A Study on Endogenous Inhibitors of Nitraria roborowskii Kom. Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Experimental Design and Research Methodology
2.2.1. Extraction of Inhibitors from N. roborowskii Seeds
2.2.2. Separation of Inhibitors from N. roborowskii Seeds
2.2.3. Bioassay of the Inhibitory Activity of the Seeds of N. roborowskii
2.2.4. GC–MS Identification of Inhibitors from N. roborowskii Seeds
2.3. Data Statistics
3. Results
3.1. Bioassay of the Extracts of Various Organic Phases from the Seeds of N. roborowskii
3.2. Organic Compound Types in Extracts of N. roborowskii Seeds
3.2.1. Methanolic Phase Extract of N. roborowskii Seeds
3.2.2. Extracts of the Ethyl Acetate Phase of N. roborowskii Seeds
3.2.3. Extracts of the Petroleum Ether Phase of N. roborowskii Seeds
4. Discussion
4.1. Bioassay of Endogenous Inhibitors in N. roborowskii Seeds
4.2. Types of Inhibitory Substances in N. roborowskii Seeds
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.Y. Distributional types of seed plant genera in China Yunnan Plant Research. YunnanBotanicalResearch 1991, 4 (Suppl. IV), 1–139. [Google Scholar]
- Suo, Y.R. Research and Development of Nitraria in the Qaidam Basin; Science Press: Beijing, China, 2010. [Google Scholar]
- Wang, J.Q. Taxonomy, Distribution and Bioecological Characteristics of Nitraria. Arid Zone For. Res. 1989, 2, 47–63. [Google Scholar]
- Zeng, Y.J.; Wei, J.P.; Yu, L.; Wang, Y.R. Seed viability, germination and dormancy of Nitraria roborowskii (Nitrariaceae). Seed Sci. Technol. 2016, 44, 647–653. [Google Scholar] [CrossRef]
- Li, Q.H.; Xin, Z.M.; Gao, T.T.; Wang, S.X.; Xu, J.; Sun, F. Reproductive allocation in four desert species of the genus Nitraria L. J. Ecol. 2012, 32, 5054–5061. [Google Scholar]
- Wang, S.; Li, Q.; Xu, J.; Gao, T.; Xin, Z. Experimental research on the pollination characteristics of 4 plant species of genus Nitraria L. J. Biol. 2012, 29, 49–51. [Google Scholar]
- Liu, L.P. Analysis and Appraisal on Nutritional Components of the Four Plants of Nitraria in Inner Mongolia. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2009. [Google Scholar]
- Yuan, Y.Y.; Zhou, Y.B.; Sun, J.; Deng, J.; Bai, Y.; Wang, J.; Lu, X.F. Determination and principal component analysis of mineral elements based on ICP–OES in Nitraria roborowskii fruits from different regions. Chin. J. Tradit. Chin. Med. 2017, 42, 2334–2338. [Google Scholar]
- Gao, S.W. Study on Seed Dormancy, Germination Resistance to Adverse Stresses and Soil Seed Persistence in Genus Nitraria. Master’s Thesis, Lanzhou University, Lanzhou, China, 2021. [Google Scholar]
- Zeng, Y.J.; Wang, Y.R.; Zhang, J.; Li, Z.B. Germination responses to temperature and dormancy breaking treatments in Nitraria tangutorum Bobr. and Nitraria sibirica Pall. Seed Sci. Technol. 2010, 38, 537–550. [Google Scholar] [CrossRef]
- Commander, L.E.; Merritt, D.J.; Rokich, D.P.; Dixon, K.W. Seed biology of Australian arid zone species: Germination of 18 species used for rehabilitation. J. Arid Environ. 2009, 73, 617–625. [Google Scholar] [CrossRef]
