Effects of an Invasive Bark Beetle Polygraphus proximus Blandf. Outbreak on Carbon Pool Dynamics in West Siberian Dark Coniferous Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Evaluation of Dynamics of the Wood Phytomass Pool
2.3. Debris Stock Assessment
2.4. Soil Analysis
2.5. Sample Preparation and Chemical Analysis of the Wood and Soil Samples
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Time Course of Vitality of Forest Stands
3.2. Dynamics of the Woody Phytomass Pool
3.3. Estimation of Carbon Reserve Contents of Debris
3.4. Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Tree Category | Crown Features | Trunk Features | Internal Features |
---|---|---|---|
I. Healthy, with no signs of weakening. Not attacked by P. proximus. | Crown is thick and expansive; needles are green and shiny. | Mechanical damage and streaks of resinosis are absent. | Bast is not damaged. |
II. Weakened. Attacked by P. proximus but the pest has not settled (unsuccessful attempts at colonization). | Crown may be similar to that of a healthy tree, with no signs of weakening, or it may be thinned, flag-like; several branches have needles colored bright red at the ends. There may be signs of fir broom rust (witches’ brooms). | Moderate numbers of fresh and/or old streaks of resinosis on the trunk. Entrance holes of P. proximus are resin soaked (unsuccessful attempts at colonization). There may be signs of fir broom rust (possibly 1–3 cerous ulcers on the trunk, growths on the branches). | Bast is fresh, white, necrotic spots of various sizes in places of unsuccessful attempts at colonization by P. proximus. |
III. Heavily weakened. Attacked by P. proximus but not colonized. | Crown, depending on the time and intensity of colonization, may be healthy but sparser, with pale-green needles, or more than half of the branches carry drying out needles. Witches’ brooms are common. | Intense fresh and/or oldresin bleeding. In someplaces at the bottom of the trunk, there are entrance holes of P. proximus, which are not resin soaked. Signs of fir broom rust (numerous cancerous ulcers, growths on the branches) are common. Cracks on the trunk. | Bast is the same as in trees from category II. An entrance channel and nuptial chamber are resin soaked, failed attempts of colonization by P. proximus. |
IV. Drying (dying). Colonized by P. proximus. | Needles in the upper part of the crown are still green; beneath, they have a bright red color. | Old streaks of resinosis may be seen. Numerous entrance holes without resinosis on the surface of bark. | Families of P. proximus under bark. Bast is mostly fresh, with necrotic spots near the nests of the bark beetles. |
V. A recent dead tree. | Needles in the crown are completely dead, red, retained. | Exit holes of P. proximus can be seen on bark. | Different stages of P. proximus development under bark. Bast is moist, growing brown. |
VI. A tree died in previous years (long-dead tree). | Crown is dead, gray. Needles fall off, down to their complete absence. Depending on the year of drying, branches of various orders fall off. | Numerous exit holes of P. proximus on bark. The bark is dry, easily comes off, and falls off when considerably damaged by insects. | Bast is brown and dry. Sap wood has tunnels of P. proximus, pupal chambers. |
Appendix B
The Genus of Trees | Fractional Part of Phytomass | Average Carbon Content, % | The Average Value of the Tree Species, % | Standard Error |
