Comparison of Different Models to Simulate Forest Fire Spread: A Case Study
Abstract
:1. Introduction
2. Design and Development of FIRER
2.1. Model and Algorithm
- (1)
- McArthur model [24]:
- (2)
- Rothermel model [26]:
- (3)
- FBP system [42]:
- (4)
- Wang Zhengfei model [56]:
2.2. Data
2.3. Function Design
2.4. Model Evaluation
3. Application Example
3.1. Research Area
3.2. Fire Conditions
3.3. Fire Simulation Scheme
3.4. Basic Data
3.5. Results
3.5.1. Influence of Fire Scenario on Spread Simulation
3.5.2. Spread Model Comparison in the Fixed Scenario
3.5.3. Extended Analysis of the Optimal RoE-Based Model
4. Discussion
4.1. Forest Fire Spread Model
4.2. Forest Fire Spread Algorithm
4.3. Forest Fire Spread Simulation
4.4. Deficiencies and Prospects of FIRER
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.C.; Wang, B.; Li, M.Z.; Tian, Y.P.; Quan, Y.; Liu, J.Y. Simulation of forest fire spread based on artificial intelligence. Ecol. Indic. 2022, 136, 108653. [Google Scholar] [CrossRef]
- Monedero, S.; Ramirez, J.; Cardil, A. Predicting fire spread and behaviour on the fireline. Wildfire analyst pocket: A mobile app for wildland fire prediction. Ecol. Model. 2019, 392, 103–107. [Google Scholar] [CrossRef]
- Morgan, G.W.; Tolhurst, K.G.; Poynter, M.W.; Cooper, N.; McGuffog, T.; Ryan, R.; Wouters, M.A.; Stephens, N.; Black, P.; Sheehan, D.; et al. Prescribed burning in south-eastern Australia: History and future directions. Aust. For. 2020, 83, 4–28. [Google Scholar] [CrossRef]
- Piqué, M.; Domènech, R. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain. Sci. Total Environ. 2018, 618, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Monica, D.; Sigfrido, W.; Karina, L. Visualization and modeling of forest fire propagation in Patagonia. Environ. Model. Softw. 2022, 158, 105526. [Google Scholar] [CrossRef]
- Garnica, J.G.F.; Carmona, J.X.; Durán, Á.A. Monitoreo del comportamiento del fuego en una quema controlada en un rodal de pino-encino. Rev. Chapingo 2010, 16, 49–59. [Google Scholar] [CrossRef]
- Silvani, X.; Morandini, F. Fire spread experiments in the field: Temperature and heat fluxes measurements. Fire Saf. J. 2009, 44, 279–285. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009, 18, 349. [Google Scholar] [CrossRef]
- Sullivan, A.L.; Swedosh, W.; Hurley, R.J.; Sharples, J.J.; Hilton, J.E. Investigation of the effects of interactions of intersecting oblique fire lines with and without wind in a combustion wind tunnel. Int. J. Wildland Fire 2019, 28, 704. [Google Scholar] [CrossRef]
- Dupuy, J.L.; Maréchal, J. Slope effect on laboratory fire spread: Contribution of radiation and convection to fuel bed preheating. Int. J. Wildland Fire 2011, 20, 289. [Google Scholar] [CrossRef]
- Tihay, V.; Morandini, F.; Santoni, P.; Perez-Ramirez, Y.; Barboni, T. Combustion of forest litters under slope conditions: Burning rate, heat release rate, convective and radiant fractions for different loads. Combust. Flame 2014, 161, 3237–3248. [Google Scholar] [CrossRef]
- Li, H.; Liu, N.; Xie, X.; Zhang, L.; Yuan, X.; He, Q.; Viegas, D.X. Effect of fuel bed width on upslope fire spread: An experimental study. Fire Technol. 2020, 57, 1063–1076. [Google Scholar] [CrossRef]
- Boboulos, M.; Purvis, M.R. Fire behavior of mediterranean pine forest litter assessed in a specifically designed experimental rig. Exp. Tech. 2012, 36, 57–66. [Google Scholar] [CrossRef]
