The Effect of Rays on the Mechanical Behaviour of Beech and Birch at Different Moisture and Temperature Conditions Perpendicular to the Grain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quasi-Static Compressive Tests
2.2. Microscopic Tests
3. Results and Discussion
3.1. The Compressive Behaviour along the Radial Direction
3.2. The Compressive Behaviour of Wood along the Tangential Direction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tabarsa, T.; Chui, Y.H. Stress-strain response of wood under radial compression. Part I. Test method and influences of cellular properties. Wood Fiber Sci. 2000, 32, 144–152. [Google Scholar]
- Huang, C.; Gong, M.; Chui, Y.; Chan, F. Mechanical behaviour of wood compressed in radial direction-part I. New method of determining the yield stress of wood on the stress-strain curve. J. Bioresour. Bioprod. 2020, 5, 186–195. [Google Scholar]
- Wolcott, M.P.; Kamke, F.A.; Dillard, D.A. Fundamental-aspects of wood deformation pertaining to manufacture of wood-based composites. Wood Fiber Sci. 1994, 26, 496–511. [Google Scholar]
- Ellis, S.; Steiner, P. The behaviour of five wood species in compression. Iawa J. 2002, 23, 201–211. [Google Scholar] [CrossRef]
- Kamke, F.A.; Kutnar, A. Transverse compression behavior of wood in saturated steam at 150–170 degrees C. Wood Fiber Sci. 2010, 42, 377–387. [Google Scholar]
- Bodig, J. Stress-strain relationship for wood in transverse compression. J. Mater. 1966, 1, 645–666. [Google Scholar]
- Da Silva, A.; Kyriakides, S. Compressive response and failure of balsa wood. Int. J. Solids Struct. 2007, 44, 8685–8717. [Google Scholar] [CrossRef]
- Tabarsa, T.; Chui, Y.H. Characterizing microscopic behavior of wood under transverse compression. Part II. Effect of species and loading direction. Wood Fiber Sci. 2001, 33, 223–232. [Google Scholar]
- Kunesh, R. The inelastic behavior of wood. A new concept for improved panel forming process. For. Prod. J. 1961, 11, 395–406. [Google Scholar]
- Reiterer, A.; Sinn, G.; Stanzl-Tschegg, S.E. Fracture characteristics of different wood species under mode I loading perpendicular to the grain. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2002, 332, 29–36. [Google Scholar] [CrossRef]
- Özden, S.; Ennos, A.R.; Cattaneo, M. Transverse fracture properties of green wood and the anatomy of six temperate tree species. Forestry 2017, 90, 58–69. [Google Scholar] [CrossRef]
- Emmerich, L.; Wülfing, G.; Brischke, C. The Impact of Anatomical Characteristics on the Structural Integrity of Wood. Forests 2019, 10, 12. [Google Scholar] [CrossRef]
- Sanabria, S.J.; Baensch, F.; Zauner, M.; Niemz, P. In-situ quantification of microscopic contributions of individual cells to macroscopic wood deformation with synchrotron computed tomography. Sci. Rep. 2020, 10, 16. [Google Scholar] [CrossRef]
- ISO 554; Standard Atmospheres for Conditioning and/or Testing—Specifications. International Organization for Standardization: Geneva, Switzerland, 1976.
- Al-musawi, H.; Huber, C.; Grabner, M.; Ungerer, B.; Krenke, T.; Matz, P.; Teischinger, A.; Müller, U. Compressive strength of beech and birch at different moisture contents and temperatures. J. Mater. Sci. 2023, 58, 13994–14008. [Google Scholar] [CrossRef]
- ISO 13061-2; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 2: Determination of Density for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- ISO 13061-1; Physical and Mechanical Properties of Wood—Test Methods for Small Clear Wood Specimens—Part 1: Determination of Moisture Content for Physical and Mechanical Tests. International Organization for Standardization: Geneva, Switzerland, 2014.