---|---|---|---|---|
Betula | Stem | 46.9682 | 47.41 | 0.71 |
Branches | 50.11382 | 1.19 | ||
Foliage | 46.73186 | 0.79 | ||
Root | 45.83282 | 0.93 | ||
Picea | Stem | 48.11803 | 48.85 | 0.2 |
Branches | 48.28587 | 0.23 | ||
Foliage | 47.4407 | 1.95 | ||
Root | 51.54453 | 0.47 | ||
Abies | Stem | 46.76737 | 49.14 | 1.04 |
Branches | 48.8517 | 0.52 | ||
Foliage | 51.22855 | 2.02 | ||
Root | 49.7323 | 0.49 | ||
Pinus sibirica | Stem | 50.6009 | 51.47 | 0.15 |
Branches | 53.45648 | 0.69 | ||
Foliage | 51.05883 | 0.7 | ||
Root | 50.7784 | 2.2 | ||
Populus tremula | Stem | 48.9508 | 47.76 | 0.73 |
Branches | 48.66423 | 0.52 | ||
Foliage | 48.4591 | 1.13 | ||
Root | 44.9507 | 0.83 | ||
Pinus sylvestris | Stem | 50.35818 | 48.76 | 0.66 |
Branches | 52.63315 | 0.05 | ||
Foliage | 42.5419 | 6.85 | ||
Root | 49.49117 | 0.61 |
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon pools and flux of global forest ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Gwynn-Jones, D.; Saugier, B.; Roy, J.; Mooney, H.A. Terrestrial global productivity. Ann. Bot. 2002, 89, 797–798. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Negative emissions from stopping deforestation and forest degradation, globally. Glob. Chang. Biol. 2018, 24, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Hurteau, M.D.; North, M.P.; Koch, G.W.; Hungate, B.A. Managing for disturbance stabilizes forest carbon. Proc. Natl. Acad. Sci. USA 2019, 116, 10193–10195. [Google Scholar] [CrossRef] [PubMed]
- Bazhina, E.V.; Tretyakova, I.N. Towards a problem of Fir decline. Uspekhi Sovrem. Biologii. 2001, 121, 626–631. [Google Scholar]
- Bazhina, E.V.; Storozhev, V.P.; Tretyakova, I.N. Dieback of Fir-Siberian Stone pine forests under technogenic pollution in the Kuznetsky Alatau Mountains. Lesovedenie 2013, 2, 15–21. [Google Scholar]
- Johnstone, J.F.; Chapin, F.S. Fire Interval Effects on Successional Trajectory in Boreal Forests of Northwest Canada. Ecosystems 2006, 9, 268–277. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Groisman, P.; Bulygina, O.; Henebry, G.; Speranskaya, N.; Shiklomanov, A.; Chen, Y.; Tchebakova, N.; Parfenova, E.; Tilinina, N.; Zolina, O.; et al. Dryland belt of Northern Eurasia: Contemporary environmental changes and their consequences. Environ. Res. Lett. 2018, 13, 115008. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Dvinskaya, M.L.; Shushpanov, A.S.; Golyukov, A.S. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 2020, 30, 543–556. [Google Scholar] [CrossRef]
- Voronin, V.I.; Sofronov, A.P.; Morozova, T.I.; Oskolkov, V.A.; Sukhovol’skii, V.G.; Kovalev, A.V. The landscape-specific occurrence of bacterial diseases in dark-coniferous forests on Khamar-Daban range (Southern Cisbaikalia). Geogr. Nat. Resour. 2019, 4, 56–65. [Google Scholar]
- Kirpotin, S.N.; Callaghan, T.V.; Peregon, A.M.; Babenko, A.S.; Berman, D.I.; Bulakhova, N.A.; Byzaakay, A.A.; Chernykh, T.M.; Chursin, V.; Interesova, E.A.; et al. Impacts of environmental change on biodiversity and vegetation dynamics in Siberia. Ambio 2021, 50, 1926–1952. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Phillips, J.; Shouse, M. Biogeomorphic impacts of invasive species. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 69–87. [Google Scholar] [CrossRef]