- Mulvaney, J.J.; Sullivan, A.L.; Cary, G.J.; Bishop, G.R. Repeatability of free-burning fire experiments using heterogeneous forest fuel beds in a combustion wind tunnel. Int. J. Wildland Fire 2016, 25, 445. [Google Scholar] [CrossRef]
- Rossa, C.G.; Fernandes, P.M. Fuel-related fire-behaviour relationships for mixed live and dead fuels burned in the laboratory. Can. J. For. Res. 2017, 47, 883–889. [Google Scholar] [CrossRef]
- Xie, X.; Liu, N.; Lei, J.; Shan, Y.; Zhang, L.; Chen, H.; Yuan, X.; Li, H. Upslope fire spread over a pine needle fuel bed in a trench associated with eruptive fire. Proc. Combust. Inst. 2017, 36, 3037–3044. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Zhang, L.; Chen, H. Experimental Study on Downslope Fire Spread over a Pine Needle Fuel Bed. Fire Technol. 2018, 54, 1487–1503. [Google Scholar] [CrossRef]
- Dasgupta, S.; Qu, J.; Hao, X.; Bhoi, S. Evaluating remotely sensed live fuel moisture estimations for fire behavior predictions in Georgia, USA. Remote Sens. Environ. 2007, 108, 138–150. [Google Scholar] [CrossRef]
- Mueller, E.V.; Skowronski, N.; Clark, K.; Gallagher, M.; Kremens, R.; Thomas, J.C.; El Houssami, M.; Filkov, A.; Hadden, R.M.; Mell, W.; et al. Utilization of remote sensing techniques for the quantification of fire behavior in two pine stands. Fire Saf. J. 2017, 91, 845–854. [Google Scholar] [CrossRef]
- Cardil, A.; Monedero, S.; Ramírez, J.; Silva, C.A. Assessing and reinitializing wildland fire simulations through satellite active fire data. J. Environ. Manag. 2019, 231, 996–1003. [Google Scholar] [CrossRef]
- Yang, G.; Ning, J.B.; Shu, L.F.; He, C.; Di, X.Y. Study on the accuracy of forest fire prediction by satellite hot spots in Dax-ing’an Mountains of Heilongjiang, northeastern China. J. Beijing For. Univ. 2017, 39, 1–9. [Google Scholar] [CrossRef]
- Fons, W.L. Analysis of Fire Spread in Light Forest Fuels. J. Agric. Res. 1946, 72, 92–121. [Google Scholar]
- National Academy of Sciences and National Research Council. Fire Research Abstracts and Reviews; The National Academies Press: Washington, DC, USA, 1963; Volume 5. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; ACT: Canberra, Australia, 1967; p. 107. [Google Scholar]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Forestry Technical Report 35; Canadian Forestry Service, Headquarters: Ottawa, ON, Canada, 1987; 35p. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service General Technical Report 115; USDA Forest Service: Ogden, UT, USA, 1972. [Google Scholar]
- Or, D.; Furtak-Cole, E.; Berli, M.; Shillito, R.; Ebrahimian, H.; Vahdat-Aboueshagh, H.; McKenna, S.A. Review of wildfire modeling considering effects on land surfaces. Earth-Sci. Rev. 2023, 245, 104569. [Google Scholar] [CrossRef]
- Liu, N.A. Wildland surface fire spread: Mechanism transformation and behavior transition. Fire Saf. J. 2023, 141, 103974. [Google Scholar] [CrossRef]
- Perrakis, D.; Cruz, M.; Alexander, M.; Hanes, C.; Thompson, D.; Taylor, S.W.; Stocks, B. Improved logistic models of crown fire probability in Canadian conifer forests. Int. J. Wildland Fire 2023, 32, 1455–1473. [Google Scholar] [CrossRef]
- Li, Y.; Wu, G.; Zhang, S.; Li, M.; Nie, B.; Chen, Z. A Novel Method of Modeling Grassland Wildfire Dynamics Based on Cellular Automata: A Case Study in Inner Mongolia, China. ISPRS Int. J. Geo-Inf. 2023, 12, 474. [Google Scholar] [CrossRef]
