Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Sites
2.2. Field Data Collection and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Larsen, J.B. Close-to-nature forest management: The Danish approach to sustainability forestry. J. Sustain. For. 2012, 199–218. [Google Scholar] [CrossRef]
- Nikooy, M.; Tavankar, F.; Naghdi, R.; Ghorbani, A.; Jourgholami, M.; Picchio, R. Soil impacts and residual stand damage from thinning operations. Int. J. Forest Eng. 2020, 31, 126–137. [Google Scholar] [CrossRef]
- Fujimori, T. Silvicultural Strategies for Sustainable Forest Management. In Ecological and Silvicultural Strategies for Sustainable Forest Management; Elsevier Science Publishier: Amsterdam, The Netherlands, 2001; pp. 139–161. [Google Scholar]
- Ursić, B.; Vusić, D.; Papa, I.; Poršinsky, T.; Zečić, Ž.; Đuka, A. Damage to residual trees in thinning of broadleaf stand by mechanised harvesting system. Forests 2022, 13, 51. [Google Scholar] [CrossRef]
- Cudzik, A.; Brennensthul, M.; Białczyk, W.; Czarnecki, J. Damage to soil and residual trees caused by different logging systems applied to late thinning. Croat. J. Eng. 2017, 38, 83–95. [Google Scholar]
- Hwang, K.; Han, H.-S.; Marshall, S.E.; Page-Dumroese, D.S. Amount and location of damage to residual trees from cut-to-length thinning operations in a young redwood forest in Northern California. Forests 2018, 9, 352. [Google Scholar] [CrossRef]
- Kizha, A.R.; Nahor, E.; Coogen, N.; Louis, L.T.; George, A.K. Residual stand damage under different harvesting methods and mitigation strategies. Sustainability 2021, 13, 7641. [Google Scholar] [CrossRef]
- Han, H.-S. Damage to Young Douglas-Fir Stands from Commercial Thinning with Various Timber Harvesting Systems and Silvicultural Prescriptions: Characteristics, Sampling Strategy for Assessment and Future Value Loss. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1997. [Google Scholar]
- Tavankar, E.; Picchio, R.; Nikooy, M.; Lo Monaco, A.; Iranparast Bodaghi, A. Healing rate logging wounds on broadleaf trees in Hyrcanian forest with some technological implications. Drewno 2018, 60, 65–80. [Google Scholar] [CrossRef]
- Borz, S.A.; Crăciun, B.C.; Marcu, M.V.; Iordache, E.; Proto, A.R. Could timber winching operations be cleaner? An evaluation of two options in terms of residual stand damage, soil disturbance and operational efficiency. Eur. J. Forest Res. 2023, 142, 475–491. [Google Scholar] [CrossRef]
- Hartsough, B. Economics of harvesting to maintain high structural diversity and resulting damage to residual trees. West. J. Appl. For. 2003, 18, 133–142. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef]
- Behjou, F.K. Effects of wheeled cable skidding on residual trees in selective logging in Caspian forests of Iran. BioResorces 2014, 7, 4867–4874. [Google Scholar]
- Siren, T.; Kanita, P.; Rinne, M. Comsiderations and observations of stress-induced and construction-induce excavation damage zone in crystalline rock. Int. J. Rock Mech. Min. Sci. 2015, 73, 165–174. [Google Scholar] [CrossRef]
- Kelley, R.S. Stand damage from whole-tree harvesting in Vermont hardwoods. J. For. 1983, 81, 95–96. [Google Scholar] [CrossRef]
- Froese, K.; Han, H.-S. Residual stand damage from cut-to-length thinning of a mixed conifer stand in Northern Idaho. West. J. Appl. For. 2006, 21, 142–148. [Google Scholar] [CrossRef]
- Câmpu, V.R.; Borz, S.A. Amount and structure of tree damage when using cut-to-length system. Environ. Eng. Manag. J. 2017, 16, 2053–2061. [Google Scholar] [CrossRef]
- Camp, A. Damage to residual trees by four mechanized harvest systems operating in small-diameter, mixed-conifer forests on steep slopes in northeastern Washington: A case study. West. J. Appl. For. 2002, 17, 14–22. [Google Scholar] [CrossRef]
- Korea Forest Service. Available online: https://forest.go.kr (accessed on 28 January 2024).
