Thinning vs. Pruning: Impacts on Sap Flow Density and Water Use Efficiency in Young Populus tomentosa Plantations in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Introduction to Study Sites and Species
2.2. Sap Flow Density Measurement and Stand Transpiration Estimation
2.2.1. Sampling Tree Selection
2.2.2. Probe Installation and Calculation of Sap Flow Density
2.2.3. Estimation of Transpiration and Canopy Conductance
2.2.4. The Sensitivity of Canopy Conductance to VPD
2.2.5. Stand-Level Water Use Efficiency
2.3. Statistical Analysis
3. Results
3.1. Environmental Variables and Soil Moisture
3.2. Dynamics of Sap Flow Density, Individual Tree and Stand-Level Transpiration, and Canopy Conductance
3.2.1. Sap Flow Density
3.2.2. Individual Tree and Stand-Level Transpiration
3.2.3. Canopy Transpiration per Unit Leaf Area and Canopy Conductance
3.3. Responses of Canopy Transpiration per Unit Leaf Area and Canopy Conductance to Environmental Variables
3.4. Stand Water Use Efficiency in Different Rainfall Periods
4. Discussion
4.1. Response Patterns of Individual Tree and Stand-Level Transpiration under Thinning and Pruning Treatments
4.2. Response of Transpiration and Canopy Conductance to Environmental Factors
4.3. Water Use Efficiency and Basal Area Increment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Global Forest Resources Assessment 2020; FAO: Rome, Italy, 2020. [Google Scholar]
- Bastin, J.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Sci. Total Environ. 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Cubbage, F.; Koesbandana, S.; Donagh, P.M.; Rubilar, R.; Balmelli, G.; Olmos, V.M.; Torre, R.D.; Murara, M.; Hoeflich, V.A.; Kotze, H.; et al. Global timber investments, wood costs, regulation, and risk. Biomass Bioenerg. 2010, 34, 1667–1678. [Google Scholar] [CrossRef]
- National Forestry and Grassland Administration. China Forest Resources Report; National Forestry and Grassland Administration: Beijing, China, 2019.
- IPCC. AR6 Synthesis Report: Climate Change 2023. Available online: https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (accessed on 1 September 2023).
- McDowell, N.G.; Allen, C.D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 2015, 5, 669–672. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Martínez-Vilalta, J.; Pinol, J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula. For. Ecol. Manag. 2002, 161, 247–256. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Baker, T.G. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. For. Ecol. Manag. 2013, 288, 21–30. [Google Scholar] [CrossRef]
- Forrester, D.I. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions. For. Ecol. Manag. 2013, 310, 336–347. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Warren, C.R.; Baker, T.G. Effect of thinning, pruning and nitrogen fertiliser application on transpiration, photosynthesis and water-use efficiency in a young Eucalyptus nitens plantation. For. Ecol. Manag. 2012, 266, 286–300. [Google Scholar] [CrossRef]
- Eyles, A.; Pinkard, E.A.; Mohammed, C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 2009, 29, 753–764. [Google Scholar] [CrossRef]
- Wang, C.S.; Zeng, J. Research advances in forest tree pruning. World For. Res. 2016, 29, 65–70, (with Abstract in English). [Google Scholar]
- Ma, L.; Wang, X.; Gao, Z.; Wang, Y.; Nie, Z.; Liu, X. Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China. Agric. Water Manag. 2019, 216, 436–443. [Google Scholar] [CrossRef]