- Corcoran, J.; Higgs, G.; Rohde, D.; Chhetri, P. Investigating the association between weather conditions, calendar events and socio-economic patterns with trends in fire incidence: An Australian case study. J. Geogr. Syst. 2011, 13, 193–226. [Google Scholar] [CrossRef]
- Trucchia, A.; D’Andrea, M.; Baghino, F.; Fiorucci, P.; Ferraris, L.; Negro, D.; Gollini, A.; Severino, M. PROPAGATOR: An Operational Cellular-Automata Based Wildfire Simulator. Fire 2020, 3, 26. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Burge, J.; Bonanni, M.R.; Hu, R.L.; Ihme, M. Recurrent Convolutional Deep Neural Networks for Modeling Time-Resolved Wildfire Spread Behavior. Fire Technol. 2023, 59, 3327–3354. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Sun, S.; Wang, Y.; Li, S.; Li, D. Predicting the Wildland Fire Spread Using a Mixed-Input CNN Model with Both Channel and Spatial Attention Mechanisms. Fire Technol. 2023, 59, 2683–2717. [Google Scholar] [CrossRef]
- Kourtz, P.H.; O’Regan, W.G. A model a small forest fire to simulate burned and burning areas for use in a detection model. For. Sci. 1971, 17, 163–169. [Google Scholar]
- Green, D.G.; Gill, A.M.; Noble, I.R. Fire shapes and the adequacy of fire-spread models. Ecol. Model. 1983, 20, 33–45. [Google Scholar] [CrossRef]
- Green, D.G. Shapes of simulated fires in discrete fuels. Ecol. Model. 1983, 20, 21–32. [Google Scholar] [CrossRef]
- Richards, G. A general mathematical framework for modeling Two-Dimensional wildland fire spread. Int. J. Wildland Fire 1995, 5, 63–72. [Google Scholar] [CrossRef]
- Richards, G.; Bryce, R. A computer algorithm for simulating the spread of wildland fire perimeters for heterogeneous fuel and meteorological conditions. Int. J. Wildland Fire 1995, 5, 73–79. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Conditions for the start and spread of crown fire. Can. J. For. Res. 1977, 7, 23–34. [Google Scholar] [CrossRef]
- Alexander, M.E.; Lawson, B.D.; Stocks, B.J.; Van Wagner, C.E. Environment Canada, Canadian Forestry Service; Interim Edition; Northern Forest Research Centre: Edmonton, AB, Canada, 1984. [Google Scholar]
- Nelson, R.M., Jr. Prediction of diurnal change in 10-h fuel stick moisture content. Can. J. For. Res. 2000, 30, 1071–1087. [Google Scholar] [CrossRef]
- Clark, T.L.; Coen, J.L.; Latham, D.J. Description of a coupled atmosphere–fire model. Int. J. Wildland Fire 2004, 13, 49–63. [Google Scholar] [CrossRef]
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef]
- Drury, S.A. Observed versus predicted fire behavior in an Alaskan black spruce forest ecosystem: An experimental fire case study. Fire. Ecol. 2019, 15, 35. [Google Scholar] [CrossRef]
- Andrews, P.L.; Bevins, C.D.; Seli, R.C. BehavePlus Fire Modeling System, Version 4.0: User’s Guide; USDA Forest Service General Technical Report RMRS-GTR-106WWW; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008. [Google Scholar] [CrossRef]
- McLoughlin, N.R. REDapp—The Universal Fire Behavior Calculator; Version 1.0 User Guide; Government of Alberta: Edmonton, AB, Canada, 2016. [Google Scholar]
- de Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G.; Lopes, A.M.G. CFIS: A software tool for simulating crown fire initiation and spread. For. Ecol. Manag. 2006, 234, S133. [Google Scholar] [CrossRef]