- Muller, U.; Gindl, W.; Teischinger, A. Effects of cell anatomy on the plastic and elastic behaviour of different wood species loaded perpendicular to grain. Iawa J. 2003, 24, 117–128. [Google Scholar] [CrossRef]
- Kollmann, F. Technologie des Holzes und der Holzwerkstoffe. Erster Band; Springer: Berlin/Göttingen/Heidelberg, Germany, 1951. [Google Scholar]
- Kawamura, Y. Studies on the properties of rays. II. Mean micelle angles and physical properties of broad rays. Mokuzai Gakkaishi 1984, 30, 201–206. [Google Scholar]
- Kawamura, Y. Studies on the properties of rays. III. Influence of rays on anisotropic shrinkage of wood (2). Mokuzai Gakkaishi 1984, 30, 785–790. [Google Scholar]
- Burgert, I.; Eckstein, D. The tensile strength of isolated wood rays of beech (Fagus sylvatica L.) and its significance for the biomechanics of living trees. Trees-Struct. Funct. 2001, 15, 168–170. [Google Scholar] [CrossRef]
- Wagenführ, R.; Wagenführ, A. Holzatlas; Carl Hanser Verlag GmbH Co. KG: Munich, Germany, 2021. [Google Scholar]
- Bergander, A.; Salmén, L. The transverse elastic modulus of the native wood fibre wall. J. Pulp Pap. Sci. 2000, 26, 234. [Google Scholar]
- Al-musawi, H.; Manni, E.; Stadlmann, A.; Ungerer, B.; Hassan Vand, M.; Lahayne, O.; Nobile, R.; Baumann, G.; Feist, F.; Müller, U. Characterisation of thermally treated beech and birch by means of quasi-static tests and ultrasonic waves. Sci. Rep. 2023, 13, 6348. [Google Scholar] [CrossRef]
- Al-musawi, H.; Huber, C.; Gusenbauer, C.; Ungerer, B.; Grabner, M.; Ploszczanski, L.; Schönbauer, B.; Painer, J.; Krenke, T.; Müller, U. The compressive behaviour of beech and birch at different moisture and temperature conditions along the grain. Eng. Fail. Anal. 2024, 159, 108017. [Google Scholar] [CrossRef]
- Poulsen, J.S.; Moran, P.M.; Shih, C.F.; Byskov, E. Kink band initiation and band broadening in clear wood under compressive loading. Mech. Mater. 1997, 25, 67–77. [Google Scholar] [CrossRef]
- Benabou, L. Kink band formation in wood species under compressive loading. Exp. Mech. 2008, 48, 647–656. [Google Scholar] [CrossRef]
- Salmen, L. Temperature and Water Induced Softening Behaviour of Wood Fiber Based Materials; Department of Paper Technology, Royal Institute of Technology: Stockholm, Sweden, 1982. [Google Scholar]
- Navi, P.; Sandberg, D. Thermo-Hydro-Mechanical Wood Processing; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Uhmeier, A.; Morooka, T.; Norimoto, M. Influence of thermal softening and degradation on the radial compression behavior of wet spruce. Holzforschung 1998, 52, 77–81. [Google Scholar] [CrossRef]
- Ozyhar, T.; Hering, S.; Sanabria, S.J.; Niemz, P. Determining moisture-dependent elastic characteristics of beech wood by means of ultrasonic waves. Wood Sci. Technol. 2013, 47, 329–341. [Google Scholar] [CrossRef]
