Dominant Tree Species and Their Age Groups Drive Forest Carbon Storage in Wuyi Mountain National Park, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Forest Resource Data
2.3. Classification Methods for Various Types of Factors in Forest Resources
2.4. Data Analysis
2.4.1. Estimation of Forest Biomass
2.4.2. Estimation of Forest Carbon Storage
2.4.3. Path Analysis between Forest Carbon Storage and Influencing Factors
2.4.4. Calculation of Decision Coefficients for Influencing Factors
3. Results
3.1. Estimation of Forest Carbon Storage in WMNP
3.2. Changes in Forest Carbon Storage of WMNP from 2017 to 2020
3.3. Path Analysis between Forest Carbon Storage and Influencing Factors
3.4. Analysis of Decision Coefficients for Influencing Factors
4. Discussion
4.1. Forest Carbon Storage and Carbon Density of WMNP
4.2. Main Influencing Factors of Forest Carbon Storage in WMNP
4.3. Challenges and Solutions for the Future Development of Forest Carbon Sinks in WMNP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, J.M.; Shen, M.H. Analysis of the efficiency of forest carbon sinks and its influencing factors—Evidence from China. Sustainability 2022, 14, 11155. [Google Scholar] [CrossRef]
- Li, T.; Zou, Y.; Liu, Y.; Luo, P.; Xiong, Q.L.; Lu, H.; Lai, C.H.; Axmacher, J.C. Mountain forest biomass dynamics and its drivers in southwestern China between 1979 and 2017. Ecol. Indic. 2022, 142, 109289. [Google Scholar] [CrossRef]
- Njoroge, B.; Li, Y.L.; Wei, S.M.; Meng, Z.; Liu, S.Z.; Zhang, Q.M.; Tang, X.L.; Zhang, D.Q.; Liu, J.X.; Chu, G.W. An interannual comparative study on ecosystem carbon exchange characteristics in the Dinghushan Biosphere Reserve, a dominant subtropical evergreen forest ecosystem. Front. Plant Sci. 2021, 12, 715340. [Google Scholar] [CrossRef]
- Ge, J.M.; Lin, B.Q. Does the Kyoto Protocol as an international environmental policy promote forest carbon sinks? J. Glob. Inf. Manag. 2021, 30, 1–22. [Google Scholar] [CrossRef]
- Zhao, M.M.; Yang, J.L.; Zhao, N.; Liu, Y.; Wang, Y.F.; Wilson, J.P.; Yue, T.X. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. For. Ecol. Manag. 2019, 448, 528–534. [Google Scholar] [CrossRef]
- Adetoye, A.M.; Okojie, L.O.; Akerele, D. Forest carbon sequestration supply function for African countries: An econometric modelling approach. For. Policy. Econ. 2018, 90, 59–66. [Google Scholar] [CrossRef]
- Nyirenda, A. Estimation of the aboveground carbon stock in Kanonge Local Forest of Kaputa District in Northern Province, Zambia. Int. J. Environ. Sci. 2023, 6, 14–31. [Google Scholar] [CrossRef]
- Liang, B.Y.; Wang, J.; Zhang, Z.Y.; Zhang, J.; Zhang, J.P.; Cressey, E.L.; Wang, Z. Planted forest is catching up with natural forest in China in terms of carbon density and carbon storage. Fundam. Res. 2022, 2, 688–696. [Google Scholar] [CrossRef]
- Cavanaugh, K.C.; Gosnell, J.S.; Davis, S.L.; Ahumada, J.; Boundja, P.; Clark, D.B.; Mugerwa, B.; Jansen, P.A.; O’Brien, T.G.; Rovero, F.; et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 2014, 23, 563–573. [Google Scholar] [CrossRef]