- Ramírez, J.; Monedero, S.; Buckley, D. New approaches in fire simulations analysis with Wildfire Analyst. In Proceedings of the 5th International Wildland Fire Conference, Sun City, South Africa, 9–13 May 2011. [Google Scholar] [CrossRef]
- Monedero, S.; Ramirez, J.; Molina-Terrén, D.; Cardil, A. Simulating wildfires backwards in time from the final fire pe-rimeter in point-functional fire models. Environ. Model. Softw. 2017, 92, 163–168. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Loureiro, C.; Botelho, H. PiroPinus: A spreadsheet application to guide prescribed burning operations in maritime pine forest. Comput. Electron. Agric. 2012, 81, 58–61. [Google Scholar] [CrossRef]
- Chetehouna, K.; Tabach, E.E.; Bouazaoui, L.; Gascoin, N. Predicting the flame characteristics and rate of spread in fires propagating in a bed of Pinus pinaster using Artificial Neural Networks. Process Saf. Environ. 2015, 98, 50–56. [Google Scholar] [CrossRef]
- Zhai, C.; Zhang, S.; Cao, Z.; Wang, X. Learning-based prediction of wildfire spread with real-time rate of spread measurement. Combust. Flame 2020, 215, 333–341. [Google Scholar] [CrossRef]
- Wang, Z.F. The measurement method of the wildfire initial spread rate. Mt. Res. 1983, 1, 42–51. [Google Scholar]
- Sun, P.; Wu, X.P.; Jin, S.; Yu, H.Z.; Zhu, M.; Wang, X.H. Study on a forest fire behavior space simulation system with batch processing capacity. J. Cent. South Univ. For. Technol. 2014, 34, 41–45. [Google Scholar] [CrossRef]
- Yu, H.Z.; Jin, S.; Di, X.Y. Prediction models for ground surface fuels moisture content of Larix gmelinii stand in Dax-ing’anling of China based on one-hour time step. Chin. J. Appl. Ecol. 2013, 24, 1565–1571. [Google Scholar] [CrossRef]
- Yu, H.Z.; Shu, L.Z.; Yang, G.; Deng, J.F. Comparison of vapour-exchange methods for predicting hourly twig fuel moisture contents of larch and birch stands in the Daxinganling Region, China. Int. J. Wildland Fire 2021, 30, 462–466. [Google Scholar] [CrossRef]
- Jin, S.; Li, L. Validation of the method for direct estimation of timelag and equilibrium moisture content of forest fuel. Sci. Silvae Sin. 2010, 46, 95–102. [Google Scholar] [CrossRef]
- Elhag, M.; Boteva, S. The Canadian versus the National Forest Fire Danger Rating Systems tested in Mediterranean for-ests fire Crete, Greece. Environ. Dev. Sustain. 2021, 23, 4973–4983. [Google Scholar] [CrossRef]
- Jain, P.; Flannigan, M.D. Comparison of methods for spatial interpolation of fire weather in Alberta, Canada. Can. J. For. Res. 2017, 47, 1646–1658. [Google Scholar] [CrossRef]
- Simpson, C.C.; Pearce, H.G.; Sturman, A.P.; Zawar-Reza, P. Verification of WRF modelled fire weather in the 2009–2010 New Zealand fire season. Int. J. Wildland Fire 2014, 23, 34–45. [Google Scholar] [CrossRef]
- Zong, X.Z.; Tian, X.R.; Wang, X.L. An optimal firebreak design for the boreal forest of China. Sci. Total Environ. 2021, 781, 146822. [Google Scholar] [CrossRef]
- Duguy, B.; Alloza, J.A.; Röder, A.; Vallejo, R.; Pastor, F. Modelling the effects of landscape fuel treatments on fire growth and behaviour in a Mediterranean landscape (eastern Spain). Int. J. Wildland Fire 2007, 16, 619–632. [Google Scholar] [CrossRef]
- Li, X.T.; Qin, X.L.; Liu, Q.; Liu, S.C. Application of wide data of GF-6 in the identification of forest burned area—Take Hanma Daxing’an Mountains for example. Satell. Appl. 2019, 9, 41–44. [Google Scholar]
