Identification and Analysis of Expression Patterns of the Caleosin Genes in Hickory (Carya cathayensis Sarg.)
Abstract
:1. Introduction
2. Results
2.1. Identification of the Carya cathayensi Caleosin Genes
2.2. Phylogenetic Tree Analysis
2.3. Identification of Conserved Structural Domains and Motifs of Caleosin Proteins
2.4. Analysis of Promoter-Acting Elements of the Caleosin Genes
2.5. Structural Analysis of Caleosin Proteins in Carya cathayensis
2.6. Analysis of the Expression Pattern of the Hickory Caleosin Genes during Embryo Development
2.7. Subcellular Localization of CcaCLO1 and CcaCLO2
2.8. Analysis of the Expression Pattern of the Hickory Caleosin Genes under Salt Stress
3. Discussion
4. Materials and Methods
4.1. Identification and Physicochemical Properties of the Hickory Caleosin Gene
4.2. Phylogenetic Tree Construction
4.3. Caleosin Protein Gene Structure and Conserved Motif Analysis
4.4. Analysis of Cis-Acting Elements Upstream of the Calesoin Genes Promoter
4.5. Structural Analysis of Hickory Caleosin Proteins
4.6. Expression Pattern Analysis of the Hickory Caleosin Genes during Development Stage
4.7. Expression Pattern Analysis of Hickory Caleosin Genes under Salt Stress
4.8. Analysis of Subcellular Localization of Hickory Caleosin Proteins
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pyc, M.; Cai, Y.; Greer, M.S.; Yurchenko, O.; Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Turning Over a New Leaf in Lipid Droplet Biology. Trends Plant Sci. 2017, 22, 596–609. [Google Scholar] [CrossRef]
- Huang, A.H.C. Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances. Plant Physiol. 2018, 176, 1894–1918. [Google Scholar] [CrossRef]
- Tzen, J.T.; Huang, A.H. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 1992, 117, 327–335. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.-D.; Rose, R.J. Oil body biogenesis and biotechnology in legume seeds. Plant Cell Rep. 2017, 36, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Bersuker, K.; Peterson, C.W.H.; To, M.; Sahl, S.J.; Savikhin, V.; Grossman, E.A.; Nomura, D.K.; Olzmann, J.A. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics. Dev. Cell 2018, 44, 97–112. [Google Scholar] [CrossRef]
- Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Biogenesis and functions of lipid droplets in plants. J. Lipid Res. 2012, 53, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Horn, P.J.; James, C.N.; Gidda, S.K.; Kilaru, A.; Dyer, J.M.; Mullen, R.T.; Ohlrogge, J.B.; Chapman, K.D. Identification of a new class of lipid droplet-associated proteins in plants. Plant Physiol. 2013, 162, 1926–1936. [Google Scholar] [CrossRef] [PubMed]
- Pyc, M.; Cai, Y.; Gidda, S.K.; Yurchenko, O.; Park, S.; Kretzschmar, F.K.; Ischebeck, T.; Valerius, O.; Braus, G.H.; Chapman, K.D.; et al. Arabidopsis lipid droplet-associated protein (LDAP)—Interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J. 2017, 92, 1182–1201. [Google Scholar] [CrossRef]
- Jolivet, P.; Roux, E.; D’Andrea, S.; Davanture, M.; Negroni, L.; Zivy, M.; Chardot, T. Protein composition of oil bodies in Arabidopsis thaliana ecotype WS. Plant Physiol. Biochem. 2004, 42, 501–509. [Google Scholar] [CrossRef]
- Board, A.J.; Crowther, J.M.; Acevedo-Fani, A.; Meisrimler, C.-N.; Jameson, G.B.; Dobson, R.C.J. How plants solubilise seed fats: Revisiting oleosin structure and function to inform commercial applications. Biophys. Rev. 2022, 14, 257–266. [Google Scholar] [CrossRef]