- Fu, W.L.; Guan, H.Y.; Kei, S. Effects of Moisture Content and Grain Direction on the Elastic Properties of Beech Wood Based on Experiment and Finite Element Method. Forests 2021, 12, 17. [Google Scholar] [CrossRef]
- Thomas, T.; Tiwari, G. Crushing behavior of honeycomb structure: A review. Int. J. Crashworthiness 2019, 24, 555–579. [Google Scholar] [CrossRef]
- Corfield, M. Conservation of Archaeological Ships and Boats: Personal Experiences; Taylor & Francis: Abingdon, UK, 2015. [Google Scholar]
- Bekhta, P.; Proszyk, S.; Krystofiak, T.; Sedliacik, J.; Novak, I.; Mamonova, M. Effects of short-term thermomechanical densification on the structure and properties of wood veneers. Wood Mater. Sci. Eng. 2017, 12, 40–54. [Google Scholar] [CrossRef]
Orientation | [°C] | Beech | Birch | ||
---|---|---|---|---|---|
* MCbp | ** MCavg | * MCbp | ** MCavg | ||
Radial | 20 | 0.00 | 0.00 | 0.00 | 0.00 |
8.27 | 8.27 | 9.69 | 9.69 | ||
11.32 | 11.32 | 12.28 | 12.28 | ||
25.47 | 25.47 | 28.98 | 28.98 | ||
>FSP | >FSP | >FSP | >FSP | ||
100 | 0.00 | 0.00 | 0.00 | 0.00 | |
8.71 | 5.49 | 9.56 | 7.70 | ||
12.87 | 12.03 | 14.69 | 13.36 | ||
21.43 | 18.38 | 22.40 | 18.39 | ||
>FSP | >FSP | >FSP | >FSP | ||
140 | 0.00 | 0.00 | 0.00 | 0.00 | |
9.44 | 1.83 | 9.59 | 3.84 | ||
12.11 | 6.91 | 12.78 | 6.84 | ||
20.52 | 9.46 | 21.45 | 10.29 | ||
>FSP | >FSP | >FSP | >FSP | ||
Tangential | 20 | 0.00 | 0.00 | 0.00 | 0.00 |
8.29 | 8.29 | 9.6 | 9.6 | ||
>FSP | >FSP | >FSP | >FSP | ||
100 | 0.00 | 0.00 | 0.00 | 0.00 | |
7.65 | 4.49 | 9.71 | 7.83 | ||
>FSP | >FSP | >FSP | >FSP | ||
140 | 0.00 | 0.00 | 0.00 | 0.00 | |
9.22 | 2.36 | 4.55 | 3.78 | ||
>FSP | >FSP | >FSP | >FSP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-musawi, H.; Huber, C.; Ungerer, B.; Jakob, M.; Pramreiter, M.; Halbauer, P.; Painer, J.; Krenke, T.; Müller, U. The Effect of Rays on the Mechanical Behaviour of Beech and Birch at Different Moisture and Temperature Conditions Perpendicular to the Grain. Forests 2024, 15, 584. https://doi.org/10.3390/f15040584
Al-musawi H, Huber C, Ungerer B, Jakob M, Pramreiter M, Halbauer P, Painer J, Krenke T, Müller U. The Effect of Rays on the Mechanical Behaviour of Beech and Birch at Different Moisture and Temperature Conditions Perpendicular to the Grain. Forests. 2024; 15(4):584. https://doi.org/10.3390/f15040584
Chicago/Turabian StyleAl-musawi, Hajir, Christian Huber, Bernhard Ungerer, Matthias Jakob, Maximilian Pramreiter, Peter Halbauer, Johannes Painer, Thomas Krenke, and Ulrich Müller. 2024. "The Effect of Rays on the Mechanical Behaviour of Beech and Birch at Different Moisture and Temperature Conditions Perpendicular to the Grain" Forests 15, no. 4: 584. https://doi.org/10.3390/f15040584
APA StyleAl-musawi, H., Huber, C., Ungerer, B., Jakob, M., Pramreiter, M., Halbauer, P., Painer, J., Krenke, T., & Müller, U. (2024). The Effect of Rays on the Mechanical Behaviour of Beech and Birch at Different Moisture and Temperature Conditions Perpendicular to the Grain. Forests, 15(4), 584. https://doi.org/10.3390/f15040584