- Liebhold, A.M.; Brockerhoff, E.G.; Nunez, M.A. Biological invasions in forest ecosystems: A global problem requiring international and multidisciplinary integration. Biol. Invasions 2017, 19, 3073–3077. [Google Scholar] [CrossRef]
- Seebens, H.; Blackburn, T.M.; Dyer, E.E.; Genovesi, P.; Hulme, P.E.; Jeschke, J.M.; Pagad, S.; Pyšek, P.; van Kleunen, M.; Winter, M.; et al. The global rise in emerging alien species results from increased accessibility of new source pools. Proc. Natl. Acad. Sci. USA 2018, 115, E2264–E2273. [Google Scholar] [CrossRef] [PubMed]
- Musolin, D.L.; Kirichenko, N.I.; Karpun, N.N.; Mandelshtam, M.Y.; Selikhovkin, A.V.; Zhuravleva, E.N.; Aksenenko, E.V.; Golub, V.B.; Kerchev, I.A.; Vasaitis, R.; et al. Invasive pests of forests and urban trees in Russia: Origin pathways, damage, and management. Forests 2022, 13, 521. [Google Scholar] [CrossRef]
- Krivets, S.A.; Kerchev, I.A.; Bisirova, E.M.; Demidko, D.A.; Pet’ko, V.M.; Baranchikov, Y.N. Distribution of the four-eyed fir bark beetle Polygraphus proximus Blandf. (Coleoptera, Curculionidae: Scolytinae) in Siberia. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii 2015, 211, 33–45. (In Russian) [Google Scholar]
- Baranchikov, Y.N.; Krivets, S.A. About professional skills in determination of insects: How the occurrence of new aggressive invasive fir pest in Siberia was missed. Ecol. South. Sib. Adjac. Territ. 2010, 14, 50–52. (In Russian) [Google Scholar]
- Bystrov, S.O.; Antonov, I.A. First record of the four-eyed beetle Polygraphus proximus Blandford, 1894 (Coleoptera: Curculionidae, Scolytinae) from Irkutsk Province, Russia. Entomol. Rev. 2019, 98, 54–55. [Google Scholar] [CrossRef]
- Dedyukhin, S.V.; Titova, V.V. Finding of the bark beetle Polygraphus proximus Blandford, 1894 (Coleoptera, Curculionidae: Scolytinae) in Udmurtia. Russ. J. Biol. Invasions 2021, 12, 258–263. [Google Scholar] [CrossRef]
- Kerchev, I.A. Ecology of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera: Curculionidae, Scolytinae) in the West Siberian region of invasion. Russ. J. Biol. Invasions 2014, 5, 176–185. [Google Scholar] [CrossRef]
- Takagi, E.; Yamanaka, S. Reemergence and sister brood establishment in the bark beetle Polygraphus proximus (Coleoptera: Curculionidae: Scolytinae) under laboratory conditions. Appl. Entomol. Zool. 2024, 59, 1–6. [Google Scholar] [CrossRef]
- Kerchev, I.A.; Bisirova, E.M.; Krivets, S.A. Effect of the Four-Eyed Fir Bark Beetle Invasion on the Species Composition and Structure of the Siberian Fir Stem Pest Complex. Contemp. Probl. Ecol. 2022, 15, 270–281. [Google Scholar] [CrossRef]
- Pashenova, N.V.; Kononov, A.V.; Ustyantsev, K.V.; Blinov, A.G.; Pertsovaya, A.A.; Baranchikov, Y.N. Ophiostomatoid fungi associated with the four-eyed fir bark beetle on the territory of Russia. Russ. J. Biol. Invasions 2018, 9, 63–74. [Google Scholar] [CrossRef]
- Krivets, S.A.; Bisirova, E.M.; Kerchev, I.A.; Pats, E.N.; Chernova, N.A. Transformation of taiga ecosystems in the Western Siberian invasion focus of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera: Curculionidae, Scolytinae). Russ. J. Biol. Invasions 2015, 6, 94–108. [Google Scholar] [CrossRef]
- Demidko, D.A. The dates of invasion of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera: Curculionidae, Scolytinae) in Tomsk Oblast. Izvestia Sankt-Peterburgskoj Lesotehniceskoj Akademii 2014, 207, 225–234. (In Russian) [Google Scholar]
