal tree species. Can. J. For. Res. 2019, 49, 1613–1622. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Z.; Sun, H.; Wang, G. Mapping forest ecosystem biomass density for Xiangjiang River Basin by combining plot and remote sensing data and comparing spatial extrapolation methods. Remote Sens. 2017, 9, 241. [Google Scholar] [CrossRef]
- Galeana-Pizaña, J.M.; López-Caloca, A.; López-Quiroz, P.; Silván-Cárdenas, J.L.; Couturier, S. Modeling the spatial distribution of above-ground carbon in Mexican coniferous forests using remote sensing and a geostatistical approach. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 179–189. [Google Scholar] [CrossRef]
- Mauya, E.W.; Koskinen, J.; Tegel, K.; Hämäläinen, J.; Kauranne, T.; Käyhkö, N. Modelling and predicting the growing stock volume in small-scale plantation forests of Tanzania using multi-sensor image synergy. Forests 2019, 10, 279. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—A literature review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Dig. Earth. 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep learning based retrieval of forest aboveground biomass from combined LiDAR and landsat 8 data. Remote Sens. 2019, 11, 1459. [Google Scholar] [CrossRef]
- Tan, B.; Woodcock, C.E.; Hu, J.; Zhang, P.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R.B. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 2006, 105, 98–114. [Google Scholar] [CrossRef]
- Mahabir, R.; Croitoru, A.; Crooks, A.T.; Agouris, P.; Stefanidis, A. A critical review of high and very high-resolution remote sensing approaches for detecting and mapping slums: Trends, challenges and emerging opportunities. Urban Sci. 2018, 2, 8. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- Surový, P.; Kuželka, K. Acquisition of forest attributes for decision support at the forest enterprise level using remote-sensing techniques—A review. Forests 2019, 10, 273. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Balenović, I.; Saarinen, N.; Junttila, S.; Kankare, V.; Holopainen, M.; Makarovs, M.; Surovy, P.; Kaartinen, H.; et al. Close-Range Remote Sensing of Forests: The state of the art, challenges, and opportunities for systems and data acquisitions. IEEE Geosci. Remote Sens. Mag. 2022, 10, 32–71. [Google Scholar] [CrossRef]
- Mulatu, K.A.; Decuyper, M.; Brede, B.; Kooistra, L.; Reiche, J.; Mora, B.; Herold, M. Linking terrestrial LiDAR scanner and conventional forest structure measurements with multi-modal satellite data. Forests 2019, 10, 291. [Google Scholar] [CrossRef]
- Reba, M.; Seto, K.C. A systematic review and assessment of algorithms to detect, characterize, and monitor urban land change. Remote Sens. Environ. 2020, 242, 111739. [Google Scholar] [CrossRef]
- Paudel, S.; Yuan, F. Assessing landscape changes and dynamics using patch analysis and GIS modeling. Int. J. Appl. Earth Obs. Geoinf. 2012, 16, 66–76. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember variability in spectral mixture analysis: A review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Zanotta, D.C.; Haertel, V.; Shimabukuro, Y.E.; Renno, C.D. Linear spectral mixing model for identifying potential missing endmembers in spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 2013, 52, 3005–3012. [Google Scholar] [CrossRef]
- Nielsen, A.A. Spectral mixture analysis: Linear and semi-parametric full and iterated partial unmixing in multi-and hyperspectral image data. J. Math. Imaging Vis. 2001, 15, 17–37. [Google Scholar] [CrossRef]