- Baek, K.; Lee, E.; Choi, H.; Cho, M.; Choi, Y.; Han, S. Impact on soil physical properties related to a high mechanization level in the row thinning of a Korean pine Stand. Land 2022, 11, 329. [Google Scholar] [CrossRef]
- Cho, M.-J.; Choi, Y.-S.; Oh, J.-H.; Mun, H.-S.; Han, S.-K. Comparison of harvesting productivity, cost, and residual stand damages between single-tree selection thinning and mechanized line thinning using a small-scale grapple-saw. Forest Sci. Technol. 2022, 18, 45–55. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Avery, T.E.; Bullock, B.P. Forest Measurements; Waveland Press, Inc.: Long Grove, IL, USA, 2019; pp. 163–198. [Google Scholar]
- Allman, M.; Dudáková, Z.; Jankovský, M.; Juško, V.; Merganič, J. Soil and residual stand disturbances after harvesting in close-to-nature managed forests. Forests 2023, 14, 910. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Güldner, O.; Erler, J. Site impact after motor-manual and mechanized thinning in Mediterranean pine plantations. Biosyst. Eng. 2012, 113, 140–147. [Google Scholar] [CrossRef]
- Akay, A.E.A.; Yilmaz, M.Y.; Tongue, E. Impact of mechanized harvesting machines on forest ecosystem: Residual stand damage. J. Appl. Sci. 2006, 6, 2414–2419. [Google Scholar] [CrossRef]
- Sist, P.; Sheil, D.; Kartawinata, K.; Priyadi, H. Reduced-impact logging in Indonesian Borneo: Some results confirming the need for new silvicultural prescriptions. For. Ecol. Manag. 2003, 179, 415–427. [Google Scholar] [CrossRef]
- Bodaghi, A.I.; Nikooy, M.; Naghdi, R.; Tavankar, F. Logging damage to residual trees during sustainable harvesting of uneven-age stands in the Hyrcanian forests of Iran. N. Z. J. For. Sci. 2020, 50, 1–11. [Google Scholar] [CrossRef]
- Magagnotti, N.; Spinelli, R.; Acuña, M.; Bigot, M.; Guerra, S.; Hartsough, B.; Kanzian, C.; Kärhä, K.; Lindroos, O.; Roux, P.; et al. Good Practice Guidelines for Biomass Production Studies; Magagnotti, N., Spinelli, R., Eds.; CNR; IVALSA: Florence, Italy, 2012; p. 50. [Google Scholar]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. The effect of mechanization level and harvesting system on the thinning cost of Mediterranean softwood plantations. Silva Fenn. 2014, 48, 1003. [Google Scholar] [CrossRef]
- Tolosana, E.; Laina, R.; Spinelli, R.; Aminti, G.; López-Vicens, I. Operational and environmental comparison of two felling and piling alternatives for whole tree harvesting in Quercus copies for bioenergy use. Croat. J. Eng. 2023, 44, 45–56. [Google Scholar] [CrossRef]
Area | DBH 1 (cm) | Height (m) | TPH 2 | BA 3 (m2/ha) | KP 4 (%) | JL 5 (%) |
---|---|---|---|---|---|---|
S1 | 26.00 | 15.00 | 662.00 | 35.00 | 94.00 | 6.00 |
S2 | 26.00 | 15.00 | 557.00 | 32.00 | 95.00 | 5.00 |
S3 | 26.00 | 15.00 | 612.00 | 30.00 | 51.00 | 49.00 |
Area | DBH 1 (cm) | Height (m) | TPH 2 | BA 3 (m2/ha) |
---|---|---|---|---|
S1 | 26.00 | 15.00 | 447.00 | 26.00 |
S2 | 26.00 | 15.00 | 398.00 | 23.00 |
S3 | 26.00 | 15.00 | 422.00 | 21.00 |
Study Site | p-Value | |||
---|---|---|---|---|
S1 | S2 | S3 | ||
Percentage of damaged trees (%) | 12 | 10 | 15 | - |
Number of damaged trees per ha | 50 | 30 | 72 | - |
Number of injuries per tree | 2.1 | 1.8 | 1.5 | <0.05 |
Percentage of injuries location (%) | ||||
Root injury | 34 | 18 | 13 | - |
Butt injury | 36 | 44 | 32 | - |
Stem injury | 30 | 38 | 55 | - |
Mean height from ground (m) | 1.3 | 1.2 | 1.6 | >0.05 |
Mean size of injury (cm2) | 207 | 181 | 165 | >0.05 |
Levels of wound severity | 5 (heavy) | 4 (medium) | 4 (medium) | - |
Scar width (cm) | 94 | 93 | 91 | - |
Area | Root | Butt | Stem |
---|---|---|---|
S1 | 376 a | 144 a | 108 a |
S2 | 372 a | 129 a | 150 b |
S3 | 139 b | 199 a | 152 b |
p-value | <0.05 | 0.8687 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.; Lee, S.-T.; Mun, H.-S.; Chung, S.; Oh, J.-H. Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization. Forests 2024, 15, 794. https://doi.org/10.3390/f15050794
Lee E, Lee S-T, Mun H-S, Chung S, Oh J-H. Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization. Forests. 2024; 15(5):794. https://doi.org/10.3390/f15050794
Chicago/Turabian StyleLee, Eunjai, Sang-Tae Lee, Ho-Seong Mun, Sanghoon Chung, and Jae-Heun Oh. 2024. "Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization" Forests 15, no. 5: 794. https://doi.org/10.3390/f15050794
APA StyleLee, E., Lee, S. -T., Mun, H. -S., Chung, S., & Oh, J. -H. (2024). Assessing the Residual Stand Damage after Thinning with Different Levels of Mechanization. Forests, 15(5), 794. https://doi.org/10.3390/f15050794