- Alekseev, V.F. Diagnostics of tree vitality and stand condition. Lesovedenie 1989, 4, 51–57, (In Russian with English summary). [Google Scholar]
- Lepekhin, A.A. Methods for determining the share of participation of a group of trees in forest pathological monitoring. Lesnoye khozyaystvo 2007, 5, 39–40. (In Russian) [Google Scholar]
- Rumyancev, D.E.; Lipatkin, V.A.; Cherakshev, A.V.; Vorobyova, N.S. Metodicheskie Rekomendacii po Otboru Kernov Drevesiny dlya celej Dendrohronologicheskih Issledovanij v Lesovedenii i Lesovodstve; Professional’naya Nauka: Moscow, Russia, 2022; 44p. (In Russian) [Google Scholar] [CrossRef]
- Usol’tsev, V.A.; Tsepordey, I.S.; Noritsin, D.V. Allometric models of single-tree biomass for forest-forming species of the Urals. For. Russ. Econ. Them 2022, 1, 4–14. [Google Scholar] [CrossRef]
- Usol’tsev, V.A.; Chasovskikh, V.P.; Noritsina, Y.V.; Noritsin, D.V. Allometric models of tree biomass for airborne laser scanning and ground inventory of carbon pool in the forests of Eurasia: Comparative analysis. Sibirskij Lesnoj Zurnal (Sib. J. For. Sci.) 2016, 4, 68–76. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Sergeeva, O.V.; Demidko, D.A.; Krivobokov, L.V.; Baranchikov, Y.N. Dynamics of coarse woody debris stocks in the fir forests damaged by the bark beetle Polygraphus proximus Blandf. (Coleoptera: Curculionidae, Scolytinae). Dendrobiont invertebrates and fungi and their role in forest ecosystems (XI Readings in memory of O.A. Kataev). In Proceedings of the All-Russian Conference with International Participation, St. Petersburg, Russia, 24–27 November 2020; Musolin, D.L., Kirichenko, N.I., Selikhovkin, A.V., Eds.; St. Petersburg State Forestry University Named after S.M. Kirova: St. Petersburg, Russia, 2020; pp. 231–232. (In Russian) [Google Scholar]
- Isaeva, L.N. Physical properties of wood of growing trees at different stages of decay. In Wood and Wood Materials; V.N. Sukachev Institute of Forest SB RAS: Krasnoyarsk, Russia, 1974; pp. 28–39. (In Russian) [Google Scholar]
- Shorokhova, E.V.; Shorokhov, A.A. Characteristics of Detritus Decay Classes for Spruce, Birch, and Aspen in Middle Taiga Spruce Forests; St. Petersburg Forestry Research Institute Publishers: St. Petersburg, Russia, 1999; Volume 1, pp. 17–23. [Google Scholar]
- Shein, E.V.; Karpachevskii, L.O. (Eds.) Theories and Methods of Soil Physics; Grif and K: Moscow, Russian, 2007; p. 616. [Google Scholar]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, 1st ed.; Springer: Heidelberg, Germany, 2007; 993p. [Google Scholar]
- Lebedev, A.T. Mass Spectrometry for the Analysis of the Environment; Tekhnosfer Publ.: Moscow, Russia, 2013; p. 632. [Google Scholar]
- APPLICATION NOTE E-EMA-001-2021/A2; CHNS Determination in Reference Soil Samples; VELP Scientifica: Usmate Velate, Italy, 2021; 3p.
- Takagi, E.; Köbayashi, K.; Takei, S.Y.; Masaki, D. Trunk diameter influences attack by Polygraphus proximus and subsequent mortality of Abies veitchii. For. Ecol. Manag. 2021, 479, 118617. [Google Scholar] [CrossRef]
- Wermelinger, B. Development and distribution of predators and parasitoids during two consecutive years of an Ips typographus (Col., Scolytidae) infestation. J. Appl. Ent. 2002, 126, 521–527. [Google Scholar] [CrossRef]
- Good Practice Guidelines for Land Use, Land-Use Change and Forestry; IPCC National Greenhouse Gas Inventories Programme; IPCC, WMO: Moscow, Russia, 2003; 330p.