- Chen, F.; Wang, K.; Tang, T.F. Spectral unmixing using a sparse multiple-endmember spectral mixture model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5846–5861. [Google Scholar] [CrossRef]
- Song, C. Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? Remote Sens. Environ. 2005, 95, 248–263. [Google Scholar] [CrossRef]
- Su, N.; Zhang, Y.; Tian, S.; Yan, Y.; Miao, X. Shadow detection and removal for occluded object information recovery in urban high-resolution panchromatic satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2568–2582. [Google Scholar] [CrossRef]
- Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sens. 2005, 71, 169–177. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.; Yang, N.; Wang, K.; Moore, N.; Shen, Z. Review of shadow detection and de-shadowing methods in remote sensing. Chin. Geogr. Sci. 2013, 23, 403–420. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing land surface anisotropic reflectance over rugged terrain: A review of concepts and recent developments. Remote Sens. 2018, 10, 370. [Google Scholar] [CrossRef]
- Yang, X.; Zuo, X.; Xie, W.; Li, Y.; Guo, S.; Zhang, H. A Correction Method of NDVI Topographic Shadow Effect for Rugged Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 8456–8472. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, A.; Wu, Y.; Zhang, C.; Chi, Z.; Li, M.; Wang, X. Vegetation Monitoring for Mountainous Regions Using a New Integrated Topographic Correction (ITC) of the SCS+ C Correction and the Shadow-Eliminated Vegetation Index. Remote Sens. 2022, 14, 3073. [Google Scholar] [CrossRef]
- Luo, S.; Shen, H.; Li, H.; Chen, Y. Shadow removal based on separated illumination correction for urban aerial remote sensing images. Signal Process. 2019, 165, 197–208. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, Y.F. Urban feature shadow extraction based on high-resolution satellite remote sensing images. Alex. Eng. J. 2023, 77, 443–460. [Google Scholar] [CrossRef]
- Azevedo, S.; Silva, E.; Colnago, M.; Negri, R.; Casaca, W. Shadow detection using object area-based and morphological filtering for very high-resolution satellite imagery of urban areas. J. Appl. Remote Sens. 2019, 13, 036506. [Google Scholar] [CrossRef]
- Jalkanen, A.; Mattila, U. Logistic regression models for wind and snow damage in northern Finland based on the National Forest Inventory data. For. Ecol. Manag. 2000, 135, 315–330. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, L.; Jin, S.; Tigabu, M.; Su, Z.; Wang, W. Modeling anthropogenic fire occurrence in the boreal forest of China using logistic regression and random forests. Forests 2016, 7, 250. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, C.; Yang, S. Predictive Modeling of Forest Fires in Yunnan Province: An Integration of ARIMA and Stepwise Regression Analysis. Appl. Sci. 2023, 14, 256. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Gjertsen, A.K. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. Remote Sens. Environ. 2007, 110, 420–430. [Google Scholar] [CrossRef]
- McInerney, D.O.; Nieuwenhuis, M. A comparative analysis of k NN and decision tree methods for the Irish National Forest Inventory. Int. J. Remote Sens. 2009, 30, 4937–4955. [Google Scholar] [CrossRef]
- Gleason, C.J.; Im, J. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens. Environ. 2012, 125, 80–91. [Google Scholar] [CrossRef]