- Xu, B.; Guo, Z.D.; Piao, S.L.; Fang, J.Y. Biomass carbon stocks in China’s forests between 2000 and 2050: A prediction based on forest biomass-age relationships. Sci China Life Sci. 2010, 53, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bao, W.K.; Bongers, F.; Chen, B.; Chen, G.K.; Guo, K.; Jiang, M.X.; Lai, J.S.; Lin, D.M.; Liu, C.J.; et al. Drivers of tree carbon storage in subtropical forests. Sci. Total. Environ. 2019, 654, 684–693. [Google Scholar] [CrossRef]
- Gebeyehu, G.; Soromessa, T.; Bekele, T.; Teketay, D. Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. J. Ecol. Environ. 2019, 43, 7. [Google Scholar] [CrossRef]
- Mewded, B.; Lemessa, D. Factors affecting woody carbon stock in Sirso moist evergreen Afromontane forest, southern Ethiopia: Implications for climate change mitigation. Environ. Dev. Sustain. 2020, 22, 6363–6378. [Google Scholar] [CrossRef]
- Wen, D.; He, N.P. Forest carbon storage along the north-south transect of eastern China: Spatial patterns, allocation, and influencing factors. Ecol. Indic. 2016, 61, 960–967. [Google Scholar] [CrossRef]
- Mngadi, M.; Odindi, J.; Mutanga, O. The utility of sentinel-2 spectral data in quantifying above-ground carbon stock in an urban reforested landscape. Remote Sens. 2021, 13, 4281. [Google Scholar] [CrossRef]
- Zeng, Z.X.; Zhang, A.W.; Wang, Q.T. A research on the problems and solutions in the development of the forest parks in China. Appl. Mech. Mater. 2013, 295, 2343–2346. [Google Scholar] [CrossRef]
- Li, W.; Huang, M.; Zhang, Y.D.; Gu, F.X.; Gong, H.M.; Guo, R.; Zhong, X.; Yan, C.R. Spatial-temporal variations of carbon storage and carbon sequestration rate in China’s national forest parks. J. Appl. Ecol. 2021, 32, 799–809. [Google Scholar]
- Luo, F.; Moyle, B.D.; Bao, J.G.; Zhong, Y.D. The role of institutions in the production of space for tourism: National Forest Parks in China. For. Policy. Econ. 2016, 70, 47–55. [Google Scholar] [CrossRef]
- Chen, S.F.; Xie, L.; Zhou, W.L.; Chen, H.; Xu, X.J.; Jiang, S.; Zang, M.Y.; Peng, Y.; Chen, X.; Duan, Y.F.; et al. Species diversity has a positive interrelationship with aboveground biomass and a mismatch with productivity in a subtropical broadleaf forest on the Wuyi Mountains, China. Diversity 2022, 14, 952. [Google Scholar] [CrossRef]
- Xie, Z.Y.; Li, C.S.; Lin, Y.; Liu, J.F.; He, Z.S. The lagging effect of precipitation on NAIs concentrations on rainy days in Wuyi Mountain National Park, China. Atmosphere 2023, 14, 377. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.G.; Ye, H.; Ding, Y.; Cao, Q.; Zhang, Y.J.; Huang, K. Carbon storage dynamics of subtropical forests estimated with multi-period forest inventories at a regional scale: The case of Jiangxi forests. J. For. Res. (Harbin) 2020, 31, 1247–1254. [Google Scholar] [CrossRef]
- Ding, H.; Fang, Y.M.; Yang, Q.; Chen, X.; Yuan, F.Y.; Xu, H.; He, L.H.; Yan, J.; Chen, T.T.; Yu, C.J.; et al. Community characteristics of a mid-subtropical evergreen broad-leaved forest plot in the Wuyi Mountains, Fujian Province, southeastern China. Biodivers. Sci. 2015, 23, 479. [Google Scholar] [CrossRef]