- Park, J.; Kim, T.; Moon, M.; Cho, S.; Ryu, D.; Kim, H.S. Effects of thinning intensities on tree water use, growth, and resultant water use efficiency of 50-year-old Pinus koraiensis forest over four years. For. Ecol. Manag. 2018, 408, 121–128. [Google Scholar] [CrossRef]
- Fernandes, T.J.G.; Del Campo, A.D.; Herrera, R.; Molina, A.J. Simultaneous assessment, through sap flow and stable isotopes, of water use efficiency (WUE) in thinned pines shows improvement in growth, tree-climate sensitivity and WUE, but not in WUEi. For. Ecol. Manag. 2016, 361, 298–308. [Google Scholar] [CrossRef]
- Sohn, J.A.; Saha, S.; Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 2016, 380, 261–273. [Google Scholar] [CrossRef]
- del Campo, A.D.; González-Sanchis, M.; García-Prats, A.; Ceacero, C.J.; Lull, C. The impact of adaptive forest management on water fluxes and growth dynamics in a water-limited low-biomass oak coppice. Agric. For. Meteorol. 2019, 264, 266–282. [Google Scholar] [CrossRef]
- Gebhardt, T.; Häberle, K.; Matyssek, R.; Schulz, C.; Ammer, C. The more, the better? Water relations of Norway spruce stands after progressive thinning. Agric. For. Meteorol. 2014, 197, 235–243. [Google Scholar] [CrossRef]
- Wang, Y.; del Campo, A.D.; Wei, X.; Winkler, R.; Liu, W.; Li, Q. Responses of forest carbon and water coupling to thinning treatments from leaf to stand scales in a young montane pine forest. Carbon. Bal. Manag. 2020, 15, 1. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; del Campo, A.D.; Winkler, R.; Wu, J.; Li, Q.; Liu, W. Juvenile thinning can effectively mitigate the effects of drought on tree growth and water consumption in a young Pinus contorta stand in the interior of British Columbia, Canada. For. Ecol. Manag. 2019, 454, 117667. [Google Scholar] [CrossRef]
- Lechuga, V.; Carraro, V.; Viñegla, B.; Carreira, J.A.; Linares, J.C. Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in Abies pinsapo. For. Ecol. Manag. 2017, 406, 72–82. [Google Scholar] [CrossRef]
- Alcorn, P.J.; Forrester, D.I.; Thomas, D.S.; James, R.; Smith, R.B.; Nicotra, A.B.; Bauhus, J. Changes in Whole-Tree Water Use Following Live-Crown Pruning in Young Plantation-Grown Eucalyptus pilularis and Eucalyptus cloeziana. Forests 2013, 4, 106–121. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Sánchez-González, M.; Álvarez-González, J.G.; Hevia, A.; Majada, J.P.; Canellas, I.; Gea-Izquierdo, G. Response to the interaction of thinning and pruning of pine species in Mediterranean mountains. Eur. J. Forest. Res. 2014, 133, 833–843. [Google Scholar] [CrossRef]
- Forrester, D.I.; Medhurst, J.L.; Wood, M.; Beadle, C.L.; Valencia, J.C. Growth and physiological responses to silviculture for producing solid-wood products from Eucalyptus plantations: An Australian perspective. For. Ecol. Manag. 2010, 259, 1819–1835. [Google Scholar] [CrossRef]
- Alcorn, P.J.; Bauhus, J.; Thomas, D.S.; James, R.N.; Smith, R.B.; Nicotra, A.B. Photosynthetic response to green crown pruning in young plantation-grown Eucalyptus pilularis and E. cloeziana. For. Ecol. Manag. 2008, 255, 3827–3838. [Google Scholar] [CrossRef]
- Forrester, D.I.; Collopy, J.J.; Beadle, C.L.; Baker, T.G. Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a young Eucalyptus nitens plantation. For. Ecol. Manag. 2012, 267, 104–116. [Google Scholar] [CrossRef]
- Song, L.; Zhu, J.; Zheng, X.; Wang, K.; Lü, L.; Zhang, X.; Hao, G. Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agric. For. Meteorol. 2020, 281, 107830. [Google Scholar] [CrossRef]