- Choi, Y.J.; Zaikova, K.; Yeom, S.-J.; Kim, Y.-S.; Lee, D.W. Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. Plants 2022, 11, 1243. [Google Scholar] [CrossRef]
- Chen, K.; Yin, Y.; Liu, S.; Guo, Z.; Zhang, K.; Liang, Y.; Zhang, L.; Zhao, W.; Chao, H.; Li, M. Genome-wide identification and functional analysis of oleosin genes in Brassica napus L. BMC Plant Biol. 2019, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.C.; Tai, S.S.; Peng, C.-C.; Tzen, J.T. Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol. 1998, 39, 935–941. [Google Scholar] [CrossRef]
- Hyun, T.K.; Kumar, D.; Cho, Y.-Y.; Hyun, H.-N.; Kim, J.-S. Computational identification and phylogenetic analysis of the oil-body structural. Gene 2013, 515, 454–460. [Google Scholar] [CrossRef]
- Chen, M.C.M.; Chyan, C.-L.; Lee, T.T.T.; Huang, S.-H.; Tzen, J.T.C. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid. J. Agric. Food Chem. 2004, 52, 3982–3987. [Google Scholar] [CrossRef]
- Jiang, P.-L.; Tzen, J.T. Caleosin serves as the major structural protein as efficient as oleosin on the surface of seed oil bodies. Plant Signal. Behav. 2010, 5, 447–449. [Google Scholar] [CrossRef]
- Poxleitner, M.; Rogers, S.W.; Samuels, A.L.; Browse, J.; Rogers, J.C. A role for caleosin in degradation of oil-body storage lipid during seed germination. Plant J. 2006, 47, 917–933. [Google Scholar] [CrossRef] [PubMed]
- Li, C. Cloning and Function Analysis of Caleosin Gene from Ricinus Communis; Shanxi Agricultural University: Taigu, China, 2016. [Google Scholar]
- Zeng, X.; Jiang, J.; Wang, F.; Liu, W.; Zhang, S.; Du, J.; Yang, C. Rice OsClo5, a caleosin protein, negatively regulates cold tolerance through the jasmonate signalling pathway. Plant Biol. 2022, 24, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, S.C.; Arseneault, M.K.M.; Wright, J.A.; Wang, Z.; Ehdaeivand, M.-R.; Lowden, M.J.; Rivoal, J.; Khalil, H.B.; Garg, G.; Gulick, P.J. The stress induced caleosin, RD20/CLO3, acts as a negative regulator of GPA1 in Arabidopsis. Plant Mol. Biol. 2021, 107, 159–175. [Google Scholar] [CrossRef]
- Clermont, K.; Graham, C.J.; Lloyd, S.W.; Grimm, C.C.; Randall, J.J.; Mattison, C.P. Proteomic Analysis of Pecan (Carya illinoinensis) Nut Development. Foods 2023, 12, 866. [Google Scholar] [CrossRef]
- Li, Q.; Wang, L.; Zheng, M.; Lu, H.; Liu, Y.; Wang, Y.; Lu, S. Microencapsulation with Different Starch-Based Polymers for Improving Oxidative Stability of Cold-Pressed Hickory (Carya cathayensis Sarg.) Oil. Foods 2023, 12, 953. [Google Scholar] [CrossRef]
- Bai, W. Efficacy of Pecan and Pecan Oil. Food Ind. 2018, 6, 83. [Google Scholar]
- Huang, C.; Li, Y.; Wang, K.; Xi, J.; Xu, Y.; Hong, J.; Si, X.; Ye, H.; Lyu, S.; Xia, G.; et al. Integrated transcriptome and proteome analysis of developing embryo reveals the mechanisms underlying the high levels of oil accumulation in Carya cathayensis Sarg. Tree Physiol. 2022, 42, 684–702. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Yi, F.; Hu, S.; Gao, Y. Identification and expression profile analysis of oleosin gene family in Chinses hickory and pecan. J. Fruit Sci. 2023, 40, 35–47. [Google Scholar]
- Shen, Y.; Xie, J.; Liu, R.-D.; Ni, X.-F.; Wang, X.-H.; Li, Z.-X.; Zhang, M. Genomic analysis and expression investigation of caleosin gene family in Arabidopsis. Biochem. Biophys. Res. Commun. 2014, 448, 365–371. [Google Scholar] [CrossRef]