- Xu, L.; Shi, Y.G.; Fang, H.Y.; Zhou, G.M.; Xu, X.J.; Zhou, Y.F.; Tao, J.X.; Ji, B.Y.; Xu, J.; Li, C.; et al. Vegetation carbon stocks driven by canopy density and forest age in subtropical forest ecosystems. Sci. Total Environ. 2018, 631, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Ge, Z.P.; Wen, W.S.; Xu, L.; Chen, G.S.; Zhou, G.M.; Ji, B.Y.; Zhou, Y.F.; Zhu, G.L.; Shi, Y.J. Vegetation carbon accumulation driven by stand characteristics and climatic factors in subtropical forests of southeastern China. J. Sustain. For. 2022, 41, 941–958. [Google Scholar] [CrossRef]
- Doughty, C.E.; Metcalfe, D.B.; Girardin, C.A.J.; Amézquita, F.F.; Cabrera, D.G.; Huasco, W.H.; Silva-Espejo, J.E.; Araujo-Murakami, A.; da Costa, M.C.; Rocha, W.; et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 2015, 519, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Fissore, C.; Dalzell, B.J.; Berhe, A.A.; Voegtle, M.; Evans, M.; Wu, A. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena 2017, 149, 140–149. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, X.L.; Luo, Y.Q.; Xu, Z.K.; Xu, L.; Ruan, H.H.; Xu, X. Consistent temperature sensitivity of labile soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China. Appl. Soil Ecol. 2017, 117, 32–37. [Google Scholar] [CrossRef]
- Li, L.G.; Vogel, J.; He, Z.L.; Zou, X.M.; Ruan, H.H.; Huang, W.; Wang, J.S.; Bianchi, T.S. Association of soil aggregation with the distribution and quality of organic carbon in soil along an elevation gradient on Wuyi Mountain in China. PLoS ONE 2016, 11, e0150898. [Google Scholar] [CrossRef]
- Huang, W.; McDowell, W.H.; Zou, X.M.; Ruan, H.H.; Wang, J.S.; Li, L.G. Dissolved organic carbon in headwater streams and riparian soil organic carbon along an altitudinal gradient in the Wuyi Mountains, China. PLoS ONE 2013, 8, e78973. [Google Scholar] [CrossRef] [PubMed]
- He, S.Y.; Su, Y. Understanding residents’ perceptions of the ecosystem to improve park–people relationships in Wuyishan National Park, China. Land 2022, 11, 532. [Google Scholar] [CrossRef]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef]
- Pan, Y.D.; Luo, T.; Birdsey, R.; Hom, J.; Melillo, J. New estimates of carbon storage and sequestration in China’s forests: Effects of age–class and method on inventory-based carbon estimation. Clim. Chang. 2004, 67, 211–236. [Google Scholar] [CrossRef]
- Zhou, G.S.; Wang, Y.H.; Jiang, Y.L.; Yang, Z.Y. Estimating biomass and net primary production from forest inventory data: A case study of China’s Larix forests. For. Ecol. Manag. 2002, 169, 149–157. [Google Scholar] [CrossRef]
- Haywood, A.; Mellor, A.; Stone, C. A strategic forest inventory for public land in Victoria, Australia. For. Ecol. Manag. 2016, 367, 86–96. [Google Scholar] [CrossRef]
- Sun, W.L.; Liu, X.H. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020, 7, 4. [Google Scholar] [CrossRef]