- Esteban, J.; McRoberts, R.E.; Fernández-Landa, A.; Tomé, J.L.; Nӕsset, E. Estimating forest volume and biomass and their changes using random forests and remotely sensed data. Remote Sens. 2019, 11, 1944. [Google Scholar] [CrossRef]
- Breslow, L.A.; Aha, D.W. Simplifying decision trees: A survey. Knowl. Eng. Rev. 1997, 12, 1–40. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vieira, J.; Matos, P.; Mexia, T.; Silva, P.; Lopes, N.; Freitas, C.; Correia, O.; Santos-Reis, M.; Branquinho, C.; Pinho, P. Green spaces are not all the same for the provision of air purification and climate regulation services: The case of urban parks. Environ. Res. 2018, 160, 306–313. [Google Scholar] [CrossRef]
- Gong, C.; Xian, C.; Ouyang, Z. Assessment of NO2 Purification by Urban Forests Based on the i-Tree Eco Model: Case Study in Beijing, China. Forests 2022, 13, 369. [Google Scholar] [CrossRef]
- Van Renterghem, T. Towards explaining the positive effect of vegetation on the perception of environmental noise. Urban For. Urban Green. 2019, 40, 133–144. [Google Scholar] [CrossRef]
- Canadell, J.G.; Raupach, M.R. Managing forests for climate change mitigation. Science 2008, 320, 1456–1457. [Google Scholar] [CrossRef]
- Alemu, B. The role of forest and soil carbon sequestrations on climate change mitigation. Res. J. Agr. Environ. Manag. 2014, 3, 492–505. [Google Scholar]
- Mader, S. Plant trees for the planet: The potential of forests for climate change mitigation and the major drivers of national forest area. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 519–536. [Google Scholar] [CrossRef]
- Lundmark, T.; Bergh, J.; Hofer, P.; Lundström, A.; Nordin, A.; Poudel, B.C.; Sathre, R.; Taverna, R.; Werner, F. Potential roles of Swedish forestry in the context of climate change mitigation. Forests 2014, 5, 557–578. [Google Scholar] [CrossRef]
- Kauppi, P.E.; Stål, G.; Arnesson-Ceder, L.; Sramek, I.H.; Hoen, H.F.; Svensson, A.; Wernick, I.K.; Högberg, P.; Lundmark, T.; Nordin, A. Managing existing forests can mitigate climate change. For. Ecol. Manag. 2022, 513, 120186. [Google Scholar] [CrossRef]
- Avitabile, V.; Herold, M.; Henry, M.; Schmullius, C. Mapping biomass with remote sensing: A comparison of methods for the case study of Uganda. Carbon Bal. Manag. 2011, 6, 7. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Remote sensing of above-ground biomass. Remote Sens. 2017, 9, 935. [Google Scholar] [CrossRef]
- Zheng, G.; Chen, J.M.; Tian, Q.J.; Ju, W.M.; Xia, X.Q. Combining remote sensing imagery and forest age inventory for biomass mapping. J. Environ. Manag. 2007, 85, 616–623. [Google Scholar] [CrossRef]
- Yang, J.; He, Y.; Caspersen, J. Fully constrained linear spectral unmixing based global shadow compensation for high resolution satellite imagery of urban areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 88–98. [Google Scholar] [CrossRef]
- Yang, J.; Li, P. Impervious surface extraction in urban areas from high spatial resolution imagery using linear spectral unmixing. Remote Sens. Appl. Soc. Environ. 2015, 1, 61–71. [Google Scholar] [CrossRef]
- Yan, E.; Lin, H.; Wang, G.; Sun, H. Improvement of forest carbon estimation by integration of regression modeling and spectral unmixing of Landsat data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2003–2007. [Google Scholar]
- Koukal, T.; Suppan, F.; Schneider, W. The impact of relative radiometric calibration on the accuracy of kNN-predictions of forest attributes. Remote Sens. Environ. 2007, 110, 431–437. [Google Scholar] [CrossRef]