- Chen, J.C.; Tsai, C.C.; Tzen, J.T. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol. 1999, 40, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Hu, S.; Zhu, D.; Zhao, R.; Huang, C.; Gao, Y. Lipid droplets proteome reveals dynamic changes of lipid droplets protein during embryonic development of Carya cathayensis nuts. Plant Sci. 2023, 334, 111753. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, M.; Wang, L.; Li, Z.; Taylor, D.C.; Li, Z.; Zhang, M. Identification, duplication, evolution and expression analyses of caleosins in Brassica plants and Arabidopsis subspecies. Mol. Genet. Genom. 2016, 291, 971–988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dunwell, J.M.; Zhang, Y.-M. An integrated omics analysis reveals molecular mechanisms that are associated. BMC Plant Biol. 2018, 18, 328. [Google Scholar] [CrossRef]
- Chen, D.-H.; Chyan, C.-L.; Jiang, P.-L.; Chen, C.-S.; Tzen, J.T. The same oleosin isoforms are present in oil bodies of rice embryo and aleurone layer while caleosin exists only in those of the embryo. Plant Physiol. Biochem. 2012, 60, 18–24. [Google Scholar] [CrossRef]
- Lamberti, C.; Nebbia, S.; Balestrini, R.; Marengo, E.; Manfredi, M.; Pavese, V.; Cirrincione, S.; Giuffrida, M.G.; Cavallarin, L.; Acquadro, A.; et al. Identification of a caleosin associated with hazelnut (Corylus avellana L.) oil. Plant Biol. 2020, 22, 404–409. [Google Scholar] [CrossRef]
- Umate, P. Comparative genomics of the lipid-body-membrane proteins oleosin, caleosin and steroleosin in magnoliophyte, lycophyte and bryophyte. Genom. Proteom. Bioinform. 2012, 10, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, G.I.; Mundy, J.; Tzen, J.T.C. Oil bodies and their associated proteins, oleosin and caleosin. Physiol. Plant. 2001, 112, 301–307. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Z.; Wang, Y.; Shen, Y.; Jia, Q.; Zhao, C.; Zhang, M. Multiple caleosins have overlapping functions in oil accumulation and embryo development. J. Exp. Bot. 2022, 73, 3946–3962. [Google Scholar] [CrossRef] [PubMed]
- Miklaszewska, M.; Zienkiewicz, K.; Klugier-Borowska, E.; Rygielski, M.; Feussner, I.; Zienkiewicz, A. CALEOSIN 1 interaction with Autophagy-Related Protein 8 facilitates lipid droplet microautophagy in seedlings. Plant Physiol. 2023, 193, 2361–2380. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.Y.; Jung, K.W.; Yoo, K.S.; Jeung, J.U.; Shin, J.S. A stress-responsive caleosin-like protein, AtCLO4, acts as a negative regulator of ABA responses in Arabidopsis. Plant Cell Physiol. 2011, 52, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Charuchinda, P.; Waditee-Sirisattha, R.; Kageyama, H.; Yamada, D.; Sirisattha, S.; Tanaka, Y.; Mahakhant, A.; Takabe, T. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein. Biosci. Biotechnol. Biochem. 2015, 79, 1119–1124. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Zhang, J.; Li, X.; Qian, X.; Yan, H. BrRD20 improves abiotic stress resistance in chrysanthemum. Funct. Plant Biol. 2023, 50, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Jing, P.; Kong, D.; Ji, L.; Kong, L.; Wang, Y.; Peng, L.; Xie, G. OsClo5 functions as a transcriptional co-repressor by interacting with OsDi19-5. Plant J. 2021, 105, 800–815. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Li, Y.; Wang, K.; Xi, J.; Xu, Y.; Si, X.; Pei, D.; Lyu, S.; Xia, G.; Wang, J.; et al. Analysis of lipidomics profile of Carya cathayensis nuts and lipid dynamic changes during embryonic development. Food Chem. 2022, 370, 130975. [Google Scholar] [CrossRef]