- Song, L.; Zhu, J.; Zheng, X.; Wang, K.; Zhang, J.; Hao, G.; Wang, G.; Liu, J. Comparison of canopy transpiration between Pinus sylvestris var. mongolica and Pinus tabuliformis plantations in a semiarid sandy region of Northeast China. Agric. For. Meteorol. 2022, 314, 108784. [Google Scholar] [CrossRef]
- Li, D.D.; Liu, J.; Verhoef, A.; Xi, B.Y.; Hernandez-Santana, V. Understanding the relationship between biomass production and water use of Populus tomentosa trees throughout an entire short-rotation. Agric. Water Manag. 2021, 246, 106710. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 2020, 291, 108063. [Google Scholar] [CrossRef]
- Du, J.; Dai, X.; Huo, Z.; Wang, X.; Wang, S.; Wang, C.; Zhang, C.; Huang, G. Stand transpiration and canopy conductance dynamics of Populus popularis under varying water availability in an arid area. Sci. Total Environ. 2023, 892, 164397. [Google Scholar] [CrossRef]
- López, J.; Way, D.A.; Sadok, W. Systemic effects of rising atmospheric vapor pressure deficit on plant physiology and productivity. Glob. Chang. Biol. 2021, 27, 1704–1720. [Google Scholar] [CrossRef] [PubMed]
- Naithani, K.J.; Ewers, B.E.; Pendall, E. Sap flux-scaled transpiration and stomatal conductance response to soil and atmospheric drought in a semi-arid sagebrush ecosystem. J. Hydrol. 2012, 464, 176–185. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Wang, X.; Nie, Z.; Gao, Z.; Zhang, L. Effects of branch removal on water use of rain-fed jujube (Ziziphus jujuba Mill.) plantations in Chinese semiarid Loess Plateau region. Agric. Water Manag. 2016, 178, 258–270. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Hu, W.; Liu, J.; Di, N.; Duan, J.; Li, D.; Liu, Y.; Guo, Y.; Wang, A.; et al. Long-term variation of the sap flow to tree diameter relation in a temperate poplar forest. J. Hydrol. 2023, 618, 129189. [Google Scholar] [CrossRef]
- Granier, A.; Huc, R.; Barigah, S.T. Transpiration of natural rain forest and its dependence on climatic factors. Agric. For. Meteorol. 1996, 78, 19–29. [Google Scholar] [CrossRef]
- Binkley, D.; Campoe, O.C.; Gspaltl, M.; Forrester, D.I. Light absorption and use efficiency in forests: Why patterns differ for trees and stands. Agric. Water Manag. 2013, 288, 5–13. [Google Scholar] [CrossRef]
- André-Alphonse, T.; Mekontchou, C.G.; Rochon, P.; Doyon, F.; Maheu, A. Comparing the influence of thinning treatments with low to high residual basal area on red maple transpiration in a temperate mixed forest. For. Ecol. Manag. 2023, 534, 5–13. [Google Scholar] [CrossRef]
- Liu, X.; Sun, G.; Mitra, B.; Noormets, A.; Gavazzi, M.J.; Domec, J.; Hallema, D.W.; Li, J.; Fang, Y.; King, J.S.; et al. Drought and thinning have limited impacts on evapotranspiration in a managed pine plantation on the southeastern United States coastal plain. Agric. For. Meteorol. 2018, 262, 14–23. [Google Scholar] [CrossRef]
- del Campo, A.D.; Fernandes, T.J.; Molina, A. Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? Eur. J. For. Res. 2014, 133, 879–894. [Google Scholar] [CrossRef]
- Moreno, G.; Cubera, E. Impact of stand density on water status and leaf gas exchange in Quercus ilex. For. Ecol. Manag. 2008, 254, 74–84. [Google Scholar] [CrossRef]
- Molina, A.J.; Aranda, X.; Llorens, P.; Galindo, A.; Biel, C. Sap flow of a wild cherry tree plantation growing under Mediterranean conditions: Assessing the role of environmental conditions on canopy conductance and the effect of branch pruning on water productivity. Agric. Water Manag. 2019, 218, 222–233. [Google Scholar] [CrossRef]