- Baffetta, F.; Corona, P.; Fattorini, L. A matching procedure to improve k-NN estimation of forest attribute maps. For. Ecol. Manag. 2012, 272, 35–50. [Google Scholar] [CrossRef]
- Vega Isuhuaylas, L.A.; Hirata, Y.; Ventura Santos, L.C.; Serrudo Torobeo, N. Natural forest mapping in the Andes (Peru): A comparison of the performance of machine-learning algorithms. Remote Sens. 2018, 10, 782. [Google Scholar] [CrossRef]
- Beaudoin, A.; Bernier, P.Y.; Guindon, L.; Villemaire, P.; Guo, X.J.; Stinson, G.; Bergeron, T.; Magnussen, S.; Hall, R.J. Mapping attributes of Canada’s forests at moderate resolution through k NN and MODIS imagery. Can. J. For. Res. 2014, 44, 521–532. [Google Scholar] [CrossRef]
- Certini, G.; Scalenghe, R. Anthropogenic soils are the golden spikes for the Anthropocene. Holocene 2011, 21, 1269–1274. [Google Scholar] [CrossRef]
- Villa, P.; Malucelli, F.; Scalenghe, R. Multitemporal mapping of peri-urban carbon stocks and soil sealing from satellite data. Sci. Total Environ. 2018, 612, 590–604. [Google Scholar] [CrossRef]
- Sarzhanov, D.A.; Vasenev, V.I.; Vasenev, I.I.; Sotnikova, Y.L.; Ryzhkov, O.V.; Morin, T. Carbon stocks and CO2 emissions of urban and natural soils in Central Chernozemic region of Russia. Catena 2017, 158, 131–140. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Liu, X.; Zhao, D.; Sun, X.; Xu, L. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Model. 2015, 318, 210–216. [Google Scholar] [CrossRef]
Sensor | Band | Range (μm) | Region | Resolution |
---|---|---|---|---|
Landsat 8 | Band1 | 0.433–0.453 | Coastal/Aerosol | 30 m |
Band2 | 0.450–0.515 | Blue | 30 m | |
Band3 | 0.525–0.600 | Green | 30 m | |
Band4 | 0.630–0.680 | Red | 30 m | |
Band5 | 0.845–0.885 | Near Infrared | 30 m | |
Band6 | 1.560–1.660 | Short Wavelength Infrared | 30 m | |
Band7 | 2.100–2.300 | Short Wavelength Infrared | 30 m | |
Band8 | 0.500–0.680 | Panchromatic | 15 m | |
Band9 | 1.360–1.390 | Cirrus | 30 m | |
Band10 | 10.30–11.30 | Long Wavelength Infrared | 100 m | |
Band11 | 11.50–12.50 | Long Wavelength Infrared | 100 m | |
Pleiades-1A & 1B | Band0 | 0.430–0.550 | Blue | 2 m |
Band1 | 0.490–0.610 | Green | 2 m | |
Band2 | 0.600–0.720 | Red | 2 m | |
Band3 | 0.750–0.950 | Near Infrared | 2 m | |
Band4 | 0.480–0.830 | Panchromatic | 0.5 m |
Spectral Variables | Definitions of Spectral Variables | # of SV |
---|---|---|
Original band | Band 1 (Coastal Aerosol), Band 2 (Blue), Band 3 (Green—GRN), Band 4 (Red), Band 5 (Near Infrared—NIR), Band 6 (Shortwave Infrared 1—SWIR1), Band 7 (Shortwave Infrared 2—SWIR2), Band 8 (Cirrus), Band 9 (Long Wavelength), and Band 10 (Long Wavelength) | 10 |
Inversions of bands | 10 | |
Simple two-band ratios | 90 | |
Three-band ratios | k | 359 |
Difference vegetation indices | 45 | |
Shortwave infrared-visible band ratio | 1 | |
Normalized difference vegetation index | 1 | |
Modified normalized difference vegetation index | 1 | |
Red–green vegetation index | 1 | |
Reduced simple ratio | 1 | |
Soil adjusted vegetation index | 4 | |
Atmospherically resistant vegetation index | ] | 1 |
Enhanced vegetation index | 1 | |
Principal component analysis | The first 3 PCs from Principal component analysis (PCA) | 3 |
Texture measures | Texture measures derived from the Grey-Level Co-occurrence Matrix, encompassing mean, angular second moment, contrast, correlation, dissimilarity, entropy, homogeneity, and variance. | 80 |
Number of Plots | Minimum (Mg/ha) | Maximum (Mg/ha) | Sample Mean (Mg/ha) | Standard Deviation (Mg/ha) | Coefficient of Variation (%) |