- Decraene, L.; Smets, E.F. Morphological studies in Zygophyllaceae. I. The floral development and vascular anatomy of Nitraria retusa. Am. J. Bot. 1991, 78, 1438–1448. [Google Scholar] [CrossRef]
- Ren, S.F.; Lv, G.H. Effects of different pretreatments on seed germination of Nitraria roborowskii Kom. Seed 2017, 36, 10–14. [Google Scholar]
- Teng, Y.Z. Dormancy and Germination in Plants; Science Press: Beijing, China, 1980. [Google Scholar]
- Thevenot, C.; Come, D. Inhibition of the germination of the embryonic axis by the cotyledons in apple. CR Acad. Sci. Ser. 1973, D277, 1873–1876. [Google Scholar]
- Kentzer, T. Gibberellin-like sub stance and growth inhibit ors in relation to the dormancy and after-ripening of ash seeds (Fraxinus excelsior L.). Acta Soc. Bot. Pol. 2015, 35, 575–585. [Google Scholar] [CrossRef]
- Amen, R.D. A model of seed dormancy. Bot. Rev. 1968, 34, 1–31. [Google Scholar] [CrossRef]
- Sun, J.; Guo, J.F.; Wei, S.N. Overview on Inhibitors of Plant Seed Germination. Seeds 2012, 31, 57–61. [Google Scholar]
- Singh, M.; Tamma, R.V.; Nigg, H.N. HPLC identification of all elopathic compounds from Lantana camara. J. Chem. Ecol. 1989, 15, 81–90. [Google Scholar] [CrossRef]
- Fu, J.R. Seed Physiology; Science Press: Beijing, China, 1985. [Google Scholar]
- Fu, Q.C.; Liu, C.; Wang, Y.; Li, C.H.; Hu, Q. Study on germination inhibiting substances in methanol extract of drupes of Sinojackia sarcocarpa. North. Hortic. 2015, 2, 6–9. [Google Scholar]
- Zhang, Y.J. Studies on the Dormancy Mechanism of Taxus chinensis var. mairei Seeds. Ph.D. Thesis, Nanjing Forestry University, Nanjing, China, 2007. [Google Scholar]
- Liu, W.Y. Studies on the Dormancy and Release Mechanism of Medicago truncatula Gaertn. Seeds. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2015. [Google Scholar]
- Li, L.J.; Zhao, T.T.; Qian, C.M.; Li, S.X.; Zhai, J.T. Effect of Endogenous Inhibitors on Seed Germination of Sapium sebiferum. J. Northeast For. Univ. 2022, 50, 9–14. [Google Scholar]
- Fenner, M.; Thompson, K. The Ecology of Seeds; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Zou, Y.T.; Chen, L.; Fan, X.J.; Li, X.S. Preliminary identification of endogenous inhibitors in Crataegus viridis seeds. Seed 2018, 37, 23–28. [Google Scholar]
- Zhu, M.W.; Zou, Y.T.; Li, Y.R.; Li, S.X. Endogenous inhibitors in seeds of oil peony cultivar ‘Feng Dan’. J. Southwest For. Univ. (Nat. Sci.) 2019, 39, 64–70. [Google Scholar]
- Yan, F. Study on the Dormancy Mechanism of Daphne giraldii Seeds. Ph.D. Thesis, Gansu Agricultural University, Lanzhou, China, 2017. [Google Scholar]
- Cheng, H.B.; Li, X.R.; Guo, F.X. Inhibitory effects of Nitraria tangutorum Bobr. Effects of seed extracts on wheat seed germination and growth. J. Gansu Agric. Univ. 2010, 45, 58–61. [Google Scholar]
- Kamble, S.T.; Pawar, A. Allelopathic potential of petal leachates of Cassia fistula L. against an invasive weed Alternanthera tenella L. Allelopath. J. 2020, 49, 165–176. [Google Scholar] [CrossRef]