- Hubbard, R.M.; Stape, J.; Ryan, M.G.; Almeida, A.C.; Rojas, J. Effects of irrigation on water use and water use efficiency in two fast growing Eucalyptus plantations. For. Ecol. Manag. 2010, 259, 1714–1721. [Google Scholar] [CrossRef]
- Dye, P.J. Water use efficiency in South African Eucalyptus plantations: A review. S. Afr. For. J. 2000, 189, 17–26. [Google Scholar]
- del Campo, A.D.; Otsuki, K.; Serengil, Y.; Blanco, J.A.; Yousefpour, R.; Wei, X. A global synthesis on the effects of thinning on hydrological processes: Implications for forest management. For. Ecol. Manag. 2022, 519, 120324. [Google Scholar] [CrossRef]
- Niccoli, F.; Pelleri, F.; Manetti, M.C.; Sansone, D.; Battipaglia, G. Effects of thinning intensity on productivity and water use efficiency of Quercus robur L. For. Ecol. Manag. 2020, 473, 118282. [Google Scholar] [CrossRef]
- Gavinet, J.; Ourcival, J.; Limousin, J. Rainfall exclusion and thinning can alter the relationships between forest functioning and drought. New Phytol. 2019, 223, 1267–1279. [Google Scholar] [CrossRef]
- Nelson, K.N.; Barnard, J.C.; Massingham, P.M.; Crotteau, J.S. Tree pruning improves tree form but not understory plant production in mixed stands of Sitka spruce and western hemlock, USA. Forestry 2023, 97, 309–318. [Google Scholar] [CrossRef]
- Missanjo, E.; Kamanga-Thole, G. Effect of first thinning and pruning on the individual growth of Pinus patula tree species. J. For. Res. 2015, 26, 827–831. [Google Scholar] [CrossRef]
- Reventlow, D.O.J.; Nord-Larsen, T.; Skovsgaard, J.P. Pre-commercial thinning in naturally regenerated stands of European beech (Fagus sylvatica L.): Effects of thinning pattern, stand density and pruning on tree growth and stem quality. Forestry 2019, 92, 120–132. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; Rome Irrigation and drainage paper 56; FAO: Roma, Italy, 1998. [Google Scholar]
- Granier, A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiol. 1987, 3, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.G.; Licata, J.; Pypker, T.; Asbjornsen, H. Effects of heater wattage on sap flux density estimates using an improved tree-cut experiment. Tree Physiol. 2019, 39, 679–693. [Google Scholar]
- Wiedemann, A.; Maranon-Jimenez, S.; Rebmann, C.; Herbst, M.; Cuntz, M. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes. Tree Physiol. 2016, 36, 1471–1484. [Google Scholar] [CrossRef] [PubMed]
- Clearwater, M.J.; Meinzer, F.C.; Andrade, J.L.; Goldstein, G.; Holbrook, N.M. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree Physiol. 1999, 19, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Flo, V.; Martinez-Vilalta, J.; Steppe, K.; Schuldt, B.; Poyatos, R. A synthesis of bias and uncertainty in sap flow methods. Agric. For. Meteorol. 2019, 271, 362–374. [Google Scholar] [CrossRef]
- Fuchs, S.; Leuschner, C.; Link, R.; Coners, H.; Schuldt, B. Calibration and comparison of thermal dissipation, heat ratio and heat field deformation sap flow probes for diffuse-porous trees. Agric. For. Meteorol. 2017, 244–245, 151–161. [Google Scholar] [CrossRef]
- Li, G.D.; Jia, L.M.; Fu, F.Z. Comparison on the whole-tree water use of hybrid triploid of Chinese white poplar between the whole tree potometer and thermal dissipation probe. China For. Sci. Technol. 2014, 28, 41–44. [Google Scholar]