- Lamlom, S.; Savidge, R. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Kerchev, I.A.; Krivets, S.A.; Mandelshtam, M.Y.; Ilinsky, Y.Y. Small Spruce Bark Beetle Ips amitinus (Eichhoff, 1872) (Coleoptera, Curculionidae: Scolytinae): A New Alien Species in West Siberia. Entomol. Rev. 2019, 99, 639–644. [Google Scholar] [CrossRef]
- Ellison, A.M.; Orwig, D.A.; Fitzpatrick, M.C.; Preisser, E.L. The Past, Present, and Future of the Hemlock Woolly Adelgid (Adelges tsugae) and Its Ecological Interactions with Eastern Hemlock (Tsuga canadensis) Forests. Insects 2018, 9, 172. [Google Scholar] [CrossRef] [PubMed]
- Hobbie, E.A.; Rinne-Garmston (Rinne), K.T.; Penttilä, R.; Vadeboncoeur, M.A.; Chen, J.; Mäkipää, R. Carbon and nitrogen acquisition strategies by wood decay fungi influence their isotopic signatures in Picea abies forests. Fungal Ecol. 2021, 52, 101069. [Google Scholar] [CrossRef]
- Bégin, C.; Gingras, M.; Savard, M.M.; Marion, J.; Nicault, A.; Bégin, Y. Assessing tree-ring carbon and oxygen stable isotopes for climate reconstruction in the Canadian northeastern boreal forest. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 423, 91–101. [Google Scholar] [CrossRef]
- Program of Emergency Measures for Biological Control of Insect Pests in the Forests of the Krasnoyarsk Territory; Report on the World Bank Project Loan 3806-RU; Moscow, Russia, 1997; 151p.
- Klutsch, J.G.; Negrón, J.F.; Costello, S.L.; Rhoades, C.C.; West, D.R.; Popp, J.; Caissie, R. Stand characteristics and downed woody debris accumulations associated with a mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreak in Colorado. For. Ecol. Manage. 2009, 258, 641–649. [Google Scholar] [CrossRef]
- Fei, S.; Morin, R.S.; Oswalt, C.M.; Liebhold, A.M. Biomass losses resulting from insect and disease invasions in US forests. Proc. Natl. Acad. Sci. USA 2019, 116, 17371–17376. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Schepaschenko, D.; Nilsson, S. Assessment of woody detritus in forests of Russia. For. Surv. For. Manag. 2009, 1, 133–147. (In Russian) [Google Scholar]
- Klimchenko, A.V.; Verkhovets, S.V.; Slinkina, O.A.; Koshurnikova, N.N. Stocks of large woody remains in the middle taiga ecosystems of the Yenisei Siberia. Geogr. Nat. Resour. 2011, 2, 91–97. (In Russian) [Google Scholar]
- Cobb, R.C.; Orwig, D.A.; Currie, S. Decomposition of green foliage in eastern hemlock forests of southern New England impacted by hemlock woolly adelgid infestations. Can. J. For. Res. 2006, 36, 1331–1341. [Google Scholar] [CrossRef]
- Knoepp, J.D.; Vose, J.M.; Clinton, B.D.; Hunter, M.D. Hemlock infestation and mortality: Impacts on nutrient pools and cycling in Appalachian forests. Soil Sci. Soc. Am. J. 2011, 75, 1935–1945. [Google Scholar] [CrossRef]