---|---|---|---|---|---|
188 | 0 | 73.550 | 14.99 | 16.3 | 108.87 |
Spectral Variables | Correlation | Spectral Variables | Correlation | ||
---|---|---|---|---|---|
r | P | r | P | ||
B1 | −0.593 | 0 | TR415 | −0.661 | 0 |
B2 | −0.596 | 0 | TR416 | −0.608 | 0 |
B3 | −0.597 | 0 | TR425 | −0.660 | 0 |
B4 | −0.586 | 0 | TR426 | −0.596 | 0 |
B5 | 0.293 | 4.44 × 10−5 | TR435 | −0.650 | 0 |
B6 | −0.394 | 2.23 × 10−8 | TR436 | −0.574 | 0 |
B7 | −0.529 | 5.77 × 10−15 | TR458 | −0.580 | 0 |
B9 | −0.554 | 0 | TR459 | −0.570 | 0 |
B10 | −0.435 | 4.42 × 10−10 | TR516 | 0.658 | 0 |
DVI56 | 0.642 | 0 | TR517 | 0.612 | 0 |
DVI57 | 0.617 | 0 | TR526 | 0.669 | 0 |
ARVI | 0.626 | 0 | TR527 | 0.631 | 0 |
MNDVI | 0.630 | 0 | TR534 | 0.581 | 0 |
SAVI0.1 | 0.631 | 0 | TR536 | 0.688 | 0 |
SAVI0.25 | 0.629 | 0 | TR537 | 0.660 | 0 |
SAVI0.5 | 0.627 | 0 | TR546 | 0.685 | 0 |
SR57 | 0.686 | 0 | TR547 | 0.654 | 0 |
SR67 | 0.639 | 0 | TR567 | 0.684 | 0 |
TR125 | −0.584 | 0 | TR637 | 0.583 | 0 |
TR135 | −0.543 | 8.88 × 10−16 | TR647 | 0.592 | 0 |
TR215 | −0.621 | 0 | TR715 | −0.531 | 4.88 × 10−15 |
TR235 | −0.569 | 0 | TR725 | −0.531 | 4.44 × 10−15 |
TR258 | −0.511 | 6.33 × 10−14 | TR735 | −0.527 | 8.44 × 10−15 |
TR315 | −0.650 | 0 | TR745 | −0.526 | 8.88 × 10−15 |
TR325 | −0.641 | 0 | TR758 | −0.510 | 7.82 × 10−14 |
TR345 | −0.561 | 0 | TR759 | −0.524 | 1.24 × 10−14 |
TR358 | −0.516 | 3.46 × 10−14 | Veg_fraction | 0.595 | 0 |
Method | 2-Endmember | 3-Endmember | 4-Endmember |
---|---|---|---|
Automatical selection (Before) | 0.491 | 0.554 | 0.589 |
Manual selection (Before) | 0.492 | 0.555 | 0.59 |
Automatical selection (After) | 0.495 | 0.563 | 0.595 |
Manual selection (After) | 0.498 | 0.564 | 0.595 |
Landsat 8. | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B9 | B10 |
---|---|---|---|---|---|---|---|---|---|
Before | −0.578 | −0.581 | −0.587 | −0.571 | 0.283 | −0.389 | −0.518 | −0.546 | −0.423 |
After | −0.593 | −0.596 | −0.597 | −0.586 | 0.294 | −0.394 | −0.529 | −0.554 | −0.435 |
Approach | Mean | R2 | RMSE | (Mg/ha) | Varmap |
---|---|---|---|---|---|
Observed | 14.99 | - | - | - | - |
LSR | 15.07 | 0.5451 | 10.852 | 15.332 | 1.68 |
LSR integrated with LSUA | 15.05 | 0.5453 | 10.812 | 15.26 | 1.61 |
LMSR | 14.91 | 0.5621 | 9.153 | 14.091 | 1.38 |
LMSR integrated with LSUA | 14.94 | 0.5712 | 9.046 | 14.256 | 1.34 |
kNN | 14.75 | 0.4620 | 10.561 | 14.483 | 1.89 |
kNN integrated with LSUA | 14.86 | 0.4641 | 9.682 | 14.518 | 1.77 |
DT | 15.00 | 0.8171 | 6.952 | 14.501 | 1.26 |
DT integrated with LSUS | 15.00 | 0.8205 | 6.888 | 14.501 | 1.24 |
RF | 15.33 | 0.7630 | 8.741 | 15.419 | 1.16 |
RF integrated with LSUA | 15.20 | 0.7800 | 8.651 | 15.136 | 1.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qie, G.; Ye, J.; Wang, G.; Wang, M. Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning. Forests 2024, 15, 480. https://doi.org/10.3390/f15030480
Qie G, Ye J, Wang G, Wang M. Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning. Forests. 2024; 15(3):480. https://doi.org/10.3390/f15030480
Chicago/Turabian StyleQie, Guangping, Jianneng Ye, Guangxing Wang, and Minzi Wang. 2024. "Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning" Forests 15, no. 3: 480. https://doi.org/10.3390/f15030480
APA StyleQie, G., Ye, J., Wang, G., & Wang, M. (2024). Enhancing Urban Above-Ground Vegetation Carbon Density Mapping: An Integrated Approach Incorporating De-Shadowing, Spectral Unmixing, and Machine Learning. Forests, 15(3), 480. https://doi.org/10.3390/f15030480