- Li, G.D.; Jia, L.M.; Fu, F.Z.; Xi, B.Y.; Wang, Y. Stem sap flow in different measurement positions of triploid Populus tomentosa. Acta Bot. Boreas. Occident. Sin. 2010, 30, 1209–1218, (in Chinese with English Abstract). [Google Scholar]
- Song, L.; Zhu, J.J.; Zhang, T.; Wang, K.; Wang, G.C.; Liu, J.H. Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China. Agric. Water Manag. 2021, 243, 106414. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.; Fu, B.; Lü, Y. Sap flow and water use sources of shelter-belt trees in an arid inland river basin of Northwest China. Ecohydrology 2015, 8, 1446–1458. [Google Scholar] [CrossRef]
- Kumagai, T.; Nagasawa, H.; Mabuchi, T.; Ohsaki, S.; Kubota, K.; Kogi, K.; Utsumi, Y.; Koga, S.; Otsuki, K. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. For. Ecol. Manag. 2005, 206, 191–195. [Google Scholar] [CrossRef]
- Tie, Q.; Hu, H.C.; Tian, F.Q.; Guan, H.D.; Lin, H. Environmental and physiological controls on sap flow in a subhumid mountainous catchment in North China. Agric. For. Meteorol. 2017, 240–241, 46–57. [Google Scholar] [CrossRef]
- Ford, C.R.; Hubbard, R.M.; Vose, J.M. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians. Ecohydrology 2011, 4, 183–195. [Google Scholar] [CrossRef]
- Urban, J.; Rubtsov, A.V.; Urban, A.V.; Shashkin, A.V.; Benkova, V.E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 2019, 271, 64–72. [Google Scholar] [CrossRef]
- Brutsaert, W. An advection-aridity approach to estimate actual regional evapotranspiration. Water Resour. Res. 1979, 15, 443–450. [Google Scholar] [CrossRef]
- Oren, S.; Katul, G.G.; Pataki, D.E.; Ewers, B.E.; Phillips, N.; Schafer, K.V.R. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 1999, 22, 1515–1526. [Google Scholar] [CrossRef]
- Ewers, B.E.; Oren, R.; Johnsen, K.H.; Landsberg, J.J. Estimating maximum mean canopy stomatal conductance for use in models. Can. J. For. Res. 2001, 31, 198–207. [Google Scholar] [CrossRef]
- Ewers, B.E.; Gower, S.T.; Bond-lamberty, B.; Wang, C.K. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ. 2005, 28, 660–678. [Google Scholar] [CrossRef]
- Oishi, A.C.; Hawthorne, D.A.; Oren, R. Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX 2016, 5, 139–146. [Google Scholar] [CrossRef]
- Schäfer, K.V.R.; Oren, R.; Tenhunen, J.D. The effect of tree height on crown level stomatal conductance. Plant Cell Environ. 2000, 23, 365–375. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Z.; Shen, Y.; Yang, X. Thinning promoted the rejuvenation and highly efficient use of soil water for degraded Caragana korshinskii plantation in semiarid loessal regions. Land. Degrad. Dev. 2022, 34, 992–1003. [Google Scholar] [CrossRef]
- Tsamir, M.; Gottlieb, S.; Preisler, Y.; Rotenberg, E.; Tatarinov, F.; Yakir, D.; Tague, C.; Klein, T. Stand density effects on carbon and water fluxes in a semi-arid forest, from leaf to stand-scale. For. Ecol. Manag. 2019, 453, 117573. [Google Scholar] [CrossRef]
- Miller, S.D.; Goulden, M.L.; Hutyra, L.R.; Keller, M.; Saleska, S.R.; Wofsy, S.C.; Figueira, A.M.S.; da Rocha, H.R.; de Camargo, P.B. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange. Proc. Natl. Acad. Sci. USA 2011, 108, 19431–19435. [Google Scholar] [CrossRef]
- Sinacore, K.; Breton, C.; Asbjornsen, H.; Hernandez-Santana, V.; Hall, J.S. Drought Effects on Tectona grandis Water Regulation Are Mediated by Thinning, but the Effects of Thinning Are Temporary. Front. For. Glob. Chang. 2019, 2, 82. [Google Scholar] [CrossRef]