- Yorks, T.E.; Leopold, D.J.; Raynal, D.J. Effects of Tsuga canadensis mortality on soil water chemistry and understory vegetation: Possible consequences of an invasive insect herbivore. Can. J. For. Res. 2003, 33, 1525–1537. [Google Scholar] [CrossRef]
- Nuckolls, A.E.; Wurzburger, N.; Ford, C.R.; Hendrick, R.L.; Vose, J.M.; Kloeppel, B.D. Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests. Ecosystems 2009, 12, 179–190. [Google Scholar] [CrossRef]
No. of Sample Plot | Sample Area, ha | Stand Composition * | Total Number of Trees, pcs/ha | Number of Living Trees, pcs/ha | Live Stand Volume, m3/ha | Total Stand Volume, m3/ha | Average Age, Year | Average Diameter, cm | Average Height, m | Quality Class | Stand Density |
---|---|---|---|---|---|---|---|---|---|---|---|
1-12 | 0.2 | Dead | II | ||||||||
forest | |||||||||||
stand: | |||||||||||
75F ** | 485 | 25 | 4 | 372 | 94 | 28.6 ± 0.9 | 24.1 ± 0.9 | 0.007 | |||
13SP | 25 | 5 | 3 | 78 | 160 | 59.0 ± 12.3 | 25.0 ± 0.4 | 0.004 | |||
11S | 30 | 20 | 15 | 35 | 120 | 49.3 ± 8.1 | 24.0 ± 1.9 | 0.04 | |||
1P | 10 | 10 | 5 | 5 | 25.5 ± 1.6 | 20.8 ± 0.9 | |||||
Single | |||||||||||
trees ***: | |||||||||||
76S | 20 | 20 | 4 | 4 | 47.6 ± 9.1 | 23.4 ± 2.1 | |||||
9F | 25 | 25 | 3 | 3 | 18.4 ± 1.2 | 16.2 ± 0.4 | |||||
9P | 10 | 10 | 15 | 15 | 25.5 ± 1.6 | 20.8 ± 0.9 | |||||
6SP | 5 | 5 | 5 | 5 | 28 | 24 | |||||
2 layer: | |||||||||||
98F | 655 | 655 | 38 | 38 | 11.0 ± 0.3 | 8.4 ± 0.3 | 0.28 | ||||
2S | 15 | 15 | 0.6 | 0.6 | 10.9 ± 1.6 | 9.2 ± 1.7 | |||||
2-12 | 0.25 | 53F1 | 308 | 172 | 126 | 229 | 68 | 28.9 ± 1.3 | 21.9 ± 0.5 | II | 0.34 |
5F2 | 456 | 200 | 12 | 26 | 14.3 ± 0.5 | 13.1 ± 0.5 | 0.07 | ||||
22SP | 56 | 24 | 53 | 142 | 150 | 47.0 ± 4.2 | 23.0 ± 1.2 | 0.09 | |||
18S | 44 | 36 | 42 | 43 | 33.3 ± 4.1 | 23.3 ± 1.8 | 0.10 | ||||
2B | 12 | 12 | 5 | 5 | 35 | 18.1 ± 7.4 | 13.6 ± 3.1 | 0.03 | |||
3-12 | 0.25 | 53S1 | 112 | 84 | 124 | 149 | 107 | 38.7 ± 4.9 | 24.6 ± 0.9 | II | 0.12 |
26SP | 32 | 28 | 61 | 65 | 133 | 44.2 ± 3.9 | 23.9 ± 0.9 | 0.10 | |||
11F1 | 140 | 32 | 35 | 112 | 106 | 34.9 ± 3.1 | 22.9 ± 1.3 | 0.09 | |||
7P | 20 | 16 | 18 | 19 | 120 | 37.1 ± 2.4 | 24.8 ± 0.4 | 0.05 | |||
2F2 | 212 | 84 | 4 | 16 | 65 | 9.4 ± 0.6 | 9.4 ± 0.6 | 0.03 | |||
1S2 | 20 | 20 | 1 | 1 | 63 | 10.1 ± 1.1 | 10.0 ± 1.4 | 0.01 | |||
4-12 | 0.16 | 54SP | 13 | 13 | 112 | 112 | 175 | 98.5 ± 1.5 | 27.5 ± 0.1 | II | 0.16 |
26F1 | 350 | 88 | 51 | 283 | 108 | 27.3 ± 2.1 | 20.1 ± 0.9 | 0.15 | |||
15S | 37 | 31 | 31 | 43 | 39.0 ± 2.8 | 24.2 ± 0.6 | 0.08 | ||||
5F2 | 524 | 231 | 10 | 38 | 53 | 10.6 ± 0.5 | 8.4 ± 0.4 | 0.04 | |||