- Nandal, A.; Yadav, S.S.; Rao, A.S.; Meena, R.S.; Lal, R. Advance methodological approaches for carbon stock estimation in forest ecosystems. Environ. Monit. Assess. 2023, 195, 315. [Google Scholar] [CrossRef] [PubMed]
- Timilsina, N.; Escobedo, F.J.; Staudhammer, C.L.; Brandeis, T. Analyzing the causal factors of carbon stores in a subtropical urban forest. Ecol. Complex. 2014, 20, 23–32. [Google Scholar] [CrossRef]
- Qian, F.; Song, H.Y.; Chen, M.; Zeng, J.Q.; Dang, C.Q.; Tao, J.P. Multivariate path analysis of the relationships between seedling regeneration and environmental factors beneath a dwarf bamboo understory. Ecol. Evol. 2019, 9, 10277–10290. [Google Scholar] [CrossRef]
- Tang, X.L.; Zhao, X.; Bai, Y.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.N.; Wan, H.S.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Ali, A.; Ashraf, M.I.; Gulzar, S.; Akmal, M. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: Implications for REDD+ and climate change mitigation. Environ. Monit. Assess. 2020, 192, 198. [Google Scholar] [CrossRef]
- Liu, Q.; Zhou, Z.; Chen, D.X.; Chen, Z.Z.; Lei, J.R.; Xu, H.; Wu, G.L.; Li, Y.D. Carbon storage and variation characteristics of the forest ecosystem in Hainan Tropical Rainforest National Park. Nat. Prot. Areas 2023, 3, 1–10. [Google Scholar]
- Li, Z.G.; Zhu, J.X. Assessment and spatial partitioning of ecosystem services importance in Giant Panda National Park: To provide targeted ecological protection. PLoS ONE 2022, 17, e0278877. [Google Scholar] [CrossRef]
- Wagner, B.; Liang, E.; Li, X.X.; Dulamsuren, C.; Leuschner, C.; Hauck, M. Carbon pools of semi-arid Picea crassifolia forests in the Qilian Mountains (north-eastern Tibetan Plateau). For. Ecol. Manag. 2015, 343, 136–143. [Google Scholar] [CrossRef]
- Borchard, N.; Schirrmann, M.; von Hebel, C.; Schmidt, M.; Baatz, R.; Firbank, L.; Vereecken, H.; Herbst, M. Spatio-temporal drivers of soil and ecosystem carbon fluxes at field scale in an upland grassland in Germany. Agric. Ecosyst. Environ. 2015, 211, 84–93. [Google Scholar] [CrossRef]
- Wang, K.B.; Deng, L.; Ren, Z.P.; Shi, W.Y.; Chen, Y.P.; Shang-Guan, Z.P. Dynamics of ecosystem carbon stocks during vegetation restoration on the Loess Plateau of China. J. Arid. Land. 2016, 8, 207–220. [Google Scholar] [CrossRef]
- Borah, M.; Das, D.; Kalita, J.; Boruah, H.P.D.; Phukan, B.; Neog, B. Tree species composition, biomass and carbon stocks in two tropical forest of Assam. Biomass Bioenergy 2015, 78, 25–35. [Google Scholar] [CrossRef]
- Reich, P.B.; Tilman, D.; Isbell, F.; Mueller, K.; Hobbie, S.E.; Flynn, D.F.B.; Eisenhauer, N. Impacts of biodiversity loss escalate through time as redundancy fades. Science 2012, 336, 589–592. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H.; Reich, P.B. Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis. J. Ecol. 2012, 100, 742–749. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.Y.H. Individual size inequality links forest diversity and above-ground biomass. J. Ecol. 2015, 103, 1245–1252. [Google Scholar] [CrossRef]