- Lagergren, F.; Lankreijer, H.; Kucera, J.; Cienciala, E.; Molder, M.; Lindroth, A. Thinning effects on pine-spruce forest transpiration in central Sweden. For. Ecol. Manag. 2008, 255, 2312–2323. [Google Scholar] [CrossRef]
- Simonin, K.; Kolb, T.E.; Montes-Helu, M.; Koch, G.W. The influence of thinning on components of stand water balance in a ponderosa pine forest stand during and after extreme drought. Agric. For. Meteorol. 2007, 143, 266–276. [Google Scholar] [CrossRef]
- Li, R.; Han, J.; Guan, X.; Chi, Y.; Zhang, W.; Chen, L.; Wang, Q.; Xu, M.; Yang, Q.; Wang, S. Crown pruning and understory removal did not change the tree growth rate in a Chinese fir (Cunninghamia lanceolata) plantation. For. Ecol. Manag. 2020, 464, 118056. [Google Scholar] [CrossRef]
- Novick, K.A.; Ficklin, D.L.; Stoy, P.C.; Williams, C.A.; Bohrer, G.; Oishi, A.C.; Papuga, S.; Blanken, P.D.; Noormets, A.; Sulman, B.N.; et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Chang. 2016, 6, 1023–1027. [Google Scholar] [CrossRef]
- Raupach, M. Vegetation–atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agric. For. Meteorol. 1995, 1923, 151–179. [Google Scholar] [CrossRef]
- Kelliher, F.; Leuning, R.; Raupach, M.R.; Schulze, E.D. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 1995, 73, 1–16. [Google Scholar] [CrossRef]
- Yoshifuji, N.; Kumagai, T.O.; Ichie, T.; Kume, T.; Tateishi, M.; Inoue, Y.; Yoneyama, A.; Nakashizuka, T. Limited stomatal regulation of the largest-size class of Dryobalanops aromatica in a Bornean tropical rainforest in response to artificial soil moisture reduction. J. Plant Res. 2020, 133, 175–191. [Google Scholar] [CrossRef]
- Igarashi, Y.; Kumagai, T.; Yoshifuji, N.; Sato, T.; Tanaka, N.; Tanaka, K.; Suzuki, M.; Tantasirin, C. Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand. Agric. For. Meteorol. 2015, 202, 1–10. [Google Scholar] [CrossRef]
- Teklehaimanot, Z.; Jarvis, P.G.; Ledger, D.C. Rainfall interception and boundary layer conductance in relation to tree spacing. J. Hydrol. 1991, 123, 261–278. [Google Scholar] [CrossRef]
- Domec, J.C.; Johnson, D.M. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars? Tree Physiol. 2012, 32, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Trnka, M.; Kučera, J.; Fajman, M.; Žalud, Z. Biomass productivity and water use relation in short rotation poplar coppice (Populus nigra x P. maximowiczii) in the conditions of Czech Moravian Highlands. Acta Univ. Agric. Silvic. Mendel. Brun. 2014, 59, 141–152. [Google Scholar] [CrossRef]
- Orság, M.; Trnka, M. Transpiration and biomass increment in short rotation poplar coppice. In Proceedings of the International PhD Students Conference “MendelNet”, Brno, Czech Republic, 23 November 2011; pp. 688–693. [Google Scholar]
- Li, X.; Aini Farooqi, T.J.; Jiang, C.; Liu, S.; Sun, O.J. Spatiotemporal variations in productivity and water use efficiency across a temperate forest landscape of Northeast China. For. Ecosyst. 2019, 6, 22. [Google Scholar] [CrossRef]
- He, Q.; Yan, M.; Miyazawa, Y.; Chen, Q.; Cheng, R.; Otsuki, K.; Yamanaka, N.; Du, S. Sap flow changes and climatic responses over multiple-year treatment of rainfall exclusion in a sub-humid black locust plantation. For. Ecol. Manag. 2020, 457, 117730. [Google Scholar] [CrossRef]
- Xue, P.; Miao, N.; Yue, X.; Tao, Q.; Zhang, Y.; Peng, Z.; Mao, K. Excessive Rainfall in Growing Season May Cause Tree Growth Decline in Minjiang Fir on the Eastern Tibetan Plateau. 2022. Available online: https://ssrn.com/abstract=4145839 (accessed on 24 June 2022).