The arithmetic mean values ± standard error of the arithmetic mean is given |
Year of Research | No. of SP | Stand Composition | Stand Density | Stand Volume, m3/ha | Total Number of Trees, pcs/ha |
---|---|---|---|---|---|
Before invasion | 1-12 | 75F13SP11S1P * | 1.1 | 490 | 540 |
2-12 | 59F32SP8S1B | 1.0 | 426 | 752 | |
3-12 | 45S34F15F210SP5P | 1.0 | 300 | 412 | |
4-12 | 57F16F220SP14S3AS | 1.0 | 506 | 760 | |
2012 | 1-12 | Single trees ** 52SP44S3P1F | 0.2 | 123 | 75 |
2-12 | 42SP47F10S1B | 0.8 | 333 | 444 | |
3-12 | 52S25F114SP8P1F2 | 0.5 | 219 | 228 | |
4-12 | 35SP44F120S1F2 | 0.6 | 291 | 259 | |
2018 | 1-12 | Single trees ** 52SP44S3P1F | 0.2 | 123 | 75 |
2-12 | 45SP42F12S1B | 0.7 | 334 | 412 | |
3-12 | 54S20F115SP10P1F2 | 0.5 | 199 | 180 | |
4-12 | 55SP25S19F1 1F | 0.5 | 251 | 153 |
Decomposition Degree | C, % | ||
---|---|---|---|
Min | Max | Mean ± SD | |
1st | 45.68 | 46.65 | 46.30 ± 0.54 |
2nd | 44.85 | 46.08 | 45.51 ± 0.45 |
3rd | 45.63 | 49.83 | 47.63 ± 1.67 |
4th | 44.41 | 52.00 | 47.36 ± 2.75 |
5th | 44.20 | 52.27 | 47.72 ± 3.02 |
all samples (n = 35) | 44.20 | 52.27 | 47.04 ± 2.20 |
SP | Living Trees, m3/ha | Stocks of Debris, m3/ha | Carbon in the Debris, t/ha | Weighted Average Category of Stand Vitality |
---|---|---|---|---|
1-12 | 65.6 | 445.38 | 51.4 | 4.5 |
2-12 | 238 | 438.39 | 60.5 | 2.7 |
3-12 | 243 | 208.11 | 23 | 2.8 |
4-12 | 204 | 463.58 | 60.2 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerchev, I.A.; Bisirova, E.M.; Smirnov, N.A.; Grachev, I.G.; Nikiforov, A.N.; Kalashnikova, D.A. Effects of an Invasive Bark Beetle Polygraphus proximus Blandf. Outbreak on Carbon Pool Dynamics in West Siberian Dark Coniferous Forests. Forests 2024, 15, 542. https://doi.org/10.3390/f15030542
Kerchev IA, Bisirova EM, Smirnov NA, Grachev IG, Nikiforov AN, Kalashnikova DA. Effects of an Invasive Bark Beetle Polygraphus proximus Blandf. Outbreak on Carbon Pool Dynamics in West Siberian Dark Coniferous Forests. Forests. 2024; 15(3):542. https://doi.org/10.3390/f15030542
Chicago/Turabian StyleKerchev, Ivan A., Elvina M. Bisirova, Nikita A. Smirnov, Igor G. Grachev, Artem N. Nikiforov, and Daria A. Kalashnikova. 2024. "Effects of an Invasive Bark Beetle Polygraphus proximus Blandf. Outbreak on Carbon Pool Dynamics in West Siberian Dark Coniferous Forests" Forests 15, no. 3: 542. https://doi.org/10.3390/f15030542
APA StyleKerchev, I. A., Bisirova, E. M., Smirnov, N. A., Grachev, I. G., Nikiforov, A. N., & Kalashnikova, D. A. (2024). Effects of an Invasive Bark Beetle Polygraphus proximus Blandf. Outbreak on Carbon Pool Dynamics in West Siberian Dark Coniferous Forests. Forests, 15(3), 542. https://doi.org/10.3390/f15030542