- Guo, K.; Liu, H.; Bao, H.; Hu, J.; Wang, S.; Zhang, W.; Zhao, Y.; Jiang, G. Habitat selection and their in-terspecific interactions for mammal assemblage in the Greater Khingan Mountains, northeastern China. Wildl. Biol. 2017, 2017, 1–8. [Google Scholar] [CrossRef]
- Yang, G.; Ning, J.B.; Shu, L.F.; Zhang, J.L.; Yu, H.Z.; Di, X.Y. Spotting ignition of larch (Larix gmelinii) fuel bed by different firebrands. J. For. Res. 2022, 33, 171–181. [Google Scholar] [CrossRef]
- Zong, X.Z.; Tian, X.R. Impacts of fuel treatment on potential fire behavior of main forest types in Daxing’anling. Sci. Silvae Sin. 2021, 57, 139–149. [Google Scholar] [CrossRef]
- Wang, Z.F. Current forest fire danger rating system. J. Nat. Disaster 1992, 3, 39–44. [Google Scholar] [CrossRef]
- Dupuy JLLawson, B.D.; Stocks, B.J.; Alexander, M.E.; Wagner, C.V. A system for predicting fire behavior in Canadian forests. The 8th National Conference on Fire and Forest Meteorology. Detroit. MI Soc. Am. For. 1985, 1985, 6–16. [Google Scholar]
- Salis, M.; Arca, B.; Alcasena, F.J.; Arianoutsou, M.; Bacciu, V.; Duce, P.; Duguy, B.; Koutsias, N.; Mallinis, G.; Mitsopoulos, I.D.; et al. Predicting wildfire spread and behaviour in Mediterranean landscapes. Int. J. Wildland Fire 2016, 25, 1015–1032. [Google Scholar] [CrossRef]
- Arca, B.; Duce, P.; Laconi, M.; Pellizzaro, G.; Salis, M.; Spanò, D.P. Evaluation of FARSITE simulator in Mediterranean maquis. Int. J. Wildland Fire 2007, 16, 563–572. [Google Scholar] [CrossRef]
- Maréchal, J.; Portier, D.; Valette, J.C. The effects of slope and fuel bed width on laboratory fire behavior. Int. J. Wildland Fire 2011, 20, 272. [Google Scholar] [CrossRef]
- Yin, H.; Jin, H.; Zhao, Y.; Fan, Y.G.; Qin, L.W.; Chen, Q.H.; Huang, L.Y.; Jia, X.; Liu, L.; Dai, Y.H.; et al. The Simulation of Surface Fire Spread Based on Rothermel Model in windthrow area of Changbai Mountain (Jilin, China). In Proceedings of the 2nd International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2018) (Advances in Energy Science and Environment Engineering II), Zhuhai, China, 2–4 February 2018; pp. 131–137. [Google Scholar]
- Eskandari, S. Application of a CA-based model to predict the fire front in Hyrcanian forests of Iran. Arab. J. Geosci. 2016, 9, 688. [Google Scholar] [CrossRef]
- Rui, X.; Hui, S.; Yu, X.T.; Zhang, G.Y.; Wu, B. Forest fire spread simulation algorithm based on cellular automata. Nat. Hazards 2018, 91, 309–319. [Google Scholar] [CrossRef]
- Sun, L.; Xu, C.; He, Y.; Zhao, Y.; Xu, Y.; Rui, X.; Xu, H. Adaptive forest fire spread simulation algorithm based on cellular automata. Forests 2021, 12, 1431. [Google Scholar] [CrossRef]
- Ghisu, T.; Arca, B.; Pellizzaro, G.; Duce, P. An optimal Cellular Automata algorithm for simulating wildfire spread. Environ. Model. Softw. 2015, 71, 1–14. [Google Scholar] [CrossRef]
- Morvan, D.; Méradji, S.; Accary, G. Physical modelling of fire spread in Grasslands. Fire Saf. J. 2008, 44, 50–61. [Google Scholar] [CrossRef]
- Jahdi, R.; Darvishsefat, A.A.; Etemad, V.; Mostafavi, M.A. Wind Effect on wildfire and simulation of its spread (Case study: Siahkal Forest in Northern Iran). J. Agric. Sci. Technol. 2014, 5, 1109–1121. [Google Scholar]
- Jahdi, R.; Salis, M.; Darvishsefat, A.A.; Alcasena, F.; Mostafavi, M.A.; Etemad, V.; Lozano, O.M.; Spano, D. Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran. Forestry 2016, 89, 136–149. [Google Scholar] [CrossRef]