- Forrester, D.I. The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. For. Ecol. Manag. 2014, 312, 282–292. [Google Scholar] [CrossRef]
- Yachi, S.; Loreau, M. Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecol. Lett. 2007, 10, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.R.; Zhong, Q.L.; Cheng, D.L.; Huang, Z.Q.; Xu, C.B.; Yu, H.; Xiao, S.H. Carbon dynamics in three subtropical forest ecosystems in China. Environ. Sci. Pollut. Res. 2020, 27, 15552–15564. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.H.; Ma, L.L.; Seibold, S.; Cadotte, M.W.; Burgess, K.S.; Tan, S.L.; Ye, L.J.; Zheng, W.; Zou, J.Y.; Chen, Z.F.; et al. The diversity of mycorrhiza associated fungi and trees shapes subtropical mountain forest ecosystem functioning. J. Biogeogr. 2023, 50, 715–729. [Google Scholar] [CrossRef]
- Yan, G.Y.; Bongers, F.J.; Trogisch, S.; Li, Y.; Chen, G.K.; Yan, H.R.; Deng, X.L.; Ma, K.P.; Liu, X.J. Climate and mycorrhizae mediate the relationship of tree species diversity and carbon stocks in subtropical forests. J. Ecol. 2022, 110, 2462–2474. [Google Scholar] [CrossRef]
- Domke, G.M.; Perry, C.H.; Walters, B.F.; Woodall, C.W.; Russell, M.B.; Smith, J.E. Estimating litter carbon stocks on forest land in the United States. Sci. Total. Environ. 2016, 557, 469–478. [Google Scholar] [CrossRef]
- Park, A. Carbon storage and stand conversion in a pine-dominated boreal forest landscape. For. Ecol. Manag. 2015, 340, 70–81. [Google Scholar] [CrossRef]
- Bradford, J.B.; Jensen, N.R.; Domke, G.M.; D’Amato, A.W. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. For. Ecol. Manag. 2013, 308, 178–187. [Google Scholar] [CrossRef]
- Wei, H.; Man, X.L. Carbon storage and its allocation in Betula platyphylla forests of different ages in cold temperate zone of China. J. Plant. Ecol. 2019, 43, 843. [Google Scholar] [CrossRef]
- Fan, T.J.; Luo, R.L.; Xia, H.Y.; Li, X.P. Using LMDI method to analyze the influencing factors of carbon emissions in China’s petrochemical industries. Nat. Hazards 2015, 75, 319–332. [Google Scholar] [CrossRef]
- Feng, B. Forest carbon sink resource asset evaluation with case study of Fujian Province in China. Math. Probl. Eng. 2022, 2022, 7391473. [Google Scholar] [CrossRef]
Year | Forest Types | Area (hm2) | Biomass (103 t) | Carbon Storage (103 t C) | Carbon Density (t C·hm−2) |
---|---|---|---|---|---|
2017 | Coniferous tree | 38,277.59 | 3308.44 | 1654.22 | 43.22 |
Broad-leaved tree | 39,556.74 | 5021.88 | 2510.94 | 63.48 | |
Bamboo forest | 13,607.22 | 931.82 | 465.91 | 34.24 | |
Shrub-wood | 2501.51 | 45 | 22.5 | 8.99 | |
Total | 93,943.07 | 9307.14 | 4653.57 | ||
2020 | Coniferous tree | 32,903.73 | 3164.8 | 1582.4 | 48.09 |
Broad-leaved tree | 49,158.17 | 5627.38 | 2813.69 | 57.24 | |
Bamboo forest | 12,374.82 | 847.43 | 423.71 | 34.24 | |
Shrub-wood | 3460.71 | 62.26 | 31.13 | 9.00 | |
Total | 97,897.42 | 9701.87 | 4850.93 |
Factors | Correlation Coefficient | Direct Effect | Slope Length (x1) | Site Quality Grades (x2) | Dominant Tree Species (x3) | Origin (x4) | Age Groups (x5) | Elevation (x6) |