- Rahman, M.; Islam, M.; Bräuning, A. Tree radial growth is projected to decline in South Asian moist forest trees under climate change. Glob. Chang. Biol. 2018, 170, 106–119. [Google Scholar] [CrossRef]
- Huang, K.; Xu, C.; Qian, Z.; Zhang, K.; Tang, L. Effects of Pruning on Vegetation Growth and Soil Properties in Poplar Plantations. Forests 2023, 14, 501. [Google Scholar] [CrossRef]
Treatment | Tree Number | Height (m) | DBH (cm) | Height to Canopy Base (m) | Crown Width (m) | SA (cm2) |
---|---|---|---|---|---|---|
T1P0 | 1 | 7.6 | 8.18 | 2.7 | 2.7 × 3.6 | 46.10 |
2 | 8.8 | 7.9 | 2.4 | 2.8 × 3.6 | 43.06 | |
3 | 10.2 | 8.21 | 2 | 3.3 × 3.8 | 46.43 | |
T1P1 | 4 | 7.7 | 8.5 | 2.4 | 2.3 × 3.6 | 49.69 |
5 | 8.8 | 8.12 | 2.6 | 2.7 × 2.9 | 45.44 | |
6 | 7.2 | 7.22 | 2.3 | 2.2 × 2.1 | 36.12 | |
T1P2 | 7 | 8 | 8.76 | 2.18 | 2.2 × 3.7 | 52.70 |
8 | 8.1 | 8.52 | 2.6 | 2.8 × 3.7 | 49.92 | |
9 | 7.8 | 6.82 | 2.1 | 3 × 3 | 32.31 | |
T2P0 | 10 | 9.3 | 9 | 2.2 | 3.1 × 3.9 | 55.56 |
11 | 10.3 | 9.22 | 2.4 | 3.4 × 4.5 | 58.24 | |
12 | 7.3 | 7.7 | 2.3 | 2.2 × 2.8 | 40.96 | |
T2P1 | 13 | 9.4 | 8.31 | 2.7 | 2.8 × 4 | 47.54 |
14 | 8.4 | 7.75 | 2.07 | 2.3 × 3.3 | 41.48 | |
15 | 8.5 | 8.38 | 2.1 | 2.3 × 3.1 | 48.33 | |
T2P2 | 16 | 7.5 | 7.85 | 2.2 | 3 × 3.2 | 42.53 |
17 | 8.6 | 7.35 | 2.3 | 2.5 × 2.9 | 37.40 | |
18 | 8.8 | 7.7 | 2.3 | 3.4 × 4.6 | 40.96 |
Variables | Thinning | Pruning | Thinning × Pruning | |||
---|---|---|---|---|---|---|
F | p | F | p | F | p | |
Et | 788.026 | <0.001 | 7.786 | <0.001 | 9.737 | <0.001 |
Jm | 101.589 | <0.001 | 1.746 | 0.175 | 25.299 | <0.001 |
Ec | 222.487 | <0.001 | 4.836 | <0.05 | 17.827 | <0.001 |
EL | 3.236 | 0.072 | 13.777 | <0.001 | 13.690 | <0.001 |
gc | 10.288 | 0.001 | 14.455 | <0.001 | 19.776 | <0.001 |
Variables | T1P0 | T1P1 | T1P2 | T2P0 | T2P1 | T2P2 |
---|---|---|---|---|---|---|
Et (mm d−1) | 1.5 ± 0.66 a | 1.27 ± 0.49 b | 1.24 ± 0.45 b | 0.51 ± 0.18 c | 0.47 ± 0.17 c | 0.57 ± 0.21 c |
Jm (cm s−1) | 0.0032 ± 0.0015 a | 0.0029 ± 0.0011 ab | 0.0027 ± 0.0010 b | 0.0018 ± 0.0007 c | 0.0021 ± 0.0008 c | 0.0026 ± 0.0010 b |
Ec (mm d−1) | 0.83 ± 0.37 a | 0.69 ± 0.26 b | 0.65 ± 0.24 b | 0.43 ± 0.15 c | 0.47 ± 0.17 c | 0.50 ± 0.19 c |
EL (mm d−1) | 0.96 ± 0.43 ab | 0.90 ± 0.33 ab | 0.98 ± 0.36 ab | 0.73 ± 0.25 c | 0.93 ± 0.35 b | 1.04 ± 0.41 a |
gc (mm s−1) | 1.96 ± 0.67 ab | 1.61 ± 0.54 cd | 2.04 ± 0.73 a | 1.46 ± 0.55 d | 1.81 ± 0.60 bc | 1.90 ± 0.44 ab |
Treatments | VPD | PAR | ET0 | |||
---|---|---|---|---|---|---|
Slope | p | Slope | p | Slope | p | |
T1P0 | 0.739 a | <0.001 | 0.757 a | <0.001 | 0.842 a | <0.001 |