- Zhang, S.Q. Bioassay and analysis of inhibitors in Paeonia lactiflora seed germination. Anhui For. Sci. Technol. 2015, 41, 17–20. [Google Scholar]
- Li, C.F.; Chen, M.; Ma, F.M.; Gai, Z.J.; Guo, J.; Wang, Y.B. Study on the allelopathic effect of root exudates of Beta vulgaris on Soybean. J. Northeast Agric. Univ. 2016, 47, 21–30. [Google Scholar]
- Ge, J.; Cheng, J.; Li, Y.; Li, Q.X.; Yu, X. Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica Rapa Var. Chinensis. Environ. Res. 2020, 189, 109953. [Google Scholar] [CrossRef]
- Tamilmani, E.; Radhakrishnan, R.; Sankaran, K. 13-Docosenamide release by bacteria in response to glucose during growth—Fluorescein quenching and clinical application. Appl. Microbiol. Biotechnol. 2018, 102, 6673–6685. [Google Scholar] [CrossRef]
- Tang, C.L.; Lei, Q.; Luo, F.L.; Zhao, Z.; Hang, Y.; Wang, H.L.; Luo, C.L.; Chen, S.H. Chemosensory effects of the chemosensory substance extracts of Semen Armeniacae on 8 crops. Guizhou Agric. Sci. 2019, 47, 31–37. [Google Scholar]
- Khan, A.A. The Physiology and Biochemistry of Seed Dormancy and Germination; North-Holland Publishing Company: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1977. [Google Scholar]
- Song, X.K. GC–MS analysis of volatile components in root bark of Michelia macclurei Dandy and its inhibitory effect on the growth of NIH/3T3 cells. Chin. J. Mod. Appl. Pharm. 2011, 28, 1122–1125. [Google Scholar]
- Wang, Z.W.; Bai, Y.C.; Fu, H.Y.; Zhao, L.; Cui, G.X.; She, W.; Yang, R.F. Effects of the water extract of Ramie straw on the physiological and biochemical characteristics and rhizosphere microorganisms of Ramie straw. Mol. Plant Breed. 2022, 1, 1–16. [Google Scholar]
- Li, S.S.; Tan, X. Research on the influence of light intensity on continuous cropping obstacles of plants. Anhui Agric. Sci. Bull. 2022, 28, 12–15+42. [Google Scholar]
- Krogmeier, M.J.; Bremner, J.M. Effects of phenolic acids on seed germination and seedling growth in soil. Biol. Fertil. Soils 1989, 8, 116–122. [Google Scholar] [CrossRef]
- Yan, Q.C. Seed Science; China Agriculture Press: Beijing, China, 2001. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
Peak Time (min) | Molecular Formula | Molecular Weight (Da) | Name | Peck Area Percentage Content (%) | Class Compounds |
---|---|---|---|---|---|
12.871 | C6H8O4 | 144 | 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- | 34.08 | Ketone |
32.097 | C16H22O4 | 278 | Dibutyl phthalate | 12.99 | Salts |
12.222 | C6H15O4P | 182 | Triethyl phosphate | 4.79 | Salts |
45.431 | C22H43NO | 337 | 13-Docosenamide, (Z)- | 3.44 | Amides |
7.616 | C6H6O2 | 110 | 2-Furancarboxaldehyde, 5-methyl- | 3.12 | Aldehydes |
39.126 | C22H42O4 | 370 | Hexanedioic acid, bis(2-ethylhexyl) ester | 2.95 | Salts |
6.698 | C5H6O2 | 98 | 1,2-Cyclopentanedione | 2.77 | Ketone |
7.157 | C4H4O | 68 | Furan | 2.75 | Furans |
6.604 | CH3NO | 45 | Formamide | 2.67 | Amides |
8.012 | C6H8O4 | 144 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | 2.50 | Ketone |
10.622 | C6H8O3 | 128 | 2,5-Dimethylfuran-3,4(2H,5H)-dione | 2.10 | Ketone |