---|---|---|---|---|---|---|---|---|
x1 | −0.2831 | −0.0356 | −0.0183 | −0.1307 | −0.0318 | −0.0386 | −0.0250 | |
x2 | 0.0970 | 0.1079 | 0.0061 | −0.0272 | 0.0057 | 0.0013 | 0.0062 | |
x3 | 0.7292 | 0.5444 | 0.0085 | −0.0054 | 0.0590 | 0.1053 | 0.0182 | |
x4 | 0.4869 | 0.1135 | 0.0100 | 0.0054 | 0.2831 | 0.0520 | 0.0261 | |
x5 | 0.6387 | 0.1333 | 0.0103 | 0.0011 | 0.4301 | 0.0443 | 0.0210 | |
x6 | 0.3555 | 0.0567 | 0.0157 | 0.0119 | 0.1742 | 0.0522 | 0.0493 |
Factors | Correlation Coefficient | Direct Effect | Aspect (z1) | Dominant Tree Species (z2) | Age Groups (z3) | Elevation (z4) |
---|---|---|---|---|---|---|
z1 | −0.0359 | −0.0163 | −0.0151 | −0.0039 | −0.0047 | |
z2 | 0.1797 | 0.1159 | 0.0021 | 0.0422 | 0.0198 | |
z3 | 0.1688 | 0.0485 | 0.0013 | 0.1008 | 0.0194 | |
z4 | 0.1160 | 0.0431 | 0.0018 | 0.0533 | 0.0218 |
Influencing Factors | Rank | ||||
---|---|---|---|---|---|
Slope length (x1) | −0.0356 | −0.2831 | 2 × (−0.0356) × (−0.2831) − (−0.0356)2 | 0.0189 | 5 |
Site quality grades (x2) | 0.1079 | 0.1079 | 2 × (0.1079) × (0.0970) − (0.1079)2 | 0.0093 | 6 |
Dominant tree species (x3) | 0.5444 | 0.4869 | 2 × (0.5444) × (0.7292) − (0.5444)2 | 0.4976 | 1 |
Origin (x4) | 0.1135 | 0.4896 | 2 × (0.1135) × (0.4869) − (0.1135)2 | 0.0976 | 3 |
Age groups (x5) | 0.1333 | 0.6387 | 2 × (0.1333) × (0.6387) − (0.1333)2 | 0.1525 | 2 |
Elevation (x6) | 0.0567 | 0.3555 | 2 × (0.0567) × (0.3555) − (0.0567)2 | 0.0371 | 4 |
Influencing Factors | Rank | ||||
---|---|---|---|---|---|
Aspect (z1) | −0.0163 | −0.0359 | 2 × (−0.0163) × (−0.0359) − (−0.0163)2 | 0.0009 | 4 |
Dominant tree species (z2) | 0.1159 | 0.1797 | 2 × (0.1159) × (0.1797) − (0.1159)2 | 0.0282 | 1 |
Age groups (z3) | 0.0485 | 0.1688 | 2 × (0.0485) × (0.1688) − (0.0485)2 | 0.0140 | 2 |
Elevation (z4) | 0.0431 | 0.1160 | 2 × (0.0431) × (0.1160) − (0.0431)2 | 0.0081 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, X.; Lin, S.; Zhu, J.; Tan, F.; Zhang, H.; Chen, Q.; Hong, Y.; Liu, J.; Xu, D.; He, Z. Dominant Tree Species and Their Age Groups Drive Forest Carbon Storage in Wuyi Mountain National Park, China. Forests 2024, 15, 546. https://doi.org/10.3390/f15030546
Jin X, Lin S, Zhu J, Tan F, Zhang H, Chen Q, Hong Y, Liu J, Xu D, He Z. Dominant Tree Species and Their Age Groups Drive Forest Carbon Storage in Wuyi Mountain National Park, China. Forests. 2024; 15(3):546. https://doi.org/10.3390/f15030546
Chicago/Turabian StyleJin, Xing, Shu Lin, Jing Zhu, Fanglin Tan, Huiguang Zhang, Qichao Chen, Yu Hong, Jinfu Liu, Daowei Xu, and Zhongsheng He. 2024. "Dominant Tree Species and Their Age Groups Drive Forest Carbon Storage in Wuyi Mountain National Park, China" Forests 15, no. 3: 546. https://doi.org/10.3390/f15030546
APA StyleJin, X., Lin, S., Zhu, J., Tan, F., Zhang, H., Chen, Q., Hong, Y., Liu, J., Xu, D., & He, Z. (2024). Dominant Tree Species and Their Age Groups Drive Forest Carbon Storage in Wuyi Mountain National Park, China. Forests, 15(3), 546. https://doi.org/10.3390/f15030546