T2P2 | 0.535 b | <0.001 | 0.548 b | <0.001 | 0.610 b | <0.001 |
T1P2 | 0.549 b | <0.001 | 0.563 b | <0.001 | 0.626 b | <0.001 |
T2P1 | 0.383 c | <0.001 | 0.393 c | <0.001 | 0.437 c | <0.001 |
T1P1 | 0.538 b | <0.001 | 0.551 b | <0.001 | 0.613 b | <0.001 |
T2P0 | 0.736 a | <0.001 | 0.754 a | <0.001 | 0.839 a | <0.001 |
Treatment | Wet Summer | Dry Autumn | ||||||
---|---|---|---|---|---|---|---|---|
18 June–20 July | 20 July–22 August | 22 August–23 September | 23 September–25 October | |||||
BAI | LAI | BAI | LAI | BAI | LAI | BAI | LAI | |
T1P0 | 77.78 ± 8.96 a | 0.85 ± 0.21 a | 68.27 ± 9.02 a | 0.96 ± 0.20 a | 63.40 ± 11.96 | 0.82 ± 0.02 a | 23.90 ± 8.19 | 0.80 ± 0.12 ab |
T1P1 | 53.8 ± 2.47 abc | 0.75 ± 0.10 ab | 35.35 ± 5.61 bc | 0.78 ± 0.10 ab | 69.48 ± 13.68 | 0.77 ± 0.04 a | 32.33 ± 15.96 | 0.73 ± 0.10 b |
T1P2 | 49.07 ± 15.68 bc | 0.71 ± 0.05 ab | 28.69 ± 11.43 c | 0.81 ± 0.05 abc | 67.75 ± 22.45 | 0.55 ± 0.04 b | 49.74 ± 14.18 | 0.55 ± 0.06 c |
T2P0 | 74.08 ± 4.88 ab | 0.61 ± 0.03 bc | 53.71 ± 3.88 ab | 0.67 ± 0.03 bcd | 86.11 ± 13.17 | 0.55 ± 0.03 b | 31.46 ± 5.09 | 0.91 ± 0.07 a |
T2P1 | 56.45 ± 9.03 abc | 0.51 ± 0.06 c | 42.02 ± 4.37 bc | 0.60 ± 0.06 cd | 63 ± 22.18 | 0.44 ± 0.06 c | 23.75 ± 7.33 | 0.45 ± 0.04 c |
T2P2 | 43.43 ± 12.05 c | 0.48 ± 0.07 c | 23.77 ± 12.34 c | 0.51 ± 0.07 d | 67.06 ± 18.62 | 0.48 ± 0.04 bc | 29.07 ± 10.04 | 0.46 ± 0.04 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, Y.; Qi, S.; Fan, Z.; Xue, Y.; Tang, Q.; Liu, Z.; Zheng, X.; Wu, C.; Xi, B.; et al. Thinning vs. Pruning: Impacts on Sap Flow Density and Water Use Efficiency in Young Populus tomentosa Plantations in Northern China. Forests 2024, 15, 536. https://doi.org/10.3390/f15030536
Liu Y, Liu Y, Qi S, Fan Z, Xue Y, Tang Q, Liu Z, Zheng X, Wu C, Xi B, et al. Thinning vs. Pruning: Impacts on Sap Flow Density and Water Use Efficiency in Young Populus tomentosa Plantations in Northern China. Forests. 2024; 15(3):536. https://doi.org/10.3390/f15030536
Chicago/Turabian StyleLiu, Yan, Yadong Liu, Shuanglei Qi, Ziying Fan, Yadan Xue, Qingxuan Tang, Zhengyuan Liu, Xiaomin Zheng, Chuangye Wu, Benye Xi, and et al. 2024. "Thinning vs. Pruning: Impacts on Sap Flow Density and Water Use Efficiency in Young Populus tomentosa Plantations in Northern China" Forests 15, no. 3: 536. https://doi.org/10.3390/f15030536
APA StyleLiu, Y., Liu, Y., Qi, S., Fan, Z., Xue, Y., Tang, Q., Liu, Z., Zheng, X., Wu, C., Xi, B., & Duan, J. (2024). Thinning vs. Pruning: Impacts on Sap Flow Density and Water Use Efficiency in Young Populus tomentosa Plantations in Northern China. Forests, 15(3), 536. https://doi.org/10.3390/f15030536