- Huang, C.; Li, Y.; Wang, K.; Xi, J.; Wang, H.; Zhu, D.; Jiang, C.; Si, X.; Shi, D.; Wang, S.; et al. WRINKLED1 Positively Regulates Oil Biosynthesis in Carya cathayensis. J. Agric. Food Chem. 2023, 71, 6763–6774. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, T.; Jin, H.; Wang, J.; Li, C.; Lim, K.-J.; Wang, Z. Quantitative Phosphoproteomic Analysis Reveals Potential Regulatory Mechanisms of Early Fruit Enlargement in Pecan (Carya illinoinensis). J. Agric. Food Chem. 2023, 71, 4901–4914. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Hu, S.; Yi, F.; Gao, Y.; Zhu, D.; Wang, Y.; Cai, Y.; Hou, D.; Lin, X.; Shen, J. Organelle Visualization with Multicolored Fluorescent Markers in Bamboo. Front. Plant Sci. 2021, 12, 658836. [Google Scholar] [CrossRef] [PubMed]
- Min, X.; Lu, C.; Chen, T.; Liu, B.; Lu, C. The complete mitochondrial genome of Asian brown flycatcher Muscicapa latirostris. Mitochondrial DNA B Resour. 2019, 4, 3880–3881. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dong, X.; Tang, B.; Yang, H.; Chen, Y.; Xiong, C.; Zou, X.; Liu, F. Identification and analysis of WOX gene family in pepper. J. Hunan Agric. Univ. Nat. Sci. 2023, 49, 291–297. [Google Scholar]
Species | Gene Name | Gene ID | Protein Length (aa) | MW (kD) | PI | Instability Index | Aliphatic Index | Gravy | Subcellular Localization |
---|---|---|---|---|---|---|---|---|---|
Carya cathayensis | CcaCLO1 | Cca0849S0013 | 239 | 26.87 | 5.88 | 44.95 | 77.62 | −0.190 | Chloroplast |
CcaCLO2 | Cca0601S0075 | 203 | 23.00 | 8.79 | 38.91 | 76.85 | −0.379 | Nucleus | |
CcaCLO3 | Cca0899S0091 | 203 | 23.16 | 9.26 | 38.15 | 69.11 | −0.520 | Nucleus | |
CcaCLO4 | Cca0795S0046 | 142 | 16.91 | 6.98 | 47.74 | 80.21 | −0.628 | Cytoplasmic | |
Carya illinoinensis | CilCLO1 | Cil0951S0139 | 203 | 23.03 | 8.89 | 39.45 | 75.42 | −0.424 | Nuclear |
CilCLO2 | Cil0001S0015 | 203 | 23.22 | 9.37 | 37.88 | 69.61 | −0.515 | Nuclear | |
CilCLO3 | Cil0992S0011 | 239 | 27.08 | 5.89 | 47.72 | 78.41 | −0.299 | Chloroplast | |
Juglans regia | JreCLO1 | JreChr05G11280 | 201 | 22.92 | 9.40 | 40.35 | 75.22 | −0.465 | Cytoplasmic Nuclear |
JreCLO2 | JreChr06G12167 | 201 | 22.80 | 7.85 | 41.39 | 77.61 | −0.399 | Nuclear | |
JreCLO3 | JreChr01G11961 | 239 | 26.93 | 5.70 | 45.71 | 80.41 | −0.198 | Chloroplast |
Protein Name | Alpha Helix/% | Beta Turn/% | Extended Strand/% | Random Coil/% |
---|---|---|---|---|
Cca0849S0013 (CcaCLO1) | 40.59 | 7.11 | 9.21 | 43.10 |
Cca0601S0075 (CcaCLO2) | 40.39 | 6.40 | 13.30 | 39.90 |
Cca0899S0091 (CcaCLO3) | 37.93 | 8.37 | 12.81 | 40.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhan, Y.; Liu, J.; Tang, T.; Li, J.; Zhao, R.; Zhang, Q.; Hu, S.; Cao, W.; Gao, Y. Identification and Analysis of Expression Patterns of the Caleosin Genes in Hickory (Carya cathayensis Sarg.). Forests 2024, 15, 609. https://doi.org/10.3390/f15040609
Cao Y, Zhan Y, Liu J, Tang T, Li J, Zhao R, Zhang Q, Hu S, Cao W, Gao Y. Identification and Analysis of Expression Patterns of the Caleosin Genes in Hickory (Carya cathayensis Sarg.). Forests. 2024; 15(4):609. https://doi.org/10.3390/f15040609
Chicago/Turabian StyleCao, Yueyinglun, Yang Zhan, Jiale Liu, Tianyu Tang, Juan Li, Rui Zhao, Qixiang Zhang, Shuai Hu, Wenhan Cao, and Yanli Gao. 2024. "Identification and Analysis of Expression Patterns of the Caleosin Genes in Hickory (Carya cathayensis Sarg.)" Forests 15, no. 4: 609. https://doi.org/10.3390/f15040609
APA StyleCao, Y., Zhan, Y., Liu, J., Tang, T., Li, J., Zhao, R., Zhang, Q., Hu, S., Cao, W., & Gao, Y. (2024). Identification and Analysis of Expression Patterns of the Caleosin Genes in Hickory (Carya cathayensis Sarg.). Forests, 15(4), 609. https://doi.org/10.3390/f15040609