Peak Time (min) | Molecular Formula | Molecular Weight (Da) | Name | Peck Area Percentage Content (%) | Class Compounds |
---|---|---|---|---|---|
27.885 | C10H12O3 | 180 | 4-((1E)-3-Hydroxy-1-propenyl)-2-methoxyphenol | 20.05 | Phenols |
12.034 | - | - | Unknown 1 | 8.37 | - |
39.191 | - | - | Unknown 2 | 4.92 | - |
52.354 | - | - | Unknown 3 | 4.64 | - |
45.435 | C22H43NO | 337 | 13-Docosenamide, (Z)- | 4.60 | Amides |
27.703 | C10H10O3 | 178 | Coniferyl aldehyde | 3.30 | Aldehydes |
24.309 | C8H8O4 | 168 | 3-Hydroxy-4-methoxybenzoic acid | 3.06 | Acids |
19.827 | C8H8O3 | 152 | Vanillin | 2.74 | Vanillin |
15.257 | C8H8O | 120 | Benzofuran, 2,3-dihydro- | 2.29 | Furans |
29.462 | - | - | Unknown 4 | 2.10 | - |
24.621 | C10H13NO2 | 179 | Carbamic acid, methylphenyl-, ethyl ester | 2.00 | Salts |
32.967 | - | - | Unknown 5 | 1.94 | - |
4.714 | C5H10O2 | 102 | Butanoic acid, 3-methyl- | 1.83 | Acids |
Peak Time (min) | Molecular Formula | Molecular Weight (Da) | Name | Peck Area Percentage Content (%) | Class Compounds |
---|---|---|---|---|---|
45.467 | C22H43NO | 337 | 13-Docosenamide, (Z)- | 16.31 | Amides |
4.381 | C8H16 | 112 | Cyclohexane, ethyl- | 5.13 | Alkanes |
8.246 | C12H26 | 170 | Heptane, 2,2,4,6,6-pentamethyl- | 3.20 | Alkanes |
39.185 | - | - | Unknown 1 | 3.02 | - |
22.636 | C14H22O | 206 | 2,4-Di-tert-butylphenol | 2.64 | Phenols |
46.025 | C14H24 | 192 | 1,5,9-Undecatriene, 2,6,10-trimethyl-, (Z)- | 2.63 | Alkenes |
4.293 | C8H16 | 112 | Cyclohexane, 1,2-dimethyl-, cis- | 2.02 | Alkanes |
4.24 | C9H20 | 128 | Heptane, 2,6-dimethyl- | 1.84 | Alkanes |
5.834 | C9H20 | 128 | Nonane | 1.83 | Alkanes |
8.534 | C10H22 | 142 | Decane | 1.74 | Alkanes |
7.716 | C10H22 | 142 | Nonane, 3-methyl- | 1.44 | Alkanes |
4.115 | C9H20 | 128 | Heptane, 2,4-dimethyl- | 1.44 | Alkanes |
7.457 | C10H22 | 142 | Heptane, 2,3,4-trimethyl- | 1.37 | Alkanes |
4.987 | - | - | Unknown 2 | 1.37 | - |
5.163 | - | - | Unknown 3 | 1.34 | - |
Component | Number | Methanol | Ethyl Acetate | Petroleum Ether |
---|---|---|---|---|
Alkanes | 10 | 0 | 0 | 10 |
Amides | 4 | 2 | 1 | 1 |
Ketones | 4 | 4 | 0 | 0 |
Esters | 3 | 3 | 0 | 0 |
Organic acids | 2 | 0 | 2 | 0 |
Phenols | 2 | 0 | 1 | 1 |
Aldehydes | 2 | 1 | 1 | 0 |
Furans | 2 | 1 | 1 | 0 |
Vanillin | 1 | 0 | 0 | 0 |
Number of categories | 9 | 5 | 6 | 3 |
Number of organic compounds | 30 | 11 | 7 | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, S.; Jiang, L.; Lv, G. A Study on Endogenous Inhibitors of Nitraria roborowskii Kom. Seeds. Forests 2024, 15, 773. https://doi.org/10.3390/f15050773
Ren S, Jiang L, Lv G. A Study on Endogenous Inhibitors of Nitraria roborowskii Kom. Seeds. Forests. 2024; 15(5):773. https://doi.org/10.3390/f15050773
Chicago/Turabian StyleRen, Shangfu, Lamei Jiang, and Guanghui Lv. 2024. "A Study on Endogenous Inhibitors of Nitraria roborowskii Kom. Seeds" Forests 15, no. 5: 773. https://doi.org/10.3390/f15050773
APA StyleRen, S., Jiang, L., & Lv, G. (2024). A Study on Endogenous Inhibitors of Nitraria roborowskii Kom. Seeds. Forests, 15(5), 773. https://doi.org/10.3390/f15050773