- Hungerford, R.D.; Nemani, R.R.; Running, S.W.; Coughlan, J.C. MTCLIM: A Mountain Microclimate Extrapolation Model; Research Paper INT-414; USDA Forest Service: Washington, DC, USA, 1989. [Google Scholar]
- Wagenbrenner, N.S.; Forthofer, J.M.; Lamb, B.K.; Shannon, K.S.; Butler, B.W. Downscaling surface wind predictions from numerical weather prediction models in complex terrain with WindNinja. Atmos. Chem. Phys. 2016, 16, 5229–5241. [Google Scholar] [CrossRef]
Model | Feature |
---|---|
McArthur | Advantage: Does well in grassland fires. Disadvantage: Limited by fuel type and climate. |
Rothermel | Advantage: Performs complete fire behavior simulation, combining the wind, slope, and other factors. Disadvantage: Impossible to simulate the dynamic forest fire spread for fixed parameters. |
FBP | Advantage: Forecasts fire behavior characteristics and mechanisms accurately combined with the wind and slope, combining methods of statistics. Disadvantage: Only suitable for Canada and not for other regions due to special fuel types and weather conditions. |
Wang Zhengfei | Advantage: Adds correction coefficients for wind and slope. Disadvantage: Large error of over 60° for slope. |
Perimeter/km | Area/hm2 | Overlap Area/hm2 | Kappa | Sørensen | |
---|---|---|---|---|---|
Real fire | 83.9 | 7780.2 | - | - | - |
RoE | 86.7 | 5800.9 | 5694.4 | 0.8208 | 0.8386 |
FBP | 79.8 | 4826.2 | 4728.0 | 0.7257 | 0.7501 |
McA | 52.1 | 1810.1 | 1734.6 | 0.3325 | 0.3617 |
WZF | 39.2 | 2136.7 | 2064.1 | 0.3855 | 0.4163 |
Burning Time/h | Perimeter/km | Area/hm2 | Overlap Area/hm2 | Spread Rate/m·min−1 | ||||
---|---|---|---|---|---|---|---|---|
Real Time | Increase | Real Time | Increase | Real Time | Increase | Real Time | Increase | |
10 | 13.9 | 253.4 | 200.3 | 23.1 | ||||
20 | 16.5 | 2.6 | 472.8 | 219.4 | 403.4 | 203.1 | 13.7 | −9.4 |
30 | 21.8 | 5.3 | 801.3 | 328.5 | 728.6 | 325.2 | 12.1 | −1.6 |
40 | 29.5 | 7.7 | 1221.4 | 420.1 | 1128.9 | 400.3 | 12.3 | 0.2 |
50 | 33.3 | 3.8 | 1493.6 | 272.2 | 1399.6 | 270.7 | 11.1 | −1.2 |
60 | 52.5 | 19.2 | 2958.6 | 1465.0 | 2863.8 | 1464.2 | 14.6 | 3.5 |
70 | 60.5 | 8.0 | 3663.0 | 704.4 | 3567.9 | 704.1 | 14.4 | −0.2 |
80 | 67.0 | 6.5 | 4357.9 | 694.9 | 4261.4 | 693.5 | 14.0 | −0.4 |
90 | 73.0 | 6.0 | 4832.1 | 474.2 | 4733.9 | 472.5 | 13.5 | −0.5 |
100 | 82.2 | 9.2 | 5383.9 | 551.8 | 5285.8 | 551.9 | 13.7 | 0.2 |
110 | 84.0 | 1.8 | 5675.9 | 292.0 | 5577.7 | 291.9 | 12.7 | −1.0 |
120 | 86.7 | 2.7 | 5800.9 | 125.0 | 5694.4 | 116.7 | 12.1 | −0.6 |
Real fire | 83.9 | 7780.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ning, J.; Liu, H.; Yu, W.; Deng, J.; Sun, L.; Yang, G.; Wang, M.; Yu, H. Comparison of Different Models to Simulate Forest Fire Spread: A Case Study. Forests 2024, 15, 563. https://doi.org/10.3390/f15030563
Ning J, Liu H, Yu W, Deng J, Sun L, Yang G, Wang M, Yu H. Comparison of Different Models to Simulate Forest Fire Spread: A Case Study. Forests. 2024; 15(3):563. https://doi.org/10.3390/f15030563
Chicago/Turabian StyleNing, Jibin, Hui Liu, Wennan Yu, Jifeng Deng, Long Sun, Guang Yang, Mingyu Wang, and Hongzhou Yu. 2024. "Comparison of Different Models to Simulate Forest Fire Spread: A Case Study" Forests 15, no. 3: 563. https://doi.org/10.3390/f15030563
APA StyleNing, J., Liu, H., Yu, W., Deng, J., Sun, L., Yang, G., Wang, M., & Yu, H. (2024). Comparison of Different Models to Simulate Forest Fire Spread: A Case Study. Forests, 15(3), 563. https://doi.org/10